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Certain Inequalities Related to the Chebyshev’s Functional
Involving Erdélyi-Kober Operators

S.D. Purohit a and S.L. Kalla b

Abstract. The object of the present investigation is to obtain certain Chebyshev

type integral inequalities involving the Erdélyi-Kober fractional integral operators.

Some consequent results and special cases of the main results are also pointed out.

1. Introduction

In the present paper, our work is based on a celebrated functional introduced by
Chebyshev ([5]), which is defined by

T (f, g) =
1

b− a

∫ b

a

f(x)g(x)dx−

(
1

b− a

∫ b

a

f(x)dx

)(
1

b− a

∫ b

a

g(x)dx

)
, (1.1)

where f and g are two integrable functions which are synchronous on [a, b], i.e.

{(f(x)− f(y)) (g(x)− g(y))} > 0, (1.2)

for any x, y ∈ [a, b], then the Chebyshev inequality is given by T (f, g) 6 0.
The functional (1.1) has applications in numerical quadrature, transform theory, prob-
ability, study of existence of solutions of differential equations and in statistical prob-
lems. Therefore, in the literature several generalizations of the Chebyshev type integral
inequality ([5]) are considered by many authors; for instance, Belarbi and Dahmani
[4], Dahmani et al. [7], Dahmani and Tabharit [8] and Sulaiman [18];and they derived
certain Chebyshev type integral inequalities involving Riemann-Liouville fractional in-
tegral operators. Recently, Purohit and Raina [14], and Purohit et al. [15] investigated
certain integral inequalities that are associated with Chebyshev functional, involving
the Saigo fractional integral operators ([16]), and also established the q-extensions
of the main results. Further, Baleanu et al. [2]-[3] established certain generalized
integral inequalities for synchronous functions that are related to the Chebyshev func-
tional using the fractional hypergeometric operator, introduced by Curiel and Galué
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[6]. Recently, Anastassiou [1] has considered the most general fractional representa-
tion formulae for a function in terms of the most general fractional integral operators
due to Kalla [10]-[11] and derived general fractional Ostrowski type inequalities.
In this paper, we add one more dimension to this study by introducing certain new
integral inequalities for synchronous functions, involving the Erdélyi-Kober fractional
integral operators. Further, we develop certain known and new integral inequalities
for the fractional integrals by suitably choosing the special cases of our main results.

First we give some necessary definitions and mathematical preliminaries of frac-
tional calculus operators which are used in our analysis.

Definition 1. Let α > 0, β > 0 and η ∈ R, then the Erdélyi-Kober fractional
integral operators Iη,αβ of order α for a real-valued continuous function f(t) is defined

by (see [12, p. 14, eqn. (1.1.17)]):

Iη,αβ {f(t)} =
t−β(η+α)

Γ(α)

∫ t

0

τβη(tβ − τβ)α−1f(τ)d(τβ)

=
β t−β(η+α)

Γ(α)

∫ t

0

τβ(η+1)−1(tβ − τβ)α−1f(τ)dτ. (1.3)

Our results in this paper are based on the following preliminary assertions giving
composition formula of fractional integral (1.3) with a power function (see also as
special case of image formula [12, p. 29, eqn. (1.2.26)]).

Iη,αβ
{
tλ
}

=
Γ(1 + η + λ

β )

Γ(1 + α+ η + λ
β )

tλ (λ > −β(η + 1)). (1.4)

2. Main results

In this section, we obtain certain fractional integral inequalities for synchronous func-
tions which are related to the Chebyshev functional ([5]) by using the Erdélyi-Kober
fractional integral operators (1.3) (defined above).

Theorem 1. Let f and g be two synchronous functions on [0,∞) then

Iη,αβ {f(t)g(t)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)} , (2.1)

for all t > 0, α > 0, β > 0 and η ∈ R such that η > −1.

