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Abstract. This work is concerned with finite-state Markov decision chains. It

is supposed that the system is driven by a decision-maker assessing a random

cost via a utility function U . The main objective is to provide explicit examples
of utility functions such that, in spite of representing different risk perceptions,

(i) render the the same optimal average index, and (ii) share the same average-

optimal stationary policies. Moreover, it is verified that that family U of utility
functions with these two properties form a cone.

1. Introduction

This work concerns with discrete-time finite-state Markov decision processes (MDPs)
endowed with a risk-sensitive average cost criterion. Besides mild continuity-compactness
assumptions, the class of models analyzed below is characterized by two main features
concerning (i) the dynamics of the system, and (ii) the way in which the controller
measures the performance of a control policy:

(i) It is assumed that if the system is driven by a stationary policy, then the sate space
is irreducible. This means that, regardless of the initial sate x, every state y is visited
by the system with positive probability.

(ii) The controller assesses a random cost via a a utility function U , which is used to
measure the performance of a control policy by the corresponding long-run U -average
cost criterion, an idea that will be formally introduced in Section 2.

In this framework, this note has two main objectives, and the first one is to highlight

an interesting phenomenon, namely,

• Controllers with different attitudes before a random cost, may end-up with the same
optimal average index.
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This fact is illustrated for specific utility functions by performing directly the nec-
essary computations, which involve the particular properties of the functions. How-
ever, when the functions are ‘combined’ to obtain a new utility, such properties are
not necessarily inherited by the new mapping. For instance, consider two controllers
with utility functions Ui, i = 1, 2, given by

U1(x) = x2, U2(x) =
√
x, x ≥ 0.

These functions are homogeneous of degrees 2 and 1/2, respectively and, as it will be
shown below, they render the same average criterion. However,

(1.1) U = αU1 + (1− α)U2, α ∈ (0, 1),

is not homogeneous of any degree, and it is interesting to see whether or not the
average index associated with U coincides with the common average criterion induced
by U1 and U2. The second objective of this work concerns with this lats question, and
establishes that

• The class U of utility function whose average criteria coincide with a given index J
is a cone, that is, U1, U2 ∈ U =⇒ U1 + U2 ∈ U and cU1 ∈ U for every c > 0.

In particular, this conclusion shows that if U1 and U2 render the same average index
J , then the average criterion associated with the function U in (1.1) also coincides
with J .

The theory and applications of MDPs have been extensively studied; see, for in-
stance, Hernández-Lerma (1988), Puterman (1994), Arapostathis et al. (1993), Sen-
nott (1998), Bäuerle and Rieder (2011). Concerning the idea of risk-sensitive-average
optimality, it was initiated in Howard and Matheson (1972) for exponential utilities,
and the interest in other type of utilities was recently sparkled in Bäuerle and Rieder
(2013).

The organization of the subsequent material is as follows: In Section 2 the decision
model is introduced and the idea of certainty equivalent of a random cost with respect
to a general utility U is briefly discussed. Next, in Section 3 the notions of risk-
aversion and risk-attraction are introduced and these concepts are illustrated using
utility functions frequently used in economic theory. The exposition continues in
Section 4 where the risk-sensitive average criteria are formulated, and then in Section
5 it is shown that the three different utilities considered in the paper render the same
optimal average cost and share the same stationary policies. The exposition concludes
in Section 6 showing the the class of utilities that determine the same optimal average
criteria have the cone property.

2. Decision Model and Utility Functions

Let M = (S,A, {A(x)}x∈S , C, P ) be an MDP, where the state space S is a finite
set endowed with the discrete topology, the action set A is a metric space and, for
each x ∈ S, A(x) ⊂ A is the nonempty subset of admissible actions at x, whereas

C : K→ (0,∞)
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is the positive cost function, where K : = {(x, a) |x ∈ S, a ∈ A(x)} is the space of
admissible pairs. On the other hand, P = [px y(·)] is the controlled transition law
on S given K, that is, for all (x, a) ∈ K and y ∈ S, the relations px y(a) ≥ 0 and∑
y∈S px y(a) = 1 are satisfied. This model model M represents a dynamical system

driven by a decision maker (controller) applying actions At as follows: At each time
t ∈ N : = {0, 1, 2, 3, . . .} the controller observes the current state, say Xt = x ∈ S, and
knows the previous states and actions. Using that information, the decision maker
chooses the action (control) At = a ∈ A(x) to be applied, and such an intervention
has two consequences: a cost C(x, a) is incurred, and the evolution of the system is
influenced in such a way that the new state at time t + 1 will be Xt+1 = y ∈ S with
probability px y(a).

