SCIENTIA

Series A: Mathematical Sciences, Vol. 33 (2023), 61-72
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
(C) Universidad Técnica Federico Santa María 2023

Wallis m-integrals and their properties

Veselin Jungića ${ }^{\text {a }}$, Andriana Burazin ${ }^{\text {b }}$ and Miroslav Lovrićc ${ }^{\text {c }}$

AbStract. This paper investigates asymptotic behaviour of the m-Wallis integrals
$W(m, k)=\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x, m \in \mathbb{N} \cup\{0\}, k \in \mathbb{N}$.

1. Introduction

The purpose of this note is to establish several properties of the family of integrals

$$
W(m, k)=\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x, m \in \mathbb{N} \cup\{0\}, k \in \mathbb{N}
$$

In 2007 Tewodros Amdeberhan, Luis A. Medina, and Victor H. Moll [1] obtained many interesting properties of the whole family as well as of its subfamilies determined by fixing the value of one of the parameters. Those properties include recurrence formulae, for $k \geqslant 3$,

$$
W(0, k)=\frac{k-1}{k} W(0, k-2), W(1, k)=\frac{k-1}{k} W(1, k-2)-\frac{1}{k^{2}},
$$

and, for $m \geqslant 2$, and $k \geqslant 3$,

$$
W(m, k)=\frac{k-1}{k} W(m, k-2)-\frac{m(m-1)}{k^{2}} W(m-2, k) .
$$

A straightforward application of integration by parts yields to each of the above recurrences.
The members of the subfamily $W(0, k)=W_{k}=\int_{0}^{\frac{\pi}{2}} \cos ^{k} x d x, k \in \mathbb{N}$, are the wellknown Wallis integrals. These integrals and their properties have been studied over a long period of time $[\mathbf{2 , ~ 3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 3}, \mathbf{1 4}]$. Here are three properties that easily follow from the recurrence $W_{k}=\frac{k-1}{k} W_{k-2}$.

Proposition $1.1([\mathbf{1}, \mathbf{1 1}, \mathbf{1 4}])$. Let $\left\{W_{k}: k \in \mathbb{N}\right\}$ be the family of the Wallis integrals. Then:
(1) $W_{k}=\left\{\begin{array}{ll}\frac{(2 n-1)!!}{(2 n)!!} \cdot \frac{\pi}{2}=\frac{\pi}{2^{2 n+1}} \cdot\binom{2 n}{n} & \text { if } k=2 n \\ \frac{(2 n)!!}{(2 n+1)!!}=\frac{2^{2 n}}{(2 n+1)\binom{2 n}{n}} & \text { if } k=2 n+1\end{array}\right.$.
(2) $\lim _{k \rightarrow \infty} \frac{W_{k+1}}{W_{k}}=1$.
(3) $k W_{k} W_{k-1}=\frac{\pi}{2}$

From Proposition 1.1 it follows that for large values of k,

$$
k W_{k}^{2} \sim k W_{k+1} W_{k} \sim \frac{\pi}{2} .
$$

In other words:
Proposition 1.2. Let $\left\{W_{k}: k \in \mathbb{N}\right\}$ be the family of the Wallis integrals. Then:
(1) For large values of $k, W_{k} \sim \sqrt{\frac{\pi}{2 k}}$.
(2) $\lim _{k \rightarrow \infty} W_{k}=0$.

In this note we show that, for a fixed $m \geqslant 1$, the family $\{W(m, k): k \geqslant 1\}$ has similar properties. Namely, in Section 2 we prove the following two theorems:

Theorem 1.1. For all $m \geqslant 1, \lim _{k \rightarrow \infty} W(m, k)=0$.
Theorem 1.2. For all $m \geqslant 1, \lim _{k \rightarrow \infty} \frac{W(m, k+1)}{W_{k}(m, k)}=1$.
In Section 3 we prove an analog to the first statement in Proposition 1.2:
THEOREM 1.3. For large values of k,

$$
W(2 m, k) \sim \frac{(2 m)!}{k^{m}} \sqrt{\frac{\pi}{2 k}} \text { and } W(2 m+1, k) \sim \frac{(2 m+1)!}{k^{m+1}}
$$

Hence the following definition:
Definition 1.1. For a fixed $m \geqslant 1$, the elements of the family $\{W(m, k): k \in$ $\mathbb{N}\}$ are called the Wallis m-integrals.

