SCIENTIA Series A: Mathematical Sciences, Vol. 27 (2016), 31–45 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2016

The integrals in Gradshteyn and Ryzhik. Part 29: Chebyshev polynomials

Victor H. Moll and Christophe Vignat

ABSTRACT. The table of Gradshteyn and Ryzhik contains many integrals that involve Chebyshev polynomials. Some examples are discussed.

1. Introduction

The Chebyshev polynomial of the first kind $T_n(x)$ is defined by the relation

(1.1)
$$\cos n\theta = T_n(\cos \theta).$$

The elementary recurrence

(1.2)
$$\cos(n+1)\theta = 2\cos\theta\cos n\theta - \cos(n-1)\theta$$

yields the three-term recurrence for orthogonal polynomials

(1.3)
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

and, with initial conditions $T_0(x) = 1$ and $T_1(x) = x$, shows that $T_n(x)$ is indeed a polynomial in x. The polynomial $T_n(x)$ is of degree n and its leading coefficient is 2^{n-1} . These elementary facts follow directly from (1.3).

The Chebyshev polynomial of the second kind $U_n(x)$ is defined by the relation

(1.4)
$$\frac{\sin(n+1)\theta}{\sin\theta} = U_n(\cos\theta).$$

This polynomial satisfies the recurrence

(1.5)
$$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x),$$

(the same recurrence as (1.3)), this time with initial conditions $U_0(x) = 1$ and $U_1(x) = 2x$.

Some basic properties of Chebyshev polynomials are collected next. The first result gives the classical generating function for these polynomials.

²⁰⁰⁰ Mathematics Subject Classification. Primary 33.

Key words and phrases. Integrals, Chebyshev polynomials.

Proposition 1.1. The generating function for the Chebyshev polynomials is given by

(1.6)
$$\sum_{n=0}^{\infty} T_n(x)t^n = \frac{1-xt}{1-2xt+t^2}$$

and

(1.7)
$$\sum_{n=0}^{\infty} U_n(x)t^n = \frac{1}{1 - 2xt + t^2}.$$

PROOF. Multiply the recurrence (1.3) by t^n and sum over $n \ge 1$.

Binet's formula for Chebyshev polynomials follows directly from their generating functions (1.6) and (1.7).

Corollary 1.2. The Chebyshev polynomial $T_n(x)$ is given by

(1.8)
$$T_n(x) = \frac{1}{2} \left[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n \right].$$

Similarly, the polynomial $U_n(x)$ is given by

(1.9)
$$U_n(x) = \frac{1}{2\sqrt{x^2 - 1}} \left[(x + \sqrt{x^2 - 1})^{n+1} - (x - \sqrt{x^2 - 1})^{n+1} \right].$$

PROOF. Expand the right-hand side of (1.6) and (1.7) in partial fractions and expand the resulting terms. $\hfill \Box$

A useful expression for the Chebyshev polynomials is their Rodrigues formulas

(1.10)
$$T_n(x) = \frac{(-1)^n 2^n n!}{(2n)!} \sqrt{1 - x^2} \left(\frac{d}{dx}\right)^n (1 - x^2)^{n - 1/2}$$

and

(1.11)
$$U_n(x) = \frac{(-1)^n (n+1)! 2^n}{(2n+1)!} \frac{1}{\sqrt{1-x^2}} \left(\frac{d}{dx}\right)^n (1-x^2)^{n+1/2}.$$

These will be used in some simplifications in the rest of the paper.

2. Some elementary examples

The classical table of integrals [2] contains a small collection of integrals with $T_n(x)$ or $U_n(x)$ in the integrand. The goal of this note is to provide self-contained proofs of these entries. The most elementary entry is **7.343.1** that is equivalent to the orthogonality of the family { $\cos n\theta$ } on the interval [0, 2π]. Indeed, define

(2.1)
$$\langle f,g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$$

then the first example simply gives $\langle T_n, T_m \rangle = 0$ if $n \neq m$.

Example 2.1. Entry 7.343.1:

(2.2)
$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} = \begin{cases} 0 & \text{if } m \neq n, \\ \frac{\pi}{2} & \text{if } m = n \neq 0, \\ \pi & \text{if } m = n = 0. \end{cases}$$

The next couple of examples computes integrals involving powers of Chebyshev polynomials.