Proof: Let f and g be two synchronous functions, then for all τ, ρ ∈ (0, t), t > 0,
we have

{(f(τ)− f(ρ)) (g(τ)− g(ρ))} > 0,

which implies that

f(τ)g(τ) + f(ρ)g(ρ) > f(τ)g(ρ) + f(ρ)g(τ). (2.2)



CERTAIN INEQUALITIES RELATED TO THE CHEBYSHEV’S FUNCTIONAL 57

Consider

F(t, τ) =
β t−β(η+α)τβ(η+1)−1

Γ(α)
(tβ − τβ)α−1. (2.3)

We observe that α, β > 0 before, and hence each factor of the above function is posi-
tive in view of the conditions stated with Theorem 1, and hence, the function F(t, τ)
remains positive, for all τ ∈ (0, t) (t > 0).

Multiplying both sides of (2.2) by F(t, τ) (where F(t, τ) is given by (2.3)) and
integrating with respect to τ from 0 to t, and using operator (1.3), we get

Iη,αβ {f(t)g(t)}+ f(ρ)g(ρ) Iη,αβ {1} > g(ρ) Iη,αβ {f(t)}+ f(ρ) Iη,αβ {g(t)} . (2.4)

Next, multiplying both sides of (2.4) by F(t, ρ) (ρ ∈ (0, t) , t > 0), where F(t, ρ) is
given by (2.3), and integrating with respect to ρ from 0 to t, and using formula (1.4)
(for λ = 0), we arrive at the desired result (2.1).

The following result gives a generalization of Theorem 1.

Theorem 2 Let f and g be two synchronous functions on [0,∞), then

Γ(1 + η)

Γ(1 + α+ η)
Iζ,γδ {f(t)g(t)}+ Γ(1 + ζ)

Γ(1 + γ + ζ)
Iη,αβ {f(t)g(t)} > Iη,αβ {f(t)} Iζ,γδ {g(t)}+

Iζ,γδ {f(t)} Iη,αβ {g(t)} , (2.5)

for all t > 0, α > 0, β > 0, γ > 0, δ > 0 and η, ζ ∈ R such that η > −1 and ζ > −1.

Proof: To prove the above theorem, we use the inequality (2.4). Multiplying both
sides of (2.4) by

H(t, ρ) =
δ t−δ(ζ+γ)ρδ(ζ+1)−1

Γ(γ)
(tδ − ρδ)γ−1, (2.6)

which remains positive in view of the conditions stated with (2.5) then integrating
with respect to ρ from 0 to t, we get

Iζ,γδ {1} Iη,αβ {f(t)g(t)}+ Iη,αβ {1} Iζ,γδ {f(t)g(t)} >

Iη,αβ {f(t)} Iζ,γδ {g(t)}+ Iζ,γδ {f(t)} Iη,αβ {g(t)} ,
which on using (1.4) yields the desired result (2.5).

Theorem 3. Let (fi)i=1,··· ,n be n positive increasing functions on [0,∞), then

Iη,αβ

{
n∏
i=1

fi(t)

}
>

[
Γ(1 + α+ η)

Γ(1 + η)

]n−1 n∏
i=1

Iη,αβ {fi(t)} , (2.7)

for all t > 0, α > 0, β > 0 and η ∈ R such that η > −1.

Proof: We prove this theorem by mathematical induction. Clearly, for n = 1 in
(2.7), we have

Iη,αβ {f1(t)} > Iη,αβ {f1(t)} (t > 0, α > 0).
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Next, for n = 2, in (2.7), we get

Iη,αβ {f1(t)f2(t)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f1(t)} Iη,αβ {f2(t)} (t > 0, α > 0),

which holds in view of (2.1) of Theorem 1.
By the induction principle, we suppose that the inequality

Iη,αβ

{
n−1∏
i=1

fi(t)

}
>

[
Γ(1 + α+ η)

Γ(1 + η)

]n−2 n−1∏
i=1

Iη,αβ {fi(t)} , (2.8)

holds true for some positive integer n > 2.
Now (fi)i=1,··· ,n are increasing functions which imply that the function

∏n−1
i=1 fi(t) is

also an increasing function. Therefore, we can apply inequality (2.1) of Theorem 1 to

the functions
∏n−1
i=1 fi(t) = g and fn = f to get

Iη,αβ

{
n∏
i=1

fi(t)

}
>

Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ

{
n−1∏
i=1

fi(t)

}
Iη,αβ {fn(t)} ,

provided that t > 0, α > 0, β > 0, η > −1.
Making use of (2.8) now, this last inequality above leads to the result (2.7), which
proves Theorem 3.