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a 7→ C(x, a) and a 7→ px y(a) are continuous in
a ∈ A(x).

Combining this assumprion with the fact hat C is positive, it follows that

(2.2) 0 < min
k∈K

C(k) ≤ max
k∈K

C(k) ≡ ‖C‖ <∞.

Policies. A policy π is a rule for choosing actions which, at each time t ∈ N, may
depend on the current state as well as on the record of previous states and actions;
see, for instance, Puterman (1994), or Bäuerle and Reider (2011) for details. The class
of all policies is denoted by P and, given the initial state x ∈ S and the policy π being
used for choosing actions, the distribution of the state-action process {(Xt, At)} is
uniquely determined; such a distribution and the corresponding expectation operator
are denoted by Pπx and Eπx , respectively. Next, define F : =

∏
x∈S A(x) and notice

that F is a compact metric space, which consists of all functions f : S → A such that
f(x) ∈ A(x) for each x ∈ S. A policy π is stationary if there exists f ∈ F such that the
equality At = f(Xt) is always valid under π; the class of stationary policies is naturally
identified with F. Observe that, when the system is driven by f ∈ F, the state process
{Xt} is a Markov chain with time-invariant transition matrix [px y(f(x)]x,y∈S .

Utility Functions. A basic assumption in this work is that the attitude of the
decision-maker before a random cost Y is determined by a utility function U . This
means that Y is assessed via E[U(Y )], where it is supposed that the expectation is
well-defined. Thus, given two random costs Y and Y1, the decision maker will prefer
to pay Y1 when E[U(Y1)] < E[U(Y )], and will be indifferent between both costs if
E[U(Y )] = E[U(Y1)]; observe that the preferences of the controller do not change
when an affine transformation with positive slope is applied to U . In the sequel, all
the utilities in the discussion are supposed to be continuous and strictly increasing
functions on [0,∞).

Now, suppose that a decision maker with utility function U receives the offer to
avoid the random cost Y by paying a fixed amount c. In this case, the offer will be
definitively accepted if U(c) < E[U(Y )] and will be refused when U(c) > E[U(Y )].
The threshold value c∗ satisfying U(c∗) = E[U(Y )]—so that the decision maker is
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indifferent between paying the fixed amount c∗ or the random cost Y—is the certainty
equivalent of Y with respect to U .

Definition 2.1. [Certainty Equivalent.] Let U : R→ R be a (strictly increasing)
utility function. If Y is a random cost, the certainty equivalent of Y is the number
EU (Y ) such that

U(EU (Y )) = E[U(Y )].

According to this definition, when facing a random cost Y , the controller will
gladly pay EU (Y ) in order to avoid the random cost Y ; note that the certainty equiv-
alent is explicitly given by

(2.3) EU (Y ) = U−1 [E[U(Y )]] .

Since U is strictly increasing, the inverse function U−1 exists and then EU (Y ) is well-
defined if U(Y ) has finite expectation, as it is the case when Y takes values on a
compact interval contained in [0,∞), a condition that is supposed to hold for all of
the random costs Y under consideration. The certainty equivalent EU (Y ), represents
the controller’s assessment of Y in terms of a single number and may be thought of
as a kind of average of Y in terms of the preferences of the decision maker.

Example 2.1. Let Y be a random variable taking values in a compact interval
contained in [0,∞].

(i) For each x ≥ 0, let the power utility Uγ be given by

Uγ(x) = xγ ,

where γ > 0. In this case U−1
γ (y) = x1/γ and then

EUγ (Y ) = U−1
γ (E[Uγ(Y )]) = (E[Y γ ])

1/γ
= ‖Y ‖γ

so that EUγ (Y ) is the usual γ-mean of Y . Note that

(a) U1(x) = x is the idenity function and EU1
(Y ) = E[Y ] is the usual expectation of

Y ;

(b) U2(x) = x2, and EU2
(Y ) = E[Y 2]1/2 is the quadratic mean of Y .

(ii) The logarithmic utility is given by

UL(x) = log(x), x ≥ 0.

In this case U−1
L (y) = ey, and

EUL(Y ) = U−1
L (E[UL(Y )]) = eE[log(Y )]

is the logarithmic mean of Y .

(iii) Consider now the utility U given by

U(x) = (x− a)3,

where a is a positive number. In this case U−1(y) = a+y1/3 and then the corresponding

certainty equivalent is given by EU (Y ) = U−1 (E[U(Y )]) = a+
(
E[(Y − a)3]

)1/3
.