Example 2.2. The evaluation

(2.3)
$$\int_{-1}^{1} T_n(x) \, dx = \frac{(-1)^{n-1} - 1}{(n-1)(n+1)}, \text{ for } n \ge 2,$$

is not included in [2]. To confirm this formula, let $x = \cos \theta$ and use the identity

(2.4)
$$\cos n\theta \,\sin\theta = \frac{1}{2} \left[\sin(n+1)\theta - \sin(n-1)\theta \right]$$

to produce

(2.5)
$$\int_{-1}^{1} T_n(x) \, dx = \frac{1}{2} \int_0^{\pi} \left[\sin(n+1)\theta - \sin(n-1)\theta \right] \, d\theta.$$

The result follows by computing the elementary trigonometric integrals.

The indefinite version of this entry appears in [4] as entry 1.14.2.1 in the form

(2.6)
$$\int T_n(x) \, dx = \frac{1}{2} \left[\frac{T_{n+1}(x)}{n+1} - \frac{T_{n-1}(x)}{n-1} \right].$$

To verify this evaluation, let $x = \cos \theta$ and observe that

(2.7)
$$\int T_n(x) \, dx = -\int \cos(n\theta) \sin\theta \, d\theta.$$

The result now follows from (2.4).

Example 2.3. Entry **7.341** states that

(2.8)
$$\int_{-1}^{1} T_n^2(x) \, dx = 1 - \frac{1}{4n^2 - 1} = \frac{2(2n^2 - 1)}{(2n - 1)(2n + 1)}$$

The evaluation starts with (1.8) to obtain

(2.9)
$$\int_{-1}^{1} T_n^2(x) \, dx = \frac{1}{4} \int_{-1}^{1} (x + \sqrt{x^2 - 1})^{2n} \, dx + \frac{1}{4} \int_{-1}^{1} (x - \sqrt{x^2 - 1})^{2n} \, dx + 1.$$

The change of variables $x = \cos \theta$ gives

(2.10)
$$\int_{-1}^{1} (x + \sqrt{x^2 - 1})^{2n} dx = \int_{0}^{\pi} e^{2in\theta} \sin\theta \, d\theta$$

The last integral is evaluated by writing $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$. The second integral is evaluated in the same manner and the stated formula is obtained from here. A generalization of this result is given in Section 8.

Example 2.4. Entry **7.341.2** is

(2.11)
$$\int_{-1}^{1} T_m(x) T_n(x) \, dx = \frac{1}{1 - (m - n)^2} + \frac{1}{1 - (m + n)^2} \quad \text{if } m + n \text{ is even}$$

and

(2.12)
$$\int_{-1}^{1} T_m(x) T_n(x) \, dx = 0 \quad \text{if } m + n \text{ is odd.}$$

The proof is based on the identity

(2.13)
$$T_n(x)T_m(x) = \frac{1}{2} \left[T_{n-m}(x) + T_{n+m}(x) \right]$$

coming from its trigonometric counterpart

(2.14)
$$\cos n\theta \cos m\theta = \frac{1}{2} \left[\cos(n+m)\theta + \cos(n-m)\theta \right].$$

The result now follows from (2.6).

Example 2.5. The integral

(2.15)
$$\int (1-x^2)^{\frac{n-3}{2}} T_n(x) \, dx = -\frac{1}{n-1} (1-x^2)^{\frac{n-1}{2}} T_{n-1}(x)$$

appears as entry 1.14.2.3 in [5]. It does not appear in [2]. The proof is elementary: the change of variables $x = \cos \theta$ gives

(2.16)
$$\int (1-x^2)^{\frac{n-3}{2}} T_n(x) \, dx = -\int \sin^{n-2}\theta \, \cos n\theta \, d\theta$$

and the elementary identity

(2.17)
$$\sin^{n-2}\theta\,\cos n\theta = \frac{1}{n-1}\frac{d}{d\theta}\left[\sin^{n-1}\theta\,T_{n-1}(\cos\theta)\right].$$

The companion entry 1.14.2.4 in [5]

(2.18)
$$\int (1-x^2)^{-\frac{n+3}{2}} T_n(x) \, dx = \frac{1}{n+1} (1-x^2)^{-\frac{n+1}{2}} T_{n+1}(x)$$

is established in a similar manner.

3. The evaluation of a Mellin transform

The Mellin transform of a function f(x) is defined by

(3.1)
$$\mathcal{M}(f)(s) = \int_0^\infty x^{s-1} f(x) \, dx.$$

In examples concerning Chebyshev polynomials, with kernel $1/\sqrt{1-x^2}$, it is natural to consider their restriction to [-1, 1]. Entry **7.346** states that

(3.2)
$$\int_0^1 x^{s-1} T_n(x) \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{s2^s} \left[B\left(\frac{1+s+n}{2}, \frac{1+s-n}{2}\right) \right]^{-1}, \text{ for } \operatorname{Re} s > 0.$$

This entry gives the Mellin transform of the function

(3.3)
$$f(x) = \begin{cases} T_n(x)/\sqrt{1-x^2} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise.} \end{cases}$$

The change of variables $x = \cos \theta$ transforms (3.2) to

(3.4)
$$\int_0^{\pi/2} \cos(n\theta) \cos^{s-1}\theta \, d\theta = \frac{\pi}{s2^s} \left[B\left(\frac{1+s+n}{2}, \frac{1+s-n}{2}\right) \right]^{-1}.$$

This entry will be established in a future publication. Only a special case is required here.