In Section 4 we prove:
THEOREM 1.4. For any $m \geqslant 0$ and $x \in[-1,1)$

$$
\sum_{k=0}^{\infty} W(m, k) x^{k}=\int_{0}^{\frac{\pi}{2}} \frac{t^{m}}{1-x \cos t} d t
$$

In addition, for $m \geqslant 2$,

$$
\sum_{k=0}^{\infty} W(m, k)=\int_{0}^{\frac{\pi}{2}} \frac{t^{m}}{1-\cos t} d t
$$

2. Two convergent sequences of Wallis m-integrals

We observe that Propositions 1.1 and 1.2 establish that both the sequence of Wallis integrals $\left\{W_{k}\right\}_{k \in \mathbb{N}}$ and the sequence of the ratios of the consecutive Wallis integrals $\left\{\frac{W_{k+1}}{W_{k}}\right\}_{k \in \mathbb{N}}$ converge. We prove that corresponding sequences of the Wallis m-integrals converge too.

Proof of Theorem 1.1. Note that, for any $k, m \geqslant 1$ and $x \in\left(0, \frac{\pi}{2}\right), x^{m} \cos ^{k} x>$ 0. Hence,

$$
0<W(m, k)=\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x \leqslant\left(\frac{\pi}{2}\right)^{m} \int_{0}^{\frac{\pi}{2}} \cos ^{k} x d x=\left(\frac{\pi}{2}\right)^{m} W_{k}
$$

Since $\lim _{k \rightarrow \infty} W_{k}=0$ it follows, by the Squeeze Theorem, that $\lim _{k \rightarrow \infty} W(m, k)=0$, for any $m \stackrel{k \rightarrow \infty}{ } \geqslant$.

We note that, for $k \geqslant 1$,

$$
\begin{aligned}
0<\frac{W(m, k+1)}{W(m, k)} & =\frac{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k+1} x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x}=\frac{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x \cos x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x} \\
& \leqslant \frac{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k} x d x}=1
\end{aligned}
$$

It follows that, for a fixed $m \geqslant 0$, the sequence $\{W(m, k)\}_{k \in \mathbb{N}}$ is monotone decreasing and that the sequence $\left\{\frac{W(m, k+1)}{W(m, k)}\right\}_{k \in \mathbb{N}}$ is bounded from above by 1 .

Our first step in establishing Theorem 1.2 is to find, for $m \geqslant 1$, the limit of the sequence $\left\{\frac{W(m, k)}{W(m, k-2)}\right\}_{k \geqslant 3}$. To do so we will use the following lemma:

Lemma 2.1. Let $a>0$ and let x_{a} be the unique solution of the equation $\cot x=a x$ in the interval $\left(0, \frac{\pi}{2}\right)$. Then $\lim _{a \rightarrow \infty} \sqrt{a} x_{a}=1$.

Proof. Observe that $\cos x_{a}=a x_{a} \sin x_{a}$ and $\lim _{a \rightarrow \infty} x_{a}=0$.

From

$$
\begin{aligned}
\cos \left(\frac{1}{\sqrt{a}}-x_{a}\right) & =\sin x_{a}\left(a x_{a} \cos \left(\frac{1}{\sqrt{a}}\right)+\sin \left(\frac{1}{\sqrt{a}}\right)\right) \\
& =\frac{\sin x_{a}}{x_{a}} \cdot\left(a x_{a}^{2} \cos \left(\frac{1}{\sqrt{a}}\right)+x_{a} \cdot \sin \left(\frac{1}{\sqrt{a}}\right)\right),
\end{aligned}
$$

$\lim _{a \rightarrow \infty} \cos \left(\frac{1}{\sqrt{a}}-x_{a}\right)=\lim _{a \rightarrow \infty} \frac{\sin x_{a}}{x_{a}}=\lim _{a \rightarrow \infty} \cos \left(\frac{1}{\sqrt{a}}\right)=1$, and $\lim _{a \rightarrow \infty} x_{a} \cdot \sin \left(\frac{1}{\sqrt{a}}\right)=$ 0 , it follows that $\lim _{a \rightarrow \infty} a x_{a}^{2}=1$.
Since $a>0$ and $x_{a}>0$, we conclude that $\lim _{a \rightarrow \infty} \sqrt{a} x_{a}=1$.
Since the recurrence formulae for $W(1, k)$ and $W(m, k), m \geqslant 2$, differ, when discussing the limit of the sequence $\left\{\frac{W(m, k)}{W(m, k-2)}\right\}_{k \geqslant 3}$ we distinguish two cases: $m=1$ and $m \geqslant 2$.
To proceed, we need two additional lemmas:
Lemma 2.2. $\lim _{k \rightarrow \infty} \frac{1}{k^{2} W(1, k)}=0$.
Proof. For $k \geqslant 1$, let $g_{k}(x)=x \cos ^{k} x$. Since, for $k \geqslant 2$,