The above utilities above are widely used in economic theory (Stokey and Lucas, 1989).



A CONE PROPERTY IN THE THEORY OF RISK-SENSITIVE AVERAGE CRITERIA 79

3. Risk-Aversion and Attraction

The attitude of a controller before a random cost Y is determined by its certainty
equivalent which, as already mentioned, is a kind of average. A decision-maker with
utility function U is risk-neutral if

EU (Y ) = E[Y ]

for every random cost Y . In this case, the certainty equivalent has a physical in-
terpretation which does not depend on the observer, namely, E[Y ] is the average of
the observed values of Y in a long-series of identical random experiments generating
the random cost. By comparing the certain equivalents of a controller with E[Y ], a
classification of the attitude before a random cost is obtained.

Definition 3.1. [Risk Aversion and Attraction.] Consider a decision-maker
with utility function U : [0,∞)→ R and let I ⊂ [0,∞).

(i) The controller is risk-averse on I if

EU (Y ) ≥ E[Y ]

for every random variable Y taking values on I with probability 1.

(ii) The controller is risk-seeking on I if

EU (Y ) ≤ E[Y ] when P [Y ∈ I] = 1.

(iii) The risk-premium associated to Y is given by

∆U (Y ) = EU (Y )− E[Y ].

In words, the controller is risk-averse (resp. risk-seeking) on an interval I if her/his
assessment of a random cost Y taking values on I is higher (resp. lower) than E[Y ]. Of
course, the controller knows that E[Y ] is the average of Y in a long series of i dentical
trials, but also realizes that in a specific instance the value attained by Y does not
generally coincide with E[Y ]. When a controller is risk-averse, she/he is ‘afraid’ of
the occurrence of costs exceeding the expected value, whereas if the controller is risk-
seeking then the possible occurrence of a value less that E[Y ] is more relevant for the
perception of the decision maker. For instance, consider the owner of an expensive
brand new car paying $500 for an insurance policy guaranteeing that, in case of a crash
in the next year, she/he will receive an identical vehicle. The cost of the car is $300, 000
and the owner feels that there is a small probability equal to 0.001 of participating
in a crash. What the owner foresees for the next year, is a random cost Y that can
take the values $0 and $300, 000 with probabilities 0 and 0.001, respectively, so that
E[Y ] = $300; however, $500 were gladly paid to avoid facing the random cost Y , so
that Y is assessed higher than its expectation E[Y ], that is, EU (Y ) ≥ $500 > E[Y ]
indicating that the owner is risk-averse. On the other hand, if a $200 insurance policy
is rejected by the owner of the car then EU (Y ) < $200 < E[Y ], indicating that the
owner is risk-seeking.

Recalling that all of the utility functions considered in the paper are increasing,
Definitions 2.1 and 3.1 together yield that a controller with utility function U is risk-
averse on I if

E[U(Y )] ≥ U(E[Y ]) when P [Y ∈ I] = 1,
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a requirement that, by Jensen’s inequality, is equivalent to the convexity of U on the
interval I. Similarly, the controller is risk-seeking on I whenever

E[U(Y )] ≤ U(E[Y ]) if P [Y ∈ I] = 1,

a relation that is valid exactly when U is concave on I. On the other hand, the
equality EU (Y ) = E[Y ] holds for every r andom cost taking values in I if, and only if,
the controller is both risk-averse and risk-seeking, that is, when U is a linear function
and, in this case,, without loss of generality, it can be assumed that U is the identity
function.

Example 3.1. The risk-aversion and attraction will be analyzed for each one of
the utilities in Example 2.1.

(i) For each γ > 0, the power utility Uγ(x) = xγ satisfies that

U ′γ(x) = γxγ−1, and U ′′γ (x) = γ(γ − 1)xγ−2, x > 0.

Therefore,

• If γ < 1, then U ′′γ (x) is always negative, and Uγ is concave on [0,∞), so that a
controller with this utility function is risk-seeking;

• If γ > 1, then U ′′γ (x) > 0 for every x > 0. It follows that Uγ is convex on [0,∞),
indicating that Uγ pertains to a risk-averse controller.

• Of course, when γ = 1, so that Uγ(x) = x, the utility function is both convex and
concave, and in this case the controller is risk-neutral.

(ii) The logarithmic utility UL(x) = log(x) satisfies that

U ′L(x) = 1/x, and U ′′L(x) = −1/x2, x > 0.

