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On ℵ0-sn-networks

Pei Wang a and Xun Ge b

Abstract. In this paper, we discuss spaces with ℵ0-sn-networks and give some

characterizations of ℵ0-sn-metric spaces. For a space X, we prove that X has
a point-countable ℵ0-sn-network if and only if X is an sequentially quotient,

countable-to-one image of a metric space. and X is an ℵ0-sn-metric space if and

only if X is a sequentially quotient, σ, countable-to-one image of a metric space.

1. Introduction

How to study of images of metric spaces under certain mapping? It is an important
question in general topology [9]. The Liu and Lin [14] introduced the concept of ℵ0-
weak base and prove that a space X is a quotient, countable-to-one image of a metric
space if and only if X has a point-countable ℵ0-weak base. Note that ℵ0-sn-networks
is a generalization of ℵ0-weak bases, an interesting question is how characterize ℵ0-
sn-networks and ℵ0-sn-metric spaces. In this paper, we discuss spaces with ℵ0-sn-
networks and give some characterizations of ℵ0-sn-metric spaces. For a space X, we
prove that X has a point-countable ℵ0-sn-network if and only if X is an sequentially
quotient, countable-to-one image of a metric space. and X is an ℵ0-sn-metric space
if and only if X is a sequentially quotient, σ, countable-to-one image of a metric
space. Throughout this paper, all spaces are regular T1, all mappings are continuous
and onto. N denotes the set of positive integer numbers. Sequence {xn : n ∈ N},
sequence {Pn : n ∈ N} of subsets and sequence {Pn : n ∈ N} of collections of subsets
are abbreviated to {xn} , {Pn} and {Pn}, respectively. For terms which are not
defined here, please refer to [1, 3, 10, 15].

Definition 1.1 ([14]). Let B be a family of subsets of a space X. B is called to
be an ℵ0-weak base for X if B=∪{Bx(n) : x ∈ X,n ∈ N} and satisfies the following
(a) and (b)

(a)For each x ∈ X and each n ∈ N , Bx(n) is a network at x, which is closed under
finite intersections and x ∈ ∩Bx(n).
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(b) A subset U of X is open if and only if whenever x ∈ U and n ∈ N there exists
a Bx ∈ Bx(n) such that Bx(n) ⊂ U .

X is called ℵ0-weakly first-countable in the sense of Sirois-Dumais [15] if X has
an ℵ0-weak base B = ∪{Bx(n) : x ∈ X,n ∈ N}, where Bx(n) is countable for each
x ∈ X and each n ∈ N .

Definition 1.2. Let B be a family of subsets of a space X. B is called to be an
ℵ0-sn-network for X if B = ∪{Bx(n) : x ∈ X,n ∈ N} and satisfies the following (a)
and (b).

(a)For each x ∈ X and each n ∈ N , Bx(n) is a network at x, which is closed under
finite intersections and x ∈ ∩Bx(n).

(b) If L is a sequence converging to x 6∈ L in X, then there is a subsequence L′ of
L and n0 ∈ N such that L′ is eventually in Bx(n0) for any Bx(n0) ∈ Bx(n0).

X is called ℵ0-sn-weakly first-countable (in the sense of Sirois-Dumais [15]) if X
has an ℵ0-sn-network B = ∪{Bx(n) : x ∈ X,n ∈ N}, where Bx(n) is countable for
each x ∈ X and n ∈ N . X is called ℵ0-sn-metric space if X has a σ-locally finite
ℵ0-sn-network. If Bx(n) = Bx(1) for each n∈N in the definition of ℵ0-sn-networks,
then B is called to be an sn-network [4] for X. X is called sn-first countable (in the
sense of S. Lin and P. Yan [13]) if Bx(1) is countable for each x ∈ X.

ℵ0-sn-network is a generalization of ℵ0-weak base and sn-network. It is easy to
see that ℵ0-weak base doesn’t imply sn-network. For example, Sω has a countable
ℵ0-weak base but it does not have a countable sn-network (since Frechet space with a
countable sn-network has a countable base). sn-network does not imply ℵ0-weak base,
for example, βω (Stone-Cech compactification of ω) is ℵ0-sn-weakly first-countable
since every convergent sequence is finite. but it is not ℵ0-weakly first-countable since
it is not a sequential space (a sequential space in which every convergent sequence is
finite is a discrete space).