Special Case. Assume s = m + 1 is a positive integer. Then (3.4) becomes

(3.5)
$$\int_0^{\pi/2} \cos(n\theta) \cos^m \theta \, d\theta = \frac{\pi}{(m+1)2^{m+1}} \left[B\left(\frac{2+m+n}{2}, \frac{2+m-n}{2}\right) \right]^{-1}.$$

The reduction of this integral requires a simple trigonometric formula. This appears as entry 1.320 in [2]. The proof of (3.5) is presented next.

Lemma 3.1. For $m \in \mathbb{N}$,

(3.6)
$$x^{m} = \frac{1}{2^{m-1}} \sum_{k=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} {m \choose k} T_{m-2k}(x) + \begin{cases} 0 & \text{if } m \equiv 1 \mod 2\\ 2^{-m} {m \choose m/2} & \text{if } m \equiv 0 \mod 2. \end{cases}$$

PROOF. Let $x = \cos \theta$ and start with

(3.7)
$$\cos^{m}\theta = \frac{(e^{i\theta} + e^{-i\theta})^{m}}{2^{m}}$$
$$= \frac{1}{2^{m}}\sum_{k=0}^{m} {m \choose k} e^{i(2k-m)\theta}.$$

By symmetry, since this a real function, the real part yields

(3.8)
$$\cos^{m}\theta = \frac{1}{2^{m}}\sum_{k=0}^{m} \binom{m}{k}\cos(m-2k)\theta.$$

To obtain the stated formula, split the sum in half to obtain

(3.9)
$$\cos^{m}\theta = \frac{1}{2^{m}}\sum_{k=0}^{\lfloor\frac{m}{2}\rfloor} \binom{m}{k} \cos(m-2k)\theta + \frac{1}{2^{m}}\sum_{k=\lfloor\frac{m}{2}\rfloor+1}^{m} \binom{m}{k} \cos(m-2k)\theta.$$

In the case m odd, both sums have the same number of elements and the change of indices j = k - m/2 shows that they are equal. In the case m even, there is an extra term corresponding to the index m/2.

Then (3.2) gives

(3.10)
$$\int_0^1 x^m T_n(x) \frac{dx}{\sqrt{1-x^2}} = \frac{1}{2^{m-1}} \sum_{k=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} {m \choose k} \int_0^1 \frac{T_n(x) T_{m-2k}(x)}{\sqrt{1-x^2}} \, dx$$

when m is odd and in the case m even there is the extra term producing (3.11)

$$\int_{0}^{1} x^{m} T_{n}(x) \frac{dx}{\sqrt{1-x^{2}}} = \frac{1}{2^{m-1}} \sum_{k=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} {m \choose k} \int_{0}^{1} \frac{T_{n}(x) T_{m-2k}(x)}{\sqrt{1-x^{2}}} \, dx + \frac{{m \choose m/2}}{2^{m}} \int_{0}^{1} \frac{T_{n}(x) \, dx}{\sqrt{1-x^{2}}} \, dx$$

Now consider the special case $m \equiv n \mod 2$. The extra term coming when m is even now disappears because $n \ge 2$ is also even and

(3.12)
$$\int_0^1 \frac{T_n(x) \, dx}{\sqrt{1-x^2}} = \frac{1}{2} \int_{-1}^1 \frac{T_n(x) \, dx}{\sqrt{1-x^2}} = 0,$$

since $T_n(x)$ is orthogonal to $T_0(x) = 1$. For the remaining terms, observe that $T_n(x)T_{m-2k}(x)$ is an even polynomial and the integrals can be extended to [-1, 1] to obtain

(3.13)
$$\int_{0}^{1} x^{m} T_{n}(x) \frac{dx}{\sqrt{1-x^{2}}} = \frac{1}{2^{m}} \sum_{k=0}^{\left\lfloor \frac{m-1}{2} \right\rfloor} {m \choose k} \int_{-1}^{1} \frac{T_{n}(x) T_{m-2k}(x)}{\sqrt{1-x^{2}}} dx.$$

The orthogonality of Chebyshev polynomials implies that the integral in the summand vanishes unless n = m - 2k; that is, $k = \frac{1}{2}(m - n)$. If m < n the integral on the left of (3.10) vanishes. This matches the right-hand side of (3.5), as the beta function value also vanishes. In the case $m \ge n$, it follows that