Theorem 4. Let f and g be two synchronous functions on [0,∞), h > 0, then
for all t > 0, α > 0, β > 0, η > −1

Γ(1 + η)

Γ(1 + α+ η)
Iη,αβ {f(t)g(t)h(t)} > Iη,αβ {f(t)} Iη,αβ {g(t)h(t)}+

Iη,αβ {g(t)} Iη,αβ {f(t)h(t)} − Iη,αβ {h(t)} Iη,αβ {f(t)g(t)} . (2.9)

Proof: Using (1.2) and h > 0, for all τ, ρ > 0, we have

{(f(τ)− f(ρ)) (g(τ)− g(ρ)) (h(τ) + h(ρ))} > 0, (2.10)

which implies that

f(τ)g(τ)h(τ) + f(ρ)g(ρ)h(ρ) > f(τ)g(ρ)h(ρ) + f(ρ)g(τ)h(τ) + g(τ)f(ρ)h(ρ)

+g(ρ)f(τ)h(τ)− h(τ)f(ρ)g(ρ)− h(ρ)f(τ)g(τ). (2.11)

Multiplying both sides of (2.11) by F(t, τ) (defined above by (2.3)) and integrating
with respect to τ from 0 to t, and using (1.3), we get

Iη,αβ {f(t)g(t)h(t)}+f(ρ)g(ρ)h(ρ) Iη,αβ {1} > g(ρ)h(ρ) Iη,αβ {f(t)}+f(ρ) Iη,αβ {g(t)h(t)}+

f(ρ)h(ρ) Iη,αβ {g(t)}+g(ρ) Iη,αβ {f(t)h(t)}−f(ρ)g(ρ) Iη,αβ {h(t)}−h(ρ) Iη,αβ {f(t)g(t)} .
(2.12)

Next, multiplying both sides of (2.12) by F (t, ρ) (ρ ∈ (0, t) , t > 0), where F(t, ρ) is
given by (2.3), and integrating with respect to ρ from 0 to t, and using formula (1.4),
we arrive at the desired result (2.9).
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Theorem 5. Let f and g be two synchronous functions on [0,∞), and h > 0,
then

Γ(1 + η)

Γ(1 + α+ η)
Iζ,γδ {f(t)g(t)h(t)}+

Γ(1 + ζ)

Γ(1 + γ + ζ)
Iη,αβ {f(t)g(t)h(t)} > Iη,αβ {f(t)}

Iζ,γδ {g(t)h(t)}+ Iη,αβ {g(t)h(t)} Iζ,γδ {f(t)}+ Iη,αβ {g(t)} Iζ,γδ {f(t)h(t)}

+Iη,αβ {f(t)h(t)} Iζ,γδ {g(t)}−Iη,αβ {h(t)} Iζ,γδ {f(t)g(t)}−Iη,αβ {f(t)g(t)} Iζ,γδ {h(t)} ,
(2.13)

for all t > 0, α > 0, β > 0, γ > 0, δ > 0 and η, ζ ∈ R such that η > −1 and ζ > −1.

Proof: To prove the above theorem, we start with the inequality (2.12). On
multiplying both sides of (2.12) by H(t, ρ) (defined above by (2.6)) and integrating
with respect to ρ from 0 to t, we get

Iζ,γδ {1} Iη,αβ {f(t)g(t)h(t)}+Iη,αβ {1} Iζ,γδ {f(t)g(t)h(t)} > Iη,αβ {f(t)} Iζ,γδ {g(t)h(t)}+

Iη,αβ {g(t)h(t)} Iζ,γδ {f(t)}+Iη,αβ {g(t)} Iζ,γδ {f(t)h(t)}+Iη,αβ {f(t)h(t)} Iζ,γδ {g(t)}−

Iη,αβ {h(t)} Iζ,γδ {f(t)g(t)} − Iη,αβ {f(t)g(t)} Iζ,γδ {h(t)} ,
which on using (1.4) yields the desired result (2.13).