$$
g_{k}^{\prime}\left(\frac{1}{k}\right)=\sqrt{2} \cos \left(\frac{\pi}{4}+\frac{1}{k}\right) \cos ^{k-1}\left(\frac{1}{k}\right)>0
$$

by Lemma 2.1, the function g_{k} is increasing on the interval $\left[\frac{1}{k}, \alpha_{k}\right]$, where α_{k} is the unique solution of the equation $\cot x=k x$ in the interval $\left(0, \frac{\pi}{2}\right)$. Hence, for $k \geqslant 2$,

$$
\frac{1}{k} \cos ^{k}\left(\frac{1}{k}\right) \leqslant g_{k}(x), x \in\left[\frac{1}{k}, \alpha_{k}\right]
$$

and consequently

$$
0<\left(\alpha_{k}-\frac{1}{k}\right) \frac{1}{k} \cos ^{k}\left(\frac{1}{k}\right)=\int_{\frac{1}{k}}^{\alpha_{k}} \frac{1}{k} \cos ^{k}\left(\frac{1}{k}\right) d x \leqslant \int_{0}^{\frac{\pi}{2}} x \cos ^{k} x d x=W(1, k) .
$$

This, together with Lemma 2.1, implies that, for large k,

$$
\begin{aligned}
\frac{1}{k^{2} W(1, k)} & \leqslant \frac{1}{k^{2}} \cdot \frac{1}{\left(\alpha_{k}-\frac{1}{k}\right) \frac{1}{k} \cos ^{k}\left(\frac{1}{k}\right)}=\frac{1}{k^{2}} \cdot \frac{k^{2}}{\left(k \alpha_{k}-1\right) \cos ^{k}\left(\frac{1}{k}\right)} \\
& \sim \frac{1}{\left(k \cdot \frac{1}{\sqrt{k}}-1\right) \cos ^{k}\left(\frac{1}{k}\right)}=\frac{1}{\sqrt{k}-1} \cdot \frac{1}{\cos ^{k}\left(\frac{1}{k}\right)} .
\end{aligned}
$$

Since $\lim _{x \rightarrow \infty} \cos ^{x}\left(\frac{1}{x}\right)=1$, it follows that

$$
0 \leqslant \lim _{k \rightarrow \infty} \frac{1}{k^{2} W(1, k)} \leqslant \lim _{k \rightarrow \infty} \frac{1}{\sqrt{k}-1} \cdot \frac{1}{\cos ^{k}\left(\frac{1}{k}\right)}=0
$$

By the Squeeze Theorem, $\lim _{k \rightarrow \infty} \frac{1}{k^{2} W(1, k)}=0$.
Lemma 2.3. For any $m \geqslant 2$,

$$
\lim _{k \rightarrow \infty} \frac{1}{k^{2}} \cdot \frac{W(m-2, k)}{W(m, k-2)}=0
$$

Proof. Let $m \geqslant 2$ be fixed. Observe that for any $k \geqslant 2$

$$
\begin{aligned}
0 & <\frac{W(m-2, k)}{W(m, k-2)}=\frac{\int_{0}^{\frac{\pi}{2}} x^{m-2} \cos ^{k} x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k-2} x d x}=\frac{\int_{0}^{\frac{\pi}{2}} x^{m-2} \cos ^{k-2} x \cos ^{2} x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k-2} x d x} \\
& \leqslant \frac{\int_{0}^{\frac{\pi}{2}} x^{m-2} \cos ^{k-2} x d x}{\int_{0}^{\frac{\pi}{2}} x^{m} \cos ^{k-2} x d x}=\frac{W(m-2, k-2)}{W(m, k-2)}
\end{aligned}
$$