(3.14)
$$\int_0^1 x^m T_n(x) \frac{dx}{\sqrt{1-x^2}} = \frac{1}{2^m} \binom{m}{\frac{1}{2}(m-n)} \int_{-1}^1 \frac{T_n^2(x)}{\sqrt{1-x^2}} dx.$$

Now, for $n \ge 1$,

(3.15)
$$\int_{-1}^{1} \frac{T_n^2(x)}{\sqrt{1-x^2}} \, dx = \int_0^{\pi} \cos^2(n\theta) \, d\theta = \frac{\pi}{2},$$

and this produces

(3.16)
$$\int_0^1 \frac{x^m T_n(x)}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2^{m+1}} \binom{m}{\frac{1}{2}(m-n)} = \frac{\pi}{2^{m+1}} \binom{m}{\frac{1}{2}(m+n)}.$$

This matches the answer given in (3.2).

Theorem 3.2. Let $m, n \in \mathbb{N}$. If $m \equiv n \mod 2$

(3.17)
$$\int_0^1 \frac{x^m T_n(x)}{\sqrt{1-x^2}} \, dx = \frac{\pi}{2^{m+1}} \binom{m}{\frac{1}{2}(m+n)} \quad \text{if } m \ge n$$

 $\quad \text{and} \quad$

(3.18)
$$\int_0^1 \frac{x^m T_n(x)}{\sqrt{1 - x^2}} \, dx = 0 \quad \text{if } m < n.$$

Note 3.3. The reader is encouraged to verify that, when m and n have different parity, the integral is given by

$$(3.19) \quad \int_{0}^{1} \frac{x^{m} T_{n}(x)}{\sqrt{1-x^{2}}} \, dx = \begin{cases} \frac{2^{m-1} m! \left(\frac{m+n-1}{2}\right)! \left(\frac{m-n-1}{2}\right)!}{(m+n)! (m-n)!} & \text{if } m+1 > n, \\ (-1)^{(n-m-1)/2} \, \frac{2^{m} m! \left(\frac{m+n-1}{2}\right)! (n-m-1)!}{(m+n)! \left(\frac{n-m-1}{2}\right)!} & \text{if } m+1 \leqslant n. \end{cases}$$

4. A Fourier transform

This section describes entries in [2] that are related to the Fourier transform of the Chebyshev polynomials.

Entry 7.355.1

(4.1)
$$\int_0^1 T_{2n+1}(x)\sin(ax)\frac{dx}{\sqrt{1-x^2}} = (-1)^n \frac{\pi}{2} J_{2n+1}(a)$$

and entry **7.355.2**

(4.2)
$$\int_0^1 T_{2n}(x) \cos(ax) \frac{dx}{\sqrt{1-x^2}} = (-1)^n \frac{\pi}{2} J_{2n}(a)$$

may be combined into the form

(4.3)
$$\int_{-1}^{1} T_n(x) e^{iax} \frac{dx}{\sqrt{1-x^2}} = i^n \pi J_n(a),$$

where $J_{\nu}(z)$ is the Bessel function defined by

(4.4)
$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \, \Gamma(\nu+k+1)} \left(\frac{z}{2}\right)^{\nu+2k}$$

This form appears as Entry **2.18.1.9** in [4]. Indeed, for n = 2r even, the real part of (4.3) gives

(4.5)
$$\int_{-1}^{1} T_{2r}(x) \cos(ax) \frac{dx}{\sqrt{1-x^2}} = (-1)^r \pi J_{2r}(a).$$

The expression (4.2) now comes from the parity of the integrand.

The proof of (4.3) begins with the change of variables $x = \cos \theta$ to produce

(4.6)
$$\int_{-1}^{1} T_n(x) e^{iax} \frac{dx}{\sqrt{1-x^2}} = \int_0^{\pi} \cos(n\theta) e^{ia\cos\theta} \, d\theta.$$

Symmetry now gives

$$(4.7) \quad \int_0^\pi \cos(n\theta) e^{ia\cos\theta} \, d\theta \quad = \quad \frac{1}{2} \int_0^\pi e^{i(-n\theta + a\cos\theta)} \, d\theta + \frac{1}{2} \int_0^\pi e^{i(n\theta + a\cos\theta)} \, d\theta$$
$$= \quad \frac{1}{2} \int_{-\pi}^0 e^{i(n\theta + a\cos\theta)} \, d\theta + \frac{1}{2} \int_0^\pi e^{i(n\theta + a\cos\theta)} \, d\theta$$
$$= \quad \frac{1}{2} \int_{-\pi}^\pi e^{i(n\theta + a\cos\theta)} \, d\theta.$$

Aside from a scaling factor of 2π , this is the classical integral representation for the Bessel function

(4.8)
$$J_n(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ni\theta + iz\sin\theta} d\theta,$$

which is Entry 8.411.1 in [2].