Definition 1.3 ([13]). Let X be a space, P ⊂ X is called a sequential neighbor-
hood of x in X, if each sequence converging to x in X is eventually in P .

Definition 1.4 ([8]). Let F be a cover of a space X. F is a cs-network of X, if
every convergent sequence S converging to a point x ∈ U with U open in X, then S
is eventually in F ⊂ U for some F ∈ F .

Definition 1.5 ([2]). Let f : X −→ Y be a sequentially quotient mapping if
whenever {yn} is a convergent sequence in Y , there is a convergent sequence {xk} in
X with each xk ∈ f−1(ynk

).

Definition 1.6 ([12]). Let f : X −→ Y be an s-mapping if f−1(y) is separable
for each y ∈ Y ; f is called a countable-to-one mapping if f−1(y) is countable for each
y ∈ Y .

2. Main Results

Theorem 2.1. Let X be an ℵ0-sn-weakly first-countable space and P be a point-
countable cs-network for X. If P is closed under finite intersections, then there exists
a subfamily B of P such that B is an ℵ0-sn-network for X.
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Proof. Let ∪{Bx(n) : x ∈ X,n ∈ N} be an ℵ0-sn-network of X, here each
Bx(n) = {Bx(n,m) : m ∈ N} with Bx(n,m + 1) ⊂ Bx(n,m) for each m ∈ N . For
each n ∈ N , let Px(n) = {P ∈ P : Bx(n,m) ⊂ P for some m ∈ N}. Then Px(n) is
closed under finite intersections. To prove B is an ℵ0-sn-network for X, we need to
prove the following claim.

Claim: Px(n) is a network of x for each x ∈ X and each n ∈ N .
If there are x ∈ X and n ∈ N such that Px(n) is not a network of x, then

there is a neighborhood U of x in X such that P 6⊂ U for each P ∈ Px(n). Let
{P ∈ P : x ∈ P ⊂ U} = {Pk : k ∈ N}. Then B(n,m) 6⊂ U for any m, k ∈ N . Pick
xmk ∈ B(n,m)rPk for each m > k. Let yi=xmk, where i = k+m(m−1)/2. Then the
sequence {yi} converges to x in X because {Bx(n,m) : m ∈ N} is a decreasing network
of x in X. Since P is a cs-network of X, there is k, j ∈ N such that {yi : i > j} ⊂ Pk.
Pick i > j such that yi = xmk for some m > k, then xmk ∈ Pk, a contradiction.

Put B = ∪{Px(n) : x ∈ X,n ∈ N}. Then B is countable.
Now we prove that B is an ℵ0-sn-network. Let L be a sequence converging to x 6∈ L

in X. Then there is a subsequence L
′

of L and n0 ∈ N such that L
′

is eventually in
Bx(n0,m) for any m ∈ N . But Bx(n0,m)⊂Px(n0) for some m ∈ N , L

′
is eventually

in Px(n0) for any Px(n0) ∈ Px(n0). So B is an ℵ0-sn-network for X. �

Theorem 2.2. The following are equivalent for a space X.
(1)X has a point-countable ℵ0-sn-network;
(2)There is a metric space M and a sequentially quotient, countable-to-one map-

ping f : M → X;
(3)There is a metric space M and a sequentially quotient, s-mapping f : M → X

such that |∂f−1(y)| 6 ω for each x ∈ X.

Proof. (1) ⇔ (2) due to [1] and (2) ⇒ (3) is obvious. We prove that (3) ⇒ (1).
Let B be a point countable base for space M . For each non-isolated point x ∈ X,

denotes ∂f−1(y) by {xn : n ∈ N}. Let Bx(n) = {Bx(n,m) : m ∈ N} ⊂ B be a
countable local base at xn ∈M such that Bx(n,m+1) ⊂ Bx(n,m) for each m,n ∈ N .
Put Px(n,m) = f(Bx(n,m)) if x is a non-isolated point in X; Px(n,m) = {x} if x is
an isolated point in X. Px(n) = {Px(n,m) : m ∈ N}, P = ∪{Px(n) : x ∈ X,n ∈ N}.