Hence, it is enough to prove that $\lim _{k \rightarrow \infty} \frac{1}{k^{2}} \cdot \frac{W(m-2, k-2)}{W(m, k-2)}=0$.
Let $f_{m, k}(x)=x^{m} \cos ^{k} x, x \in\left[0, \frac{\pi}{2}\right]$. Then $f_{m, k}^{\prime}(x)=x^{m-1} \cos ^{k-1} x \cdot(m \cos x-$ $k x \sin x)$. Since, the equation $\cot x=\frac{k}{m} x$ has a unique solution in the interval $\left(0, \frac{\pi}{2}\right)$, the function $f_{m, k}$ has a unique critical number $\alpha_{m, k} \in\left(0, \frac{\pi}{2}\right)$. Since $f_{m, k}(0)=f_{m, k}\left(\frac{\pi}{2}\right)=0$ and since $f_{m, k}(x)>0$ otherwise, it follows that $f_{m, k}\left(\alpha_{m, k}\right)=$ $\alpha_{m, k}^{m} \cos ^{k} \alpha_{m, k}$ is the absolute maximum value of $f_{m, k}$.
It follows that

$$
W(m-2, k)=\int_{0}^{\frac{\pi}{2}} f_{m-2, k}(x) d x \leqslant \frac{\pi}{2} \cdot \alpha_{m-2, k}^{m-2} \cos ^{k} \alpha_{m-2, k}
$$

We observe that, since $\frac{k}{m-2}>\frac{k}{m}$, the number $\alpha_{m-2, k}$, as the unique solution of the equation $\cot x=\frac{k}{m-2} x$, is smaller than the number $\alpha_{m, k}$, the unique solution of the equation $\cot x=\frac{k}{m} x$. This fact implies that $f_{m, k}\left(\alpha_{m-2, k}\right)<f_{m, k}\left(\alpha_{m, k}\right)$. It follows that

$$
\begin{aligned}
0 & <\left(\alpha_{m, k}-\alpha_{m-2, k}\right) \cdot f_{m, k}\left(\alpha_{m-2, k}\right)=\int_{\alpha_{m-2, k}}^{\alpha_{m, k}} f_{m, k}\left(\alpha_{m-2, k}\right) d x \\
& \leqslant \int_{0}^{\frac{\pi}{2}} f_{m, k}(x) d x=W(m, k)
\end{aligned}
$$

Therefore, using the fact that $f_{m, k}\left(\alpha_{m-2, k}\right)=\alpha_{m-2, k}^{m} \cos ^{k} \alpha_{m-2, k}$,
$0<\frac{W(m-2, k)}{W(m, k)} \leqslant \frac{\frac{\pi}{2} \cdot \alpha_{m-2, k}^{m-2} \cos ^{k} \alpha_{m-2, k}}{\left(\alpha_{m, k}-\alpha_{m-2, k}\right) \cdot \alpha_{m-2, k}^{m} \cos ^{k} \alpha_{m-2, k}}=\frac{\pi}{2\left(\alpha_{m, k}-\alpha_{m-2, k}\right) \cdot \alpha_{m-2, k}^{2}}$.
By Lemma 2.1, for large k

$$
\alpha_{m-2, k} \sim \sqrt{\frac{m-2}{k}} \text { and } \alpha_{m, k} \sim \sqrt{\frac{m}{k}} .
$$

It follows that for large k,

$$
\frac{1}{\left(\alpha_{m, k}-\alpha_{m-2, k}\right) \cdot \alpha_{m-2, k}^{2}} \sim \frac{1}{\left(\sqrt{\frac{m}{k}}-\sqrt{\frac{m-2}{k}}\right) \cdot \frac{m-2}{k}}=\frac{k^{\frac{3}{2}}}{(m-2) \cdot(\sqrt{m}-\sqrt{m-2})} .
$$

Finally,

$$
\begin{aligned}
0 & \leqslant \lim _{k \rightarrow \infty} \frac{1}{k^{2}} \frac{W(m-2, k)}{W(m, k)} \leqslant \lim _{k \rightarrow \infty} \frac{1}{k^{2}} \frac{\pi}{2\left(\alpha_{m, k}-\alpha_{m-2, k}\right) \cdot \alpha_{m-2, k}^{2}} \\
& =\lim _{k \rightarrow \infty} \frac{1}{k^{2}} \frac{\pi k^{\frac{3}{2}}}{2(m-2) \cdot(\sqrt{m}-\sqrt{m-2})}=\frac{\pi}{2(m-2) \cdot(\sqrt{m}-\sqrt{m-2})} \lim _{k \rightarrow \infty} \frac{1}{\sqrt{k}}=0 .
\end{aligned}
$$