An alternative proof of this entry uses Rodrigues formula for Chebyshev polynomials

(4.9)
$$T_n(x) = \frac{(-2)^n n!}{(2n)!} \sqrt{1 - x^2} \frac{d^n}{dx^n} \left[(1 - x^2)^{n-1/2} \right].$$

Integrating by parts and using the fact that the boundary terms vanish yields

$$\int_{-1}^{1} \frac{T_n(x)}{\sqrt{1-x^2}} e^{ipx} dx = \frac{(-2)^n n!}{(2n)!} \int_{-1}^{1} e^{ipx} \frac{d^n}{dx^n} \left[(1-x^2)^{n-1/2} \right] dx$$
$$= \frac{2^n n!}{(2n)!} \int_{-1}^{1} (1-x^2)^{n-1/2} \frac{d^n}{dx^n} e^{ipx} dx$$
$$= (ip)^n \frac{2^n n!}{(2n)!} \int_{-1}^{1} (1-x^2)^{n-1/2} e^{ipx} dx.$$

Entry 3.771.8 implies that

(4.10)
$$\int_{-1}^{1} (1-x^2)^{n-1/2} e^{ipx} \, dx = \sqrt{\pi} \left(\frac{2}{p}\right)^n \Gamma\left(n+\frac{1}{2}\right) J_n(p),$$

which produces the result. A verification of (4.10), as well a many other entries in [2], will appear in a future publication.

A third proof of the present evaluation can be deduced from the operational formula given in the next lemma.

Lemma 4.1. The J-Bessel function of order n can be computed as

(4.11)
$$J_n(z) = i^n T_n\left(i\frac{d}{dz}\right) J_0(z)$$

where T_n is the Chebychev polynomial of the first kind.

PROOF. Starting from the integral representation [1, 9.1.21]

$$J_{n}(z) = \frac{1}{\pi i^{n}} \int_{0}^{\pi} e^{i z \cos \theta} \cos(n\theta) \, d\theta,$$

we compute, with $T_n(z) = \sum_{k=0}^n t_{n,k} z^k$,

$$i^{n}T_{n}\left(i\frac{d}{dz}\right)J_{0}\left(z\right) = \frac{i^{n}}{\pi}\int_{0}^{\pi}T_{n}\left(i\frac{d}{dz}\right)e^{iz\cos\theta}d\theta$$
$$= \frac{i^{n}}{\pi}\int_{0}^{\pi}\sum_{k=0}^{n}t_{n,k}\left(i\frac{d}{dz}\right)^{k}e^{iz\cos\theta}d\theta$$
$$= \frac{i^{n}}{\pi}\int_{0}^{\pi}T_{n}\left(-\cos\theta\right)e^{iz\cos\theta}d\theta$$
$$= \frac{\left(-i\right)^{n}}{\pi}\int_{0}^{\pi}\cos\left(n\theta\right)e^{iz\cos\theta}d\theta = J_{n}\left(z\right),$$

where the parity property $T_n(-x) = (-1)^n T_n(x)$ has been used.

Using the former result and the Fourier identity

(4.12)
$$\int x^n f(x) \exp(-ipx) \, dx = \left(i\frac{d}{dp}\right)^n \hat{f}(p),$$

we deduce that, for any polynomial P,

(4.13)
$$\int P(x)f(x)\exp(-ipx)\,dx = P\left(i\frac{d}{dp}\right)\hat{f}(p).$$

Now use entry **3.753.2**

(4.14)
$$\int_{-1}^{1} \frac{\cos px \, dx}{\sqrt{1-x^2}} = \pi J_0(p)$$

to obtain

(4.15)
$$\int_{-1}^{1} \frac{T_n(x)}{\sqrt{1-x^2}} \cos(px) \, dx = T_n\left(i\frac{d}{dp}\right) \pi J_0(p) = \frac{\pi}{i^n} J_n(p).$$

5. An entry with two parameters

Section 7.342 consists of the single entry

(5.1)
$$\int_{-1}^{1} U_n \left[x(1-y^2)^{1/2}(1-z^2)^{1/2} + yz \right] dx = \frac{2}{n+1} U_n(y) U_n(z), \quad \text{for } |y| < 1, \, |z| < 1.$$