Thus, UL is concave on [0,∞) and pertains to a risk-seeking controller.

(iii) For a positive number a, the utility U(x) = (x− a)3 satisfies

U ′(x) = 3(x− a)2, and U ′′(x) = 6(x− a), x ≥ 0,

and then U is concave on [0, a] and convex on [a,∞), Thus, a controller with utility
function U is risk-seeking in the interval [0, a] and risk-averse on [a,∞).

4. Average Criteria

In this section the (long-run) average cost criterion associated to a given utility
is introduced, and a characterization of the risk-neutral average index is presented
in terms of the optimality equation. Let M be the MDP introduced in Section 2,
and suppose that a controller with utility function U ∈ U drives the system using a
policy π ∈ P starting at X0 = x. In this context JU,n(π, x) stands for the certainty

equivalent of the total cost
∑n−1
t=0 C(Xt, At) incurred before time n > 0, that is,

(4.4) JU,n(π, x) = U−1

(
Eπx

[
U

(
n−1∑
t=0

C(Xt, At)

)])
;
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see (2.3). With this notation, the (long-run superior limit) U -average cost at state x
under policy π is given by

(4.5) JU (π, x) : = lim sup
n→∞

1

n
JU,n(π, x),

and the corresponding optimal value function is specified as

(4.6) J∗U (x) : = inf
π∈P

JU (π, x), x ∈ S,

whereas a policy π∗ ∈ P is U -average optimal if JU (π∗, x) = J∗U (x) for each x ∈ S.
In certain sense, the criterion (4.5) represents a pessimistic point of view, since it
measures the performance of the policy π in terms of the largest (worst) limit point
of the averages JU,n(π, x)/n. The optimistic perspective to the average index is given
by the inferior limit U -average criterion specified by

(4.7) JU −(π, x) : = lim inf
n→∞

1

n
JU,n(π, x),

with corresponding optimal value function

(4.8) J∗U −(x) : = inf
π∈P

JU −(π, x), x ∈ S;

note that (4.5)—(4.8) immediately yield that

(4.9) J∗U −(·) ≤ J∗U (·).
As it will be shown below, for the utilities analyzed in Examples 2.1 and 3.1, the
equality holds in the above display under the following communication condition.

Assumption 4.1. For each stationary policy f the state space is communicating,
that is, given x, y ∈ S, there exists a positive integer n ≡ n(x, y) such that P fx [Xn =
y] > 0.

Under this condition the Markov chain induced by a stationary policy f has an in-
variant distribution ρf : S → (0, 1], that is,

∑
x∈S ρf (x) = 1 and

∑
x∈S ρf (x)px y(f(x)) =

ρf (y) for each y ∈ S. In this case, the classical ergodic theorem yields that for every
initial state X0 = x,

(4.10) lim
n→∞

1

n

n−1∑
t=0

C(Xt, At) =
∑
y∈S

ρf (y)C(y, f(y)) =: αf , P fx -a. s. .

The average criteria in (4.5) and (4.7) have been widely studied in two cases: When the
utility function is exponential , that is, U(x) = eλx for some λ 6= 0, or when U(x) = x,
which corresponds to a risk-neutral controller. In this latter case the subindex U
will not be explicitly indicated in (4.4)–(4.9), and the analysis of the corresponding
risk-neutral average criteria is based on the following result (Pueterman, 1994).
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Theorem 4.1. Under Assumptions 2.1 and 4.1, assertions (i)-(iv) below are valid:

(i) There exist g ∈ R as well as a function h : S → R such that the following (risk-
neutral average cost) optimality equation holds:

(4.11) g + h(x) = min
a∈A(x)

C(x, a) +
∑
y∈S

px y(a)h(y)

 , x ∈ S.

(ii) The risk-neutral superior and inferior average criteria render the same optimal

value function, and the optimal average cost is equal to g:

J∗−(x) = J∗(x) = g, x ∈ S,
where J∗−(x) and J∗(x) are given in (4.6) and (4.8) with the identity function instead
of U .

(iii) There exists a stationary policy f ∈ F satisfying

(4.12) g + h(x) = C(x, f(x)) +
∑
y∈S

px y(f(x))h(y), x ∈ S,

and such a policy is optimal with respect to the superior and inferior average cost
criteria, that is,

(4.13) J∗(x) = J(x; f) = g = J−(x; f) = J∗−(x), x ∈ S.