By the Squeeze Theorem, for any $m \geqslant 2, \lim _{k \rightarrow \infty} \frac{1}{k^{2}} \frac{W(m-2, k)}{W(m, k)}=0$.
Proposition 2.1. For any $m \geqslant 1, \lim _{k \rightarrow \infty} \frac{W(m, k)}{W(m, k-2)}=1$.
PROOF. If $m=1$ then from $W(1, k)=\frac{k-1}{k} W(1, k-2)-\frac{1}{k^{2}}$ it follows, by Lemma 2.2,

$$
\lim _{k \rightarrow \infty} \frac{W(1, k)}{W(1, k-2)}=\lim _{k \rightarrow \infty}\left(\frac{k-1}{k}-\frac{1}{k^{2} W(1, k-2)}\right)=1 .
$$

For $m \geqslant 2$, from $W(m, k)=\frac{k-1}{k} W(m, k-2)-\frac{m(m-1)}{k^{2}} W(m-2, k)$ it follows that

$$
\frac{W(m, k)}{W(m, k-2)}=\frac{k-1}{k}-\frac{m(m-1)}{k^{2}} \frac{W(m-2, k)}{W(m, k-2)}
$$

By Lemma 2.3, $\lim _{k \rightarrow \infty} \frac{W(m, k)}{W(m, k-2)}=1$.

Proof of Theorem 1.2. Since the sequence $\{W(m, k)\}_{k \in \mathbb{N}}$ is monotone decreasing, it follows that, for $k \geqslant 1, W(m, k+2) \leqslant W(m, k+1) \leqslant W(m, k)$. In particular this, together with Proposition 2.1, implies that,

$$
1=\lim _{k \rightarrow \infty} \frac{W(m, k+2)}{W(m, k)} \leqslant \lim _{k \rightarrow \infty} \frac{W(m, k+1)}{W(m, k)} \leqslant 1
$$

Therefore, $\lim _{k \rightarrow \infty} \frac{W(m, k+1)}{W(m, k)}=1$.

3. Wallis m-integrals and large values of k

In this section we present relatively simple functions that approximate the Wallis m-integrals $W(m, k)$ for large values of k. Our main tool will be the recurrence formulae for $W(m, k), m, k \geqslant 1$.
We distinguish two cases based on the parity of the parameter m.
Proposition 3.1. For $m \geqslant 1$ and a large $k \in \mathbb{N}$,

$$
W(2 m, k) \sim \frac{(2 m)!}{k^{m}} \sqrt{\frac{\pi}{2 k}}
$$

and consequently

$$
\lim _{k \rightarrow \infty} k^{m+\frac{1}{2}} W(2 m, k)=(2 m)!\sqrt{\frac{\pi}{2}}
$$

Proof. Recall that by Proposition 2.1, for large $k \in \mathbb{N}, W(2 m, k) \sim W(2 m, k-$ 2). This together with the recurrence

$$
W(2 m, k)=\frac{k-1}{k} W(2 m, k-2)-\frac{2 m(2 m-1)}{k^{2}} W(2 m-2, k)
$$

implies that, for large k,

$$
W(2 m, k) \sim \frac{k-1}{k} W(2 m, k)-\frac{2 m(2 m-1)}{k^{2}} W(2 m-2, k) .
$$

Hence, for large values of k,

$$
\begin{aligned}
W(2 m, k) & \sim \frac{2 m(2 m-1)}{k} W(2 m-2, k) \sim \frac{2 m(2 m-1)}{k} \frac{(2 m-2)(2 m-3)}{k} W(2 m-4, k) \\
& \sim \cdots \sim \frac{(2 m)!}{k^{m}} W_{k}
\end{aligned}
$$

From $W_{k} \sim \sqrt{\frac{\pi}{2 k}}$, it follows that $W(2 m, k) \sim \frac{(2 m)!}{k^{m}} \sqrt{\frac{\pi}{2 k}}$.
Consequently,

$$
\lim _{k \rightarrow \infty} k^{m+\frac{1}{2}} W(2 m, k)=(2 m)!\sqrt{\frac{\pi}{2}}
$$

MAPLE confirms the conclusion of Proposition 3.1 and provides an additional insight what happens when $2 m$ and k change:

$\frac{(2 m)!}{k^{m}} \sqrt{\frac{\pi}{2 k}}-W(2 m, k)$			
	$k=10$	$k=100$	$k=1000$
$2 m=2$	0.04422015870	0.001268861966	0.00003968277699
$2 m=8$	1.596101060	0.00005041239505	$1.593886245 \cdot 10^{-9}$
$2 m=14$	3455.160227	0.0001092616476	$3.455155769 \cdot 10^{-12}$
$2 m=20$	$9.642386939 \cdot 10^{7}$	0.003049190480	$9.642386937 \cdot 10^{-14}$

Proposition 3.2. For $m \geqslant 1$ and a large $k \in \mathbb{N}$,

$$
W(2 m+1, k) \sim \frac{(2 m+1)!}{k^{m+1}}
$$

and consequently

$$
\lim _{k \rightarrow \infty} k^{m+1} W(2 m+1, k)=(2 m+1)!
$$

Proof. Recall that by Proposition 2.1, for large $k \in \mathbb{N}, W(2 m+1, k) \sim W(2 m+$ $1, k-2)$. This together with the recurrence

$$
W(2 m+1, k)=\frac{k-1}{k} W(2 m+1, k-2)-\frac{(2 m+1)(2 m)}{k^{2}} W(2 m-1, k)
$$

implies that, for large k,

$$
W(2 m+1, k) \sim \frac{k-1}{k} W(2 m+1, k)-\frac{(2 m+1)(2 m)}{k^{2}} W(2 m-1, k)
$$

which implies

$$
\begin{aligned}
W(2 m+1, k) & \sim \frac{(2 m+1)(2 m)}{k} W(2 m-1, k) \sim \frac{(2 m+1)(2 m)}{k} \frac{(2 m-1)(2 m-2)}{k} W(2 m-3, k) \\
& \sim \cdots \sim \frac{(2 m+1)!}{k^{m}} W(1, k)
\end{aligned}
$$

Since, from $W(1, k)=\frac{k-1}{k} W(1, k-2)-\frac{1}{k^{2}}$ and, for large $k, W(1, k) \sim W(1, k-2)$, it follows that $W(1, k) \sim \frac{1}{k}$. Hence, $W(2 m+1, k) \sim \frac{(2 m+1)!}{k^{m+1}}$.
Consequently,

$$
\lim _{k \rightarrow \infty} k^{m+1} W(2 m+1, k)=(2 m+1)!
$$

MAPLE confirms the conclusion of Proposition 3.2 and provides an additional insight what happens when $2 m+1$ and k change:

$\frac{(2 m+1)!}{k^{m+1}}-W(2 m+1, k)$			
	$k=10$	$k=100$	$k=1000$
$2 m+1=3$	0.04354944490	0.0004039522813	$4.003995203 \cdot 10^{-6}$
$2 m+1=9$	3.627293538	0.00003625323313	$3.624998186 \cdot 10^{-10}$
$2 m+1=15$	13076.74293	0.0001307673859	$1.307673738 \cdot 10^{-12}$
$2 m+1=21$	$5.109094217 \cdot 10^{8}$	0.005109094217	$5.109094217 \cdot 10^{-14}$

We observe that the claim of Theorem 1.3 summarizes Propositions 3.1 and 3.2.

4. Sums of Wallis m-integrals

For $m \geqslant 1$ we define $W(m, 0)=\int_{0}^{\frac{\pi}{2}} x^{m} d x=\frac{\pi^{m+1}}{2^{m+1}(m+1)}$.
We note that for $x \in(-1,1)$ and $t \in\left[0, \frac{\pi}{2}\right], 0 \leqslant|x \cos t| \leqslant|x|<1$. It follows that the geometric series $\sum_{k=0}^{\infty} x^{k} \cos ^{k} t$ converges for all $x \in(-1,1)$ and $t \in\left[0, \frac{\pi}{2}\right]$ and that

$$
\sum_{k=0}^{\infty} x^{k} \cos ^{k} t=\frac{1}{1-x \cos t}
$$

Proof of Theorem 1.4. For $m \geqslant 0$ and $x \in(-1,1)$,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{t^{m}}{1-x \cos t} d t & =\int_{0}^{\frac{\pi}{2}} t^{m}\left(\sum_{k=0}^{\infty} x^{k} \cos ^{k} t\right) d t=\sum_{k=0}^{\infty}\left(\int_{0}^{\frac{\pi}{2}} t^{m} \cos ^{k} t d t\right) x^{k} \\
& =\sum_{k=0}^{\infty} W(m, k) x^{k}
\end{aligned}
$$