The parameters y, z can be expressed in trigonometric form by denoting

(5.2)
$$y = \cos \alpha, \quad z = \cos \beta$$

transforming (5.1) to

(5.3)
$$I := \int_{-1}^{1} U_n \left[x \sin \alpha \sin \beta + \cos \alpha \cos \beta \right] \, dx = \frac{2}{n+1} U_n (\cos \alpha) U_n (\cos \beta).$$

The basic relation among the two kinds of Chebyshev polynomials

(5.4)
$$\frac{d}{dx}T_n(x) = nU_{n-1}(x)$$

gives

(5.5)
$$\int U_n(ax+b) \, dx = \frac{1}{a(n+1)} T_{n+1}(ax+b).$$

Therefore

$$(n+1)\sin\alpha\sin\beta \times I = [T_{n+1}(x\sin\alpha\sin\beta + \cos\alpha\cos\beta)]\Big|_{x=-1}^{1}$$
$$= T_{n+1}(\sin\alpha\sin\beta + \cos\alpha\cos\beta) - T_{n+1}(-\sin\alpha\sin\beta + \cos\alpha\cos\beta)$$
$$= T_{n+1}(\cos(\alpha-\beta)) - T_{n+1}(\cos(\alpha+\beta))$$
$$= \cos[(n+1)(\alpha-\beta)] - \cos[(n+1)(\alpha+\beta)].$$

The elementary identity

(5.6)
$$\cos u - \cos v = -2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

now produces

(5.7)
$$I = \frac{2}{n+1} \frac{\sin(n+1)\alpha}{\sin\alpha} \frac{\sin(n+1)\beta}{\sin\beta}.$$

This is the stated result.

6. An example involving Legendre polynomials

The integral

(6.1)
$$\int_{a}^{b} \frac{1}{\sqrt{(x-a)(b-x)}} T_n\left(\frac{x}{b}\right) \, dx = \frac{\pi}{2} \left[P_n\left(\frac{a}{b}\right) + P_{n-1}\left(\frac{a}{b}\right) \right],$$

where b > a > 0 and $P_n(x)$ is the Legendre polynomial, appears as entry **7.349** in [2] in the form

(6.2)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_n(1-x^2y) \, dx = \frac{\pi}{2} \left[P_n(1-y) + P_{n-1}(1-y) \right].$$

An automatic proof of this entry has been given in [3]. Its companion 7.348 is

(6.3)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} U_{2n}(xz) \, dx = \pi P_n(2z^2 - 1), \quad |z| < 1.$$

The proof of (6.3) begins with the generating function

(6.4)
$$\sum_{n=0}^{\infty} U_n(x)t^n = \frac{1}{1 - 2xt + t^2},$$

then dissection produces

(6.5)
$$\sum_{n=0}^{\infty} U_{2n}(xz)t^{2n} = \frac{1}{2} \left[\frac{1}{1-2xtz+t^2} + \frac{1}{1+2xtz+t^2} \right] \\ = \frac{1}{(1+t^2)(1-a^2x^2)}$$

with

(6.6)
$$a = \frac{2tz}{1+t^2}.$$

Now observe that an elementary argument gives

(6.7)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \frac{dx}{1-a^2x^2} = \frac{1}{2} \int_{0}^{\pi} \frac{d\theta}{1+a\cos\theta} + \frac{1}{2} \int_{0}^{\pi} \frac{d\theta}{1-a\cos\theta} = \frac{\pi}{\sqrt{1-a^2}},$$

since both integrals evaluate to $\pi/\sqrt{1-a^2}$. Replacing into (6.5) gives, after some elementary simplifications, the identity

(6.8)
$$\sum_{n=0}^{\infty} t^{2n} \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} U_{2n}(xz) \, dx = \frac{\pi}{\sqrt{(1+t^2)^2 - 4t^2 z^2}}.$$

The result now follows from

(6.9)
$$\sum_{n=0}^{\infty} P_n (2z^2 - 1)t^{2n} = \frac{1}{\sqrt{(1+t^2)^2 - 4t^2 z^2}}.$$

This last expression comes from the generating function

(6.10)
$$\sum_{k=0}^{\infty} t^k P_k(z) = \frac{1}{\sqrt{1 - 2tz + t^2}}$$

for the Legendre polynomials, given as entry 8.921 in [2].