Note that (4.13) is equivalent to the following relations:

g ≤ lim inf
n→∞

1

n
Eπx

[
n−1∑
k=0

C(Xt, At)

]
, x ∈ S, π ∈ P

g = lim
n→∞

1

n
Efx

[
n−1∑
k=0

C(Xt, At)

]
, x ∈ S.(4.14)

According to Theorem 4.1, a risk-neutral average optimal policy can be always found
in the class F of stationary policies. For some models, for instance in inventory theory
(Bertsekas, 2004), it can be frequently determined a priori that the optimal stationary
policy has a special structure, and the quest of an optimal policy can be restricted
to a ‘small’ subset F′ of F. In this case, instead of finding a solution (g, h(·)) of the
nonlinear optimality equation (4.11) to determine the optimal policy f ∈ F in (4.13),
it may be interesting (and more efficient) to compute the risk-neutral average cost
associated to each policy φ ∈ F′, and then pick the one with smallest average cost.
Note that for φ ∈ F, (4.10) and the bounded convergence theorem together imply that

J(x, φ) = lim
n→∞

1

n
Eφx

[
n−1∑
k=0

C(Xt, At)

]
=
∑
x∈S

ρφ(x)C(x, φ(x)),

so that J(·, φ) is determined in terms of ρφ, the invariant distribution of the Markov
chain associated to φ. The following result shows that ρφ can be found using any com-
puting program that solves a linear system of equations with nonsingular coefficient
matrix.
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Theorem 4.2. Given φ ∈ F, let P be the transition matrix of the Markov chain
associated to φ, that is, P = [px y(φ(x)]x,y∈S, and let the row vector ρ = (ρx, x ∈ S)
be the unique invariant distribution of the matrix P , so that ρP = ρ.

(i) The matrix I − P + J is invertible, where J is the square matrix on S with all of
its components are equal to 1.

(ii) The invariant distribution ρ is the unique solution to the linear system

x[I − P + J ] = 1l

where 1l is the row vector with all of its components equal to 1.

Proof. By Assumption 4.1 the matrix P is communicating, so that the Perron-
Frobenious theorem ensures that the (left) Kernel of the I −P is generated by ρ, that
is,

(4.15) x[I − P ] = 0 if and only if x = tρ for some t ∈ R.
Also, note that the definitions of J and 1l yield that

xJ = s(x)1l, where s(x) =
∑
i

xi.

(i) Observe that

(4.16) x[I − P + J ] = x[I − P ] + xJ = x[I − P ] + s(x)1l.

Now, combine this relation with the equality [I − P ]1l′ = 0 (which occurs because P
is a stochastic matrix), to obtain

x[I − P + J ]1l′ = s(x)1l1l′.

Next, suppose that x[I − P + J ] = 0. In this case the above display yields that
s(x) = 0, so that(4.16) implies that x[I − P ] = 0, a relation that via (4.15) leads to
x = tρ for some t ∈ R; since 0 = s(x) = s(tρ) = t, it follows that x = tρ = 0. In short,

x[I − P + J ]1l′ = 0 =⇒ x = 0,

and then the matrix [I − P + J ] is invertible.

(ii) Since ρ = ρP and s(ρ) = 1, (4.16) shows that ρ[I − P + J ] = 1l; since I − P + J
is invertible, by part (i), it follows that ρ is the unique solution of the equation x[I −
P + J ] = 1l. tu

In the following section the average cost criteria corresponding to the utilities in
Example 2.1 and 3.1 will be studied, and the analysis will be based on the following
result which, together with (4.10), shows that the relations (4.14) remain valid if the
expected averages are replaced by observed averages along the sample trajectories of
the state-action process.

Theorem 4.3. Under Assumptions 2.1 and 4.1 the following assertions (i) and
(ii) holds:

(i) For each x ∈ S,

lim
n→∞

1

n

n−1∑
k=0

C(Xt, At) = g, P fx -a. s.
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where f is the stationary policy in (4.12).

(ii) For every π ∈ P and x ∈ S,

lim inf
n→∞

1

n

n−1∑
k=0

C(Xt, At) ≥ g, Pπx -a. s.

Via the bounded convergence theorem, the first part follows combining the ergodic
property (4.10) with the risk-neutral average optimality of the policy f . As for the
second assertion, a proof can be found in Araphostatis et al. (1993).

5. Equality of Optimal Average Cost Functions

In this section the optimal average cost functions J∗U and J∗U− will be determined
for each one of the utilities in Example 2.1. As already noted, those utilities represent
different assessments of a random costs. However, the conclusion stated below estab-
lishes that both the superior and inferior average optimal value functions J∗U and J∗U−
coincide with the optimal risk-neutral average cost.