Since f is an s-mapping, P is point-countable. It is easy to see Px(n) is a decreas-
ing network at x for each x ∈ X and n ∈ N . We shall prove that P is an ℵ0-sn-network
for X.

without loss of generality, we can assume that x /∈ L, then x is a non-isolated point
in X. Since f is sequentially quotient, there is a sequence S in M such that f(S) is
a subsequence of L and S converges to some y ∈ f−1(y). Obviously, y ∈ ∂f−1(y),
so there is n0 ∈ N such that y = xn0

, hence f(S) is eventually in Px(n0,m) for each
m ∈ N , therefore P is an point-countable ℵ0-sn-network for X. �

Theorem 2.3. For a space X, the following are equivalent:
(1) X is a ℵ0-sn-metric space;
(2) There is a metric space M and a sequentially quotient, σ, countable-to-one

mapping f : M −→ X.
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Proof. (1)−→ (2): Let P = ∪{Px(n) : x ∈ X,n ∈ N} be a σ-locally finite ℵ0-sn-
network for X, here each Px(n) = {Px(n,m) : m ∈ N} with Px(n,m+ 1) ⊂ Px(n,m)
for each m ∈ N . For each n ∈ N , put P = ∪{Pi : i ∈ N}, here Pi is locally finite
and Pi ⊂ Pi+1 for each i ∈ N . For each x ∈ X, select i(x, n,m) ∈ N such that
Px(n,m) ∈ Pi(x,n,m) and i(x, n,m) < i(x, n,m + 1). Put Bx(n,m) = X whenever
i < i(x, n, 1); Bx(n,m) = Px(n,m) whenever i(x, n,m + 1) 6 i < i(x, n,m + 1). Put
Bx(n) = {Bx(n, i) : i ∈ N} and B = ∪{Bx(n) : x ∈ X,n ∈ N}. Then B is an
ℵ0-sn-network for X satisfying Bx(n, i + 1) ⊂ Bx(n, i) and Bx(n, i) ∈ Pi for each
x ∈ X,n, i ∈ N .

We rewrite Pi={Bα : α ∈ Ii}. Endow Ii with discrete topology for each i ∈ N .
We call two families {Rn : n ∈ N} and {Qm : m ∈ N} of subsets of a space are

cofinal (in the sense of [14]) if there are n0,m0 ∈ N such that Rn0+i = Qm0+i for each
i ∈ N . Put

M = {α = (αi) ∈
∏
i∈N Ii : {Bαi

: i ∈ N} is cofinal to Bx(α)(n) for some x(α) ∈
X,n ∈ N, {Bαi : i ∈ N} is a network of x(α)}.

Define f : M → X as f(αi) = x(α). Since each Bx(n) is a network of x in X for
each n ∈ N . It is easy to see that f is well-defined and onto, M is a metric space, and
f is continuous. Note that each Pi is locally finite. So f is countable-to-one.

PutD(α1, α2, ...αn) = {β = (βi) ∈M : βi = αi, i 6 n} andD = {D(α1, α2, ...αn) :
αi ∈ Ii, i 6 n, n ∈ N}. It is routine to showD is a base forM and f(D(α1, α2, ...αn)) =
∩{Bαi : i 6 n}. We only need to prove that f is sequentially quotient mapping.

Let B = ∪{Bx(n) : x ∈ X,n ∈ N} be a point-countable ℵ0-sn-network. Let L
be a sequence converging to x 6∈ L in X. Then there is a subsequence L′ of L and
n0 ∈ N such that L′ is eventually in Bx(n0,m) for any m ∈ N . For each i ∈ N ,
take αi ∈ Ii with Bαi

= Bx(n0, i). Let α = (αi), then α ∈ M . For each k ∈ N , put
nk = min{m ∈ N : xk 6∈ Bx(n0,m)}. We put zk = (βi(k)) ∈

∏
i∈N Ii an follows: if

i < nk, pick βi(k) ∈ Ii with Bβi(k) = Bx(n0, i); otherwise pick βi(k) ∈ Ii such that
Bβi(k) = Bxk

(1, i− nk + 1). Then {Bβi
(k) : i ∈ N} is cofinal to Bxk

(1), thus zk ∈ M
and f(zk) = xk. On the other hand, for each i ∈ N , there exists k0 ∈ N such that
xk ∈ Bx(n0, i) for any k > k0 because L′ is eventually in Bx(n0, i). Then i < nk
when k > k0 by the definition of nk, so βi(k) = αi. It means that {Bβi

(k) : i ∈ N}
converges to αi in the discrete space Ii. Hence zk converges to α in M . Therefore, f
is a sequentially quotient mapping. �
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