7. A Hilbert transform

The two entries 7.344.1

(7.1)
$$\int_{-1}^{1} \frac{1}{x-y} (1-y^2)^{-1/2} T_n(y) \, dy = -\pi U_{n-1}(x)$$

and $\mathbf{7.344.2}$

(7.2)
$$\int_{-1}^{1} \frac{1}{x-y} (1-y^2)^{1/2} U_{n-1}(y) \, dy = \pi T_n(x)$$

are examples of the *Hilbert transform* defined by

(7.3)
$$\mathcal{H}(u)(x) = \frac{1}{\pi} \text{p.v.} \int_{-\infty}^{\infty} \frac{u(y)}{x - y} \, dy$$

Actually, the integral in (7.1) has to be written as a principal value integral and x must be restricted to -1 < x < 1. Otherwise, the correct version of (7.1) is

(7.4) p.v.
$$\int_{-1}^{1} \frac{1}{x-y} (1-y^2)^{-1/2} T_n(y) \, dy = -\pi U_{n-1}(x) + \frac{h(x)}{\sqrt{x^2-1}} \pi T_n(x)$$

where

(7.5)
$$h(x) = \begin{cases} -1 & \text{if } x < -1 \\ 0 & \text{if } -1 < x < 1 \\ 1 & \text{if } x > 1, \end{cases}$$

with a similar correction term for (7.2).

The evaluation of these entries uses the relation between the Fourier \hat{u} and the Hilbert transform $\widetilde{\mathcal{H}(u)}$ given by

(7.6)
$$\widetilde{\mathcal{H}}(u)(\omega) = -i\operatorname{sign}(\omega)\,\widehat{u}(\omega).$$

Choosing

(7.7)
$$u(x) = \begin{cases} \frac{T_n(x)}{\sqrt{1-x^2}}, & \text{for } -1 < x < 1, \\ 0 & \text{otherwise,} \end{cases}$$

then (4.3) gives

$$\hat{u}(\omega) = \imath^n \pi J_n(\omega)$$

so that

$$\widehat{\mathcal{H}(u)}(\omega) = -i^{n+1}\pi \operatorname{sign}(\omega) J_n(\omega)$$

and the inverse Fourier transform is computed as

(7.8)
$$\mathcal{H}(u)(x) = \frac{1}{2\pi} \left[-i^{n+1}\pi \int_{-\infty}^{+\infty} \operatorname{sign}(\omega) J_n(\omega) e^{i\omega x} d\omega \right].$$

The integral in (7.8) is written as

$$-\int_{-\infty}^{0} J_n(\omega) e^{i\omega x} d\omega + \int_{0}^{\infty} J_n(\omega) e^{i\omega x} d\omega = -\int_{0}^{\infty} \left(J_n(-\omega) e^{-i\omega x} - J_n(\omega) e^{i\omega x} \right) d\omega.$$

Each term is now computed using 6.611 in [2] to obtain

$$\int_{0}^{\infty} e^{-\alpha\omega} J_{\nu}\left(\beta\omega\right) d\omega = \frac{\left(\sqrt{\alpha^{2} + \beta^{2}} - \alpha\right)^{\nu}}{\beta^{\nu} \sqrt{\alpha^{2} + \beta^{2}}}$$

to give

$$\int_{0}^{\infty} e^{i\omega x} J_n(\omega) \, d\omega = i^n \frac{\left(x + \sqrt{x^2 - 1}\right)^n}{\sqrt{1 - x^2}}$$

and

$$\int_0^\infty e^{-i\omega x} J_n\left(-\omega\right) d\omega = i^n \frac{\left(x - \sqrt{x^2 - 1}\right)^n}{\sqrt{1 - x^2}}$$

and it follows that

$$\mathcal{H}(u)(x) = \frac{1}{2} i^{2n+1} \left[\frac{\left(x + \sqrt{x^2 - 1}\right)^n}{\sqrt{1 - x^2}} - \frac{\left(x - \sqrt{x^2 - 1}\right)^n}{\sqrt{1 - x^2}} \right]$$
$$= \pi (-1)^{n-1} U_{n-1}(x) .$$

The result now follows from (7.3).

8. Integrals of powers

Entry 7.341 of [2] contains the entry

(8.1)
$$\int_{-1}^{1} T_n^2(x) \, dx = 1 - (4n^2 - 1)^{-1} = \frac{4n^2 - 2}{4n^2 - 1}$$

This has been described in Example 2.3 and it is a special case of the next result.

THEOREM 8.1. For $n, r \in \mathbb{N}$, the integral

(8.2)
$$I_{n,r} = \int_{-1}^{1} T_n^r(x) \, dx$$

is given by

(8.3)
$$I_{n,r} = -\frac{(-1)^{nr} + 1}{2^r} \sum_{\ell=0}^r \frac{\binom{r}{\ell}}{n^2 (2\ell - r)^2 - 1}.$$

In particular, aside from an elementary factor, the integral $I_{n,r}$ is a rational function in the variable $x = n^2$.