Theorem 5.1. Let U be any one of the utilities in Example 2.1, and let (g, h(·))
be a solution of the risk-neutral average cost optimality equation (4.11).

Let x ∈ S be arbitrary. Under Assumptions 2.1 and 4.1,

(5.17) JU−(π, x) ≥ g, π ∈ P,

and

(5.18) JU (f, x) = g,

where f is the stationary policy in (4.12).

Proof. Keeping in mind that every utility U in Example 2.1 is continuous and
strictly increasing on the nonnegative ray, it follows that for every bounded sequence
(an) ⊂ [0,∞)

(5.19) lim inf
n→∞

U(an) = U(lim inf
n→∞

an),

whereas if (an) is convergent, then

(5.20) lim
n→∞

U(an) = U( lim
n→∞

an),

Recall now that, when the system is driven by the policy π and X0 = x is the initial
state, JU,n(π, x) is the certainty equivalent of

∑n−1
k=0 C(Xt, At) with respect to the

utility U , so that

(5.21) U (JU,n(π, x)) = Eπx

[
U

(
n−1∑
t=0

C(Xt, At)

)]
;

see (4.4). Now, to establish the desired conclusions, a separate argument for each one
of the utilities in Example 2.1 will be presented.
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(a) Let U = Uγ , the power utility with parameter γ. In this case (5.21) is explicitly
given by

(JU,n(π, x))
γ

= Eπx

[(
n−1∑
t=0

C(Xt, At)

)γ]
.

Dividing both sides of this equality by nγ it follows that

(5.22)

(
JU,n(π, x)

n

)γ
= Eπx

[(∑n−1
t=0 C(Xt, At)

n

)γ]
,

an equality that, after taking the inferior limit as n goes to ∞. leads to

lim inf
n→∞

(
JU,n(π, x)

n

)γ
= lim inf

n→∞
Eπx

[(∑n−1
t=0 C(Xt, At)

n

)γ]

≥ Eπx

[
lim inf
n→∞

(∑n−1
t=0 C(Xt, At)

n

)γ]

where the inequality is due to Fatou’s lemma. From this point, (4.16) and Theorem
4.3(ii) together yield that(

lim inf
n→∞

JU,n(π, x)

n

)γ
≥ Eπx

[(
lim inf
n→∞

∑n−1
t=0 C(Xt, At)

n

)γ]
≥ Eπx [(g)

γ
] = gγ ,

and then

JU−(π, x) = lim inf
n→∞

JU,n(π, x)

n
≥ g,

establishing (5.17). Now, set π = f in (5.22) to obtain(
JU,n(f, x)

n

)γ
= Efx

[(∑n−1
t=0 C(Xt, At)

n

)γ]
;

taking the limit as n → ∞ in both sides of this equality, Theorem 4.3(i) and the
bounded convergence theorem together imply that limn→∞ (JU,n(f, x)/n)

γ
= gγ . It

follows that (JU,n(f, x)/n) is a convergent sequence, and that g = limn→∞ JU,n(f, x) =
J(f, x); see (4.5). This completes the proof for a power utility.

(b) Let U = log(x), the logarithmic utility. In this case (5.21) becomes

log (JU,n(π, x)) = Eπx

[
log

(
n−1∑
t=0

C(Xt, At)

)]
,

and adding − log(n) to both sides of this equality it follows that

(5.23) log (JU,n(π, x)/n) = Eπx

[
log

(
n−1∑
t=0

C(Xt, At)/n

)]
;
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from this point, taking the inferior limit as n goes to ∞, Fatou’s lemma yields to

lim inf
n→∞

log (JU,n(π, x)/n) = lim inf
n→∞

Eπx

[
log

(
n−1∑
t=0

C(Xt, At)/n

)]

≥ Eπx

[
lim inf
n→∞

log

(∑n−1
t=0 C(Xt, At)

n

)]
.

Combining (4.16) with Theorem 4.3(ii) it follows that

log

(
lim inf
n→∞

JU,n(π, x)

n

)
≥ Eπx

[
log

(
lim inf
n→∞

∑n−1
t=0 C(Xt, At)

n

)]
≥ Eπx [log (g)] = log(g),

and then

JU−(π, x) = lim inf
n→∞

JU,n(π, x)

n
≥ g,

completing the proof of (5.17). Next, take π = f in (5.23) to obtain

log

(
JU,n(f, x)

n

)
= Efx

[
log

(∑n−1
t=0 C(Xt, At)

n

)]
;

after taking the limit as n→∞ in both sides of this equality, via Theorem 4.3(i) and
the bounded convergence theorem it follows that limn→∞ log (JU,n(f, x)/n) = log(g),
which is equivalent to g = limn→∞ JU,n(f, x) = J(f, x), concluding the argument for
the logarithmic utility.