Since $\lim _{k \rightarrow \infty} W(m, k)=0$ and $0<W(m, k+1)<W(m, k)$, by the Alternating Series Test, the series $\sum_{k=0}^{\infty}(-1)^{k} W(m, k)$ is convergent. By Abel's Theorem [12]

$$
\sum_{k=0}^{\infty}(-1)^{k} W(m, k)=\int_{0}^{\frac{\pi}{2}} \frac{t^{m}}{1+\cos t} d t
$$

We observe that by Theorem 1.3, for large k,

$$
k W(2 m, k) \sim \frac{(2 m)!}{k^{m-1}} \sqrt{\frac{\pi}{2 k}} \text { and } k W(2 m+1, k) \sim \frac{(2 m+1)!}{k^{m}}
$$

It follows that, for $m \geqslant 2, \lim _{k \rightarrow \infty} k W(m, k)=0$. By Tauber's criterion [7, 15], the series $\sum_{k=0}^{\infty} W(m, k)$ is convergent. By Abel's Theorem, for $m \geqslant 2$,

$$
\sum_{k=0}^{\infty} W(m, k)=\int_{0}^{\frac{\pi}{2}} \frac{t^{m}}{1-\cos t} d t
$$

Remark 4.1. We note that Propositions 1.1 and 3.2, together with the fact that the series $\sum_{k=0}^{\infty} \frac{1}{\sqrt{k}}$ and $\sum_{k=0}^{\infty} \frac{1}{k}$ diverge, imply that both series $\sum_{k=0}^{\infty} W(0, k)=$ $\sum_{k=0}^{\infty} W_{k}$ and $\sum_{k=0}^{\infty} W(1, k)$ diverge. In the view of Theorem 1.4, this is in the agreement with the fact that neither the integral $\int_{0}^{\frac{\pi}{2}} \frac{d t}{1-\cos t}$ nor the integral $\int_{0}^{\frac{\pi}{2}} \frac{t d t}{1-\cos t}$ exists.

5. Conclusion

In this article we have demonstrated that, for $m \geqslant 1$, the Wallis m-integrals posses properties that are analogue to some of of the basic properties of the Wallis integrals.This extends the list of properties of the Wallis m-integrals established by Amdeberhan, Medina, and Moll in [1].
To underline the connection between the Wallis m-integrals and the Wallis integrals, we reformulate part of one of, in our view, main results obtained in [1].

Theorem 5.1 ([1], Theorem 2.11). For $m, k \in \mathbb{N}$,

$$
W(m, 2 k)=\sum_{j=0}^{\left\lfloor\frac{m}{2}\right\rfloor} a_{m, k, j} \pi^{m+1-2 j}+\delta_{o d d, m} \cdot a_{m, k}^{*}
$$

where

$$
a_{m, k, j}=\frac{(-1)^{j} m!W_{2 k}}{\pi 2^{m}(m+1-2 j)!} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{j} \leqslant k} \frac{1}{i_{1}^{2} \cdots i_{j}^{2}},
$$

$\delta_{\text {odd, } m}$ is Kronecker's delta function at the odd integers, and

$$
a_{m, k}^{*}=\frac{(-1)^{\left\lfloor\frac{m}{2}\right\rfloor} 2 m!W_{2 k}}{\pi} \sum_{1 \leqslant i_{1} \leqslant \cdots \leqslant i_{m} \leqslant k} \frac{1}{i_{1}^{2} \cdots i_{m}^{2}} \sum_{j=1}^{i_{m}} \frac{(2 j+1) W_{2 j+1}}{j^{2}} .
$$

A similar expression is established for $W(m, 2 k+1)$. In other words, Amdeberhan, Medina, and Moll showed that $W(m, k)$ may be expressed as polynomial in π with rational coefficients.

In particular they showed that

$$
W(1,2 k)=\frac{W_{2 k}}{2 \pi} \cdot\left(\frac{\pi^{2}}{2}-\sum_{j=1}^{k} \frac{2^{2 j}}{j^{2}\binom{2 j}{j}}\right)
$$

and

$$
W(1,2 k+1)=W_{2 k+1} \cdot\left(\frac{\pi}{2}-\sum_{j=1}^{k} \frac{\binom{2 j}{j}}{2^{2 j}(2 j+1)}\right)
$$

Amdeberhan, Medina, and Moll [1] note "a classical result:"

$$
\frac{\pi^{2}}{2}=\sum_{j=1}^{\infty} \frac{2^{2 j}}{j^{2}\binom{2 j}{j}} \text { and } \frac{\pi}{2}=\sum_{j=1}^{\infty} \frac{\binom{2 j}{j}}{2^{2 j}(2 j+1)}
$$