PROOF. Using the representation

(8.4)
$$T_n(x) = \frac{1}{2} \left[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n \right]$$

the integral becomes, after the change $x = \cos \theta$,

(8.5)
$$I_{n,r} = \frac{1}{2^r} \sum_{\ell=0}^r \binom{r}{\ell} \int_0^\pi e^{in\theta\ell} e^{-in\theta(r-\ell)} \sin\theta \, d\theta.$$

Now use the expression of $\sin\theta$ in terms of complex exponentials to obtain

(8.6)
$$I_{n,r} = \frac{1}{i2^{r+1}} \sum_{\ell=0}^{r} {\binom{r}{\ell}} \int_{0}^{\pi} \left(e^{i\theta(n(2\ell-r)+1)} - e^{i\theta(n(2\ell-r)-1)} \right) d\theta.$$

The result now follows by direct integration.

REMARK 8.1. The rational function mentioned above has intriguing arithmetic properties. These will be described in a future publication.

The expression for $I_{n,r}$ given above is now written in hypergeometric form. An elementary proof comes from writing the hypergeometric sum and using

(8.7)
$$(-r)_m = \frac{(-1)^m r!}{(r-m)!}.$$

LEMMA 8.1. For $n, r \in \mathbb{N}$, one has

(8.8)
$$\sum_{\ell=0}^{r} \binom{r}{\ell} \frac{1}{n(2\ell-r)+1} = \frac{1}{1-nr} {}_{2}F_{1} \left(\frac{\frac{1-nr}{2n}}{1+\frac{1-nr}{2n}} \middle| -1 \right)$$

and

(8.9)
$$\sum_{\ell=0}^{r} \binom{r}{\ell} \frac{1}{n(2\ell-r)-1} = \frac{1}{1+nr} {}_{2}F_{1} \left(\frac{-\frac{1+nr}{2n}, -r}{1-\frac{1+nr}{2n}} \right| -1 \right).$$

The hypergeometric sum appearing in the previous lemma is given in [5, volume 3, 7.3.5.18] in terms of the Jacobi polynomials:

(8.10)
$${}_{2}F_{1}\left(\begin{array}{c} -r,b\\c\end{array}\right|-1\right) = \frac{r!(-2)^{r}}{(c)_{r}}P_{r}^{(-b-r,c-1)}(0).$$

Therefore, the integral $I_{n,r}$ is now expressed in terms of Jacobi polynomials.

Theorem 8.1. Let $n, r \in \mathbb{N}$. The integral of a power of the Chebyshev polynomial of the first kind

(8.11)
$$I_{n,r} = \int_{-1}^{1} T_n^r(x) \, dx$$

is given in terms of the Jacobi polynomial

(8.12)
$$P_n^{(\alpha,\beta)}(x) = \frac{1}{2^n} \sum_{j=0}^n \binom{n+\alpha}{j} \binom{n+\beta}{n-j} (x-1)^{n-j} (x+1)^j$$

by

$$I_{n,r} = (-1)^r r! \frac{1 + (-1)^{nr}}{4n} \left[\frac{(1+\alpha)_r^{-1}}{\alpha} P_r^{(\beta,\alpha)}(0) - \frac{(1+\beta)_r^{-1}}{\beta} P_r^{(\alpha,\beta)}(0) \right],$$

with $\alpha = \frac{1-rn}{2n}$ and $\beta = -\frac{1+rn}{2n}$.

Note 8.2. It is an interesting question to develop similar formulas for the integral

(8.13)
$$J_{n,r} = \int_{-1}^{1} U_n^r(x) \, dx$$

This is left to the interested reader.

Acknowledgments. The first author acknowledges the partial support of NSF-DMS 0713836. The work of the second author was partially funded by the iCODE Institute, a research project of the Idex Paris-Saclay.

References

- M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York, 1972.
- [2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by D. Zwillinger and V. Moll. Academic Press, New York, 8th edition, 2015.
- [3] C. Koutschan and V. Moll. The integrals in Gradshteyn and Ryzhik. Part 18: Some automatic proofs. *Scientia*, 20:93–111, 2011.
- [4] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series, volume 2: Special Functions. Gordon and Breach Science Publishers, 1986.
- [5] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and Series. Five volumes. Gordon and Breach Science Publishers, 1992.

CHEBYSHEV POLYNOMIALS

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118, U.S.A.

 $E\text{-}mail \ address: \ \texttt{vhm@tulane.edu}$

Department of Mathematics, Tulane University, New Orleans, LA 70118,

U.S.A. AND DEPT. OF PHYSICS, UNIVERSITE ORSAY PARIS SUD,L. S. S./SUPELEC,FRANCE $E\text{-}mail\ address:\ cvignat@tulane.edu$

Received 29 11 2014, revised 03 04 2016