Theorem 6. Let f , g and h be three monotonic functions on [0,∞) satisfying the
inequality

{(f(τ)− f(ρ)) (g(τ)− g(ρ)) (h(τ)− h(ρ))} > 0, (2.14)

then for all t > 0, α > 0, β > 0, γ > 0, δ > 0 and η, ζ ∈ R such that η > −1 and
ζ > −1,

Γ(1 + η)

Γ(1 + α+ η)
Iζ,γδ {f(t)g(t)h(t)}− Γ(1 + ζ)

Γ(1 + γ + ζ)
Iη,αβ {f(t)g(t)h(t)} > Iη,αβ {g(t)h(t)}

Iζ,γδ {f(t)} − Iη,αβ {f(t)} Iζ,γδ {g(t)h(t)}+

Iη,αβ {f(t)h(t)} Iζ,γδ {g(t)} − Iη,αβ {g(t)}

Iζ,γδ {f(t)h(t)} − Iη,αβ {h(t)} Iζ,γδ {f(t)g(t)}+ Iη,αβ {f(t)g(t)} Iζ,γδ {h(t)} . (2.15)

Proof: By applying the similar procedure as of Theorem 2 or 5, one can easily es-
tablish the above theorem. Therefore, we omit the details of the proof of this theorem.



60 S.D. PUROHIT AND S.L. KALLA

Remark 1. It may be noted that the inequalities (2.1), (2.5), (2.9) and (2.13)
are reversed if the functions are asynchronous on [0,∞), i.e.

{(f(x)− f(y)) (g(x)− g(y))} 6 0, (2.16)

for any x, y ∈ [0,∞).

Remark 2. For γ = α, δ = β, ζ = η, Theorems 2 and 5 immediately reduce to
the Theorems 1 and 4, respectively.

Remark 3. If we consider the function h(t) as a constant (> 0), the Theorems 4
and 5 immediately reduce to the Theorems 1 and 2, respectively.

Now, we consider some other variations of the fractional integral inequality of
Theorem 1:

Theorem 7. Let f and g be two functions defined on [0,∞), such that f is increasing,
g is differentiable and there exists a real number m = inft>0g

′(t), then

Iη,αβ {f(t)g(t)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)}

−
m Γ(1 + α+ η)Γ(1 + η + 1

β )

Γ(1 + α+ η + 1
β )Γ(1 + η)

Iη,αβ {f(t)}+m Iη,αβ {tf(t)} , (2.17)

for all t > 0, α > 0, β > 0 and η ∈ R such that η > −1.

Proof: Consider the function h(t) = g(t)−mt, such that h and f are synchronous.
It is clear that h is differentiable and it is increasing on [0,∞), therefore, by using
Theorem 1, we get

Iη,αβ {f(t)(g(t)−mt)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)−mt}

>
Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)} − Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} m Iη,αβ {t}

⇒ Iη,αβ {f(t)g(t)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)}

−Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} m Iη,αβ {t}+m Iη,αβ {f(t)t)}

Now, on making use of the formula (1.4) (for λ = 1), we are lead to the result
(2.17) after some simplifications.

Theorem 8. Let f and g be two functions defined on [0,∞), such that f is de-
creasing, g is differentiable and there exists a real number M = Supt>0g

′(t), then

Iη,αβ {f(t)g(t)} > Γ(1 + α+ η)

Γ(1 + η)
Iη,αβ {f(t)} Iη,αβ {g(t)}
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−
M Γ(1 + α+ η)Γ(1 + η + 1

β )

Γ(1 + α+ η + 1
β )Γ(1 + η)

Iη,αβ {f(t)}+M Iη,αβ {tf(t)} , (2.18)

for all t > 0, α > 0, β > 0 and η ∈ R such that η > −1.

Proof: Consider the function h(t) = g(t)−Mt, such that h and f are synchronous.
Then by applying the similar procedure as of Theorem 7, one can easily establish the
above theorem. Therefore, we omit the details of the proof of this theorem.