We observe that the recurrence $W(2, k)=\frac{k-1}{k} W(2, k-2)-\frac{2}{k^{2}} W_{k}$, together with the initial conditions $W(2,1)=\frac{\pi^{2}}{4}-2$ and $W(2,0)=\frac{\pi}{2}$, gives

$$
W(2,2 k)=2 W_{2 k} \cdot\left(\frac{\pi^{2}}{24}-\sum_{j=1}^{k} \frac{1}{(2 j)^{2}}\right)
$$

and

$$
W(2,2 k+1)=2 W_{2 n+1} \cdot\left(\frac{\pi^{2}}{8}-\sum_{j=0}^{k} \frac{1}{(2 j+1)^{2}}\right)
$$

Recall that

$$
\sum_{j=1}^{\infty} \frac{1}{(2 j)^{2}}=\frac{\pi^{2}}{24} \text { and } \sum_{j=0}^{\infty} \frac{1}{(2 j+1)^{2}}=\frac{\pi^{2}}{8}
$$

We wonder for how long, if at all, this pattern continues, i.e., if, for some $m>2$, $W(m, 2 k)=c W_{2 k} \cdot R_{k}$ and/or $W(m, 2 k+1)=d W_{2 k+1} \cdot S_{k}$, where c and d are constants and R_{k} and S_{k} are remainders of two series that each sums to a fraction of a power of π.
Finally, we mention that the study of the Wallis integrals is closely related to the Gamma and Betta functions [8,13]. We wonder if there is a relation between the Wallis m-integrals and some of the special functions.

References

[1] T. Amdeberhan, L. A. Medina, and V. Moll. The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals. Scientia, 15:47-60, 2007.
[2] T. Amdeberhan, O. Espinosa, V. H. Moll, and A. Straub. Wallis-Ramanujan-Schur-Feynman, The American Mathematical Monthly, 117:7:618-632, 2010.
[3] M. Bencze and F. Smarandache. Applications of Wallis Theorem. Octogon, 6:2:117-120, 1998.
[4] T. Dana-Picard and D.G. Zeitoun. Parametric improper integrals, Wallis formula and Catalan numbers. International Journal of Mathematical Education in Science and Technology, 43(4):515520, 2012.
[5] H. Gould and J. Quaintance. Double Fun with Double Factorials. Mathematics Magazine, 85:3:177-192, 2012.
[6] J. Gurland. On Wallis formula. Amer. Math. Monthly, 63:643-645, 1956.
[7] H. Delange. The Converse of Abel's theorem on power series. Annals of Mathematics, 50:1:94-109, 1949.
[8] D. Kazarinoff. On Wallis' formula. Edinburgh Mathematical Notes, 40:19-21,1956.
[9] V. Moll. Special Integrals of Gradshteyn and Ryzhik the Proofs - Volume I. CRC Press, 2015.
[10] V. Moll. Special Integrals of Gradshteyn and Ryzhik the Proofs - Volume II. CRC Press, 2016.
[11] V. Moll. The integral of Wallis. To appear in Scientia.
[12] R. Rogers and E. C. Bauman. How We Got From There To Here: A Story of Real Analysis. http://personal.psu.edu/ecb5/ASORA/ASORA.html, 2014.
[13] P. Sebah and X. Gourdon. Introduction to the Gamma functions. Numbers, Constants, http://numbers.computation.free.fr/Constants/constants.html, 2002.
[14] J-L. Rouget. Intégrales de Wallis et formule de Stirling. http ://www.maths-france.fr, 2010.
[15] A. Tauber. Ein Satz aus der Theorie der unendlichen Reihen. Monatshefte für math. 8:273-277, 1897.

Received 10042023 revised 25052023
${ }^{\text {a }}$ Department of Mathematics
Simon Fraser University
Burnaby, BC, Canada.
E-mail address: Veselin Jungic vjungic@sfu.ca
${ }^{\text {b }}$ Department of Mathematical \& Computational Sciences
University of Toronto Mississauga
Mississauga, ON, Canada.
E-mail address: Andriana Burazin a.burazin@utoronto.ca

${ }^{\text {c }}$ Department of Mathematics and Statistics

McMaster University
Hamilton, ON, Canada.
E-mail address: Miroslav Lovrić lovric@mcmaster.ca