(c) Let U = (x− a)3. In this framework, the equality (5.21) establishes that

(JU,n(π, x)− a)
3

= Eπx

(n−1∑
t=0

C(Xt, At)− a

)3
 ;

dividing by n3 in both sides of this relation it follows that

(5.24)

(
JU,n(π, x)

n
− a

n

)3

= Eπx

( 1

n

n−1∑
t=0

C(Xt, At)−
a

n

)3
 ,

a relation that, via Fatou’s lemma, leads to

lim inf
n→∞

(
JU,n(π, x)

n
− a

n

)3

= lim inf
n→∞

Eπx

( 1

n

n−1∑
t=0

C(Xt, At)−
a

n

)3


≥ Eπx

lim inf
n→∞

(
1

n

n−1∑
t=0

C(Xt, At)−
a

n

)3
 .
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Using that x 7→ (x− a)3 is increasing, Theorem 4.3(ii) implies that(
lim inf
n→∞

JU,n(π, x)

n

)3

≥ Eπx

(lim inf
n→∞

∑n−1
t=0 C(Xt, At)

n

)3
 ≥ Eπx [(g)

3
]

= g3,

so that

JU−(π, x) = lim inf
n→∞

JU,n(π, x)

n
≥ g.

To conclude,. select π = f in (5.24) to obtain(
JU,n(f, x)

n
− a

n

)3

= Efx

(∑n−1
t=0 C(Xt, At)

n
− a

n

)3
 ;

letting n increase to∞, Theorem 4.3(i) and the bounded convergence theorem together

imply that limn→∞ (JU,n(f, x)/n)
3

= g3, which is equivalent to g = limn→∞ JU,n(f, x)/n =
J(f, x). tu

Corollary 5.1. For each one of the utility functions U in Example 2.1, the
following assertions (i) and (ii) hold:

(i) For every x ∈ S, J∗U (x) = J∗U−(x) = g, where g is the optimal risk-neutral average
cost.

(iii) A stationary policy f is U -average optimal if, and only if, f is risk-neutral average
optimal.

Proof. (i) Combining (4.8) and (5.17), it follows that

J∗U−(x) = inf
π∈P

JU−(π, x) ≥ g, x ∈ S.

On the other hand, if f is as in (4.12), the relations (4.6) and (5.18) together yield
that

J∗U (x) ≤ JU (f, x) = g, x ∈ S.
These two last displays yield that J∗U−(·) ≤ JU (·) = g, and the first assertion follows
via (4.9). Next, part (ii) follows from part (i). tu

6. The Cone Property

The result presented in this section can be briefly described as follows: If different
utilities render the same average optimal value function, say J(·), and share an optimal
stationary policy, then the optimal average index of any linear combination of those
utilities also coincides with J . To state this result in a precise manner, let U0 be a
fixed (continuous and strictly increasing) utility function defined on [0,∞) and assume
that the following properties hold for U0:

(6.25) J∗U0−(x) = J∗U0
(x) ≡ J(x), x ∈ S,

and, for some policy f ∈ F,

(6.26) JU0
(f, x) = lim

n→∞

1

n
JU0,n(f, x) = J(x), x ∈ S.
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Note that, by Theorem 4.1, under Assumptions 2.1 and 4.1 these conditions are sat-
isfied if U0 is the identity function.

Definition 6.1. The family U consists of all continuous and strictly increasing
utility functions U on [0,∞) satisfying the following requirement:

J∗U−(x) = J∗U (x) = J(x), x ∈ S.

and

(6.27) JU (f, x) = lim
n→∞

1

n
JU,n(f, x) = J(x), x ∈ S,

where f is as in (6.26).

Theorem 6.1. The family U is a cone, that is,

(6.28) U ∈ U =⇒ cU ∈ U for every c > 0,

and

(6.29) U1, U2 ∈ U =⇒ U1 + U2 ∈ U .