3. Special Cases

Following Kiryakova [12], a number of generalized integration and differentiation
operators introduced and used by various authors are included as special cases of
the operator (1.3). Some important special cases of the integral operator Iη,αβ are
mentioned below :
(1) If we set η = 0, α = n (integer > 0) and β = 1, then the operator (1.3) yields the
following ordinary n-fold integrations:

ln {f(t)} = tnI0,n
1 {f(t)} =

1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ. (3.1)

(2) For η = 0 and β = 1, (1.3) contain the Riemann-Liouville fractional integral
operators, by means of the following relationships:

Rα {f(t)} = tαI0,α
1 {f(t)} =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ. (3.2)

(3) Again, for η = 0, α = 1 and β = 1, the operator (1.3) leads to the Hardy-
Littlewood (Cesaro) integration operator:

L1,0 {f(t)} = I0,1
1 {f(t)} =

1

t

∫ t

0

f(τ)dτ, (3.3)

and as its generalization for integers m,n;n > m− 1 (when η = n, α = 1 and β = 1),
we have

Lm,n {f(t)} = tn−m+1In,11 {f(t)} = t−m
∫ t

0

τnf(τ)dτ. (3.4)

(4) When β = 1, operator (1.3) reduces to the fractional integral operator, which
originally considered by Kober [13] and Erdélyi [9]:

Iα,η {f(t)} = Iη,α1 {f(t)} =
t−α−η

Γ(α)

∫ t

0

(t− τ)α−1 τηf(τ)dτ (α > 0, η ∈ R). (3.5)

(5) Also for β = 2, the operator (1.3) yields the Erdélyi-Kober fractional integral
operator Iη,α (introduced by Sneddon [17]):

Iη,α = Iη,α2 {f(t)} =
2 t−2(η+α)

Γ(α)

∫ t

0

τ2η+1(t2 − τ2)α−1f(τ)dτ. (3.6)
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(6) Further, if we set η = − 1
2 , β = 2 and α replaced by α + 1

2 , the Uspensky
integral transform ([19]), can easily be obtained as under:

Pα {f(t)} =
1

2
I
− 1

2 ,α+ 1
2

2 {f(t)} =
1

Γ(α+ 1
2 )

∫ 1

0

(1− τ2)α−
1
2 f(tτ)dτ. (3.7)

For a detailed information about fractional integral operator (1.3) and its more
special cases one may refer the book [12, pp. 15-17].
We now, briefly consider some consequences of the results derived in the previous
section. To this end, if we consider β = 1 (and δ = 1 additionally for Theorem 2, 5
& 6), and make use of the relation (3.5), the Theorems 1 to 6 provide, respectively,
the known fractional integral inequalities due to Purohit and Raina [14] and Purohit
et al. [15]. Again, for β = 1 the Theorems 7 & 8 provide, respectively, the known
integral inequalities involving the Erdélyi-Kober operators due to Baleanu et al. [3,
p.4, Corollary 14 & 15].

Further, if we take η = 0, β = 1 (ζ = 0, δ = 1 additionally for Theorem 2, 5 & 6)
and make use of (3.2), then the Theorems 1 to 3, 7 & 8 yields the known results due
to Belarbi and Dahmani [4], whereas the Theorems 4 to 6 provides the results due to
Sulaiman [18].
Indeed, by suitably specializing the values of parameters η, α and β the results pre-
sented in this paper may generate some more known and possibly new inequalities
involving the various type of integral operator, on taking relations (3.1) to (3.7) into
account. Additionally, by suitably choosing the function h(t), one can obtain further
inequalities involving the fractional integral operators and various type of special func-
tions from our results Theorem 4, 5 & 6.

The integral operator Iη,αβ , has number of applications in the generalized axially
symmetric potential theory and other physical problems like in electrostatics, elastic-
ity, etc (se Sneddon [17]). The results derived in this paper are general in character
and give some contributions to the theory integral inequalities and fractional calculus.
Therefore, we conclude this paper with the remark that, the results derived here are
expected to find some applications in generalized axially symmetric potential theory
and for establishing uniqueness of solutions in fractional boundary value problems.
Moreover, one can further easily obtain additional integral inequalities involving the
various type of integral operators as special cases of our main results Theorems 1 to
8.
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