Proof. As already noted in Section 3, the certainty equivalent of a random cost
is not altered if the underlying utility function is multiplied by a positive constant.
Therefore, form (4.4) it follows that if c > 0 then JcU,n(x) = JU,n(x) for every state x.
Hence, (4.5)–(4.8) yield that J∗cU−(·) = J∗U−(·) and J∗cU (·) = J∗U (·), and (6.28) follows
from Definition 6.1. To establish (6.29), let U1, U2 ∈ U be arbitrary, and note the
following facts (a)–(c):

(a) Let π ∈ P and x ∈ S be arbitrary. With respect to U1 + U2 the inferior average
cost under policy π at state x satisfies

(6.30) J(U1+U2)−(π, x) ≥ J(x).

To establish this assertion, note that Definition 6.1 and the inclusions U1, U2 ∈ U yield
that, for i = 1, 2,

lim inf
n→∞

1

n
JUi,n(π, x) ≥ J∗Ui−(x) = J(x).

Therefore, given ε ∈ (0, ‖C‖), there exists a positive integer N such that

(6.31)
1

n
JUi,n(π, x) > J(x)− ε, n ≥ N, i = 1, 2.

Now, consider the certainty equivalent JU1+U2,n(π, x), which satisfies

[Ui + U2](JU1+U2,n(π, x))

= Eπx

[
[U1 + U2]

(
n−1∑
k=0

C(Xt, At)

)]

= Eπx

[
U1

(
n−1∑
k=0

C(Xt, At)

)]
+ Eπx

[
U1

(
n−1∑
k=0

C(Xt, At)

)]
= U1 (JU1,n(π, x)) + U1 (JU2,n(π, x)) .(6.32)
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Next, observe that (6.31) yields that

JU1,n(x) ≥ n[J(x)− ε] and JU2,n(x) ≥ n[J(x)− ε], n ≥ N.

These two last displays yield that, for n ≥ N ,

[Ui + U2](JU1+U2,n(π, x)) ≥ U1 (n[J(x)− ε]) + U1 (n[J(x)− ε])
= [U1 + U2] (n[J(x)− ε]) ,

that is,

JU1+U2,n(π, x) ≥ n[J(x)− ε],
and then

1

n
JU1+U2,n(π, x) ≥ J(x)− ε, n ≥ N,

so that

J(U1+U2)−(π, x) = lim inf
n→∞

1

n
JU1+U2,n(π, x) ≥ J(x)− ε,

and (6.30) follows, since ε is an arbitrary number in (0, ‖C‖).
(b) It will be shown that

(6.33) lim
n→∞

1

n
J(U1+U2),n(f, x) = J(x).

To establish this assertion, set π = f in (6.32) to obtain

[Ui + U2](JU1+U2,n(f, x)) = U1(JU1,n(f, x)) + U2(JU2,n(f, x)).

On the other hand, since U1, U2 ∈ U , the requirement (6.27) yields that, for each
ε ∈ (0, ‖C‖), there exists a positive integer N such that

J(x)− ε ≤ 1

n
JUi,n(f, x) ≤ J(x) + ε, i = 1, 2, n ≥ N.

Recalling the functions U1 and U2 are increasing, this last property and the previous
display together yield that, for n ≥ N

[Ui+U2](JU1+U2,n(f, x)) ≥ U1(n[J(x)−ε)])+U2(n[J(x)−ε)]) = [U1 +U2](n[J(x)−ε])

as well as

[Ui+U2](JU1+U2,n(f, x)) ≤ U1(n[J(x)+ε)])+U2(n[J(x)+ε)]) = [U1 +U2](n[J(x)+ε]).

Therefore, since U1 + U2 is strictly increasing, for each n ≥ N ,

n[J(x)− ε] ≤ JU1+U2,n(f, x) ≤ n[J(x) + ε],

and then

J(x)− ε ≤ 1

n
JU1+U2,n(f, x) ≤ J(x) + ε, n ≥ N.

Since ε ∈ (0, ‖C‖) is arbitrary, this relation yields that (6.33) holds. To conclude,
observe that (6.30) implies that, for every x ∈ S,

J∗(U1+U2)−(x) = inf
π∈P

J(U1+U2)−(π, x) ≥ J(x),
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whereas (6.33) yields that

J(x) = JU1+U2(f, x) ≥ J∗U1+U2
(x);

see (4.5) and (4.6). These two last display together imply that

J∗(U1+U2)−(x) ≥ J(x) ≥ J∗U1+U2
(x);

since J∗(U1+U2)−(x) ≤ J∗U1+U2
(x), it follows that

J∗(U1+U2)−(x) = J∗U1+U2
(x) = J(x), x ∈ S.

By Definition 6.1, this relation and (6.33) together imply that U1 + U2 ∈ U . tu
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