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Poisson’s formula with principal value integrals and some
special Gradshteyn and Ryzhik integrals

Khristo N. Boyadzhiev

Abstract. Poisson’s integral formula for holomorphic functions on the right half
plane can be used to quickly evaluate certain integrals from Gradshteyn and

Ryzhik’s table. In addition we prove a version of Poisson’s formula for princi-

pal value integrals and use it in several interesting cases.

1. Introduction

Let f(z), z = x + iy, be a bounded analytic function on the open right half plane
x > 0 (RHP). For such functions Poisson’s integral formula holds (see [14], chapter 6,
with some adjustment)

(1.1) f(x+ iy) =
1

π

∫ +∞

−∞
f(it)

x

x2 + (y − t)2
dt,

where x > 0, −∞ < y < ∞ and f(it) stands for the boundary values of the function
(they exist almost everywhere). For real valued integrals we shall use the two equations

(1.2) Re f(x+ iy) =
x

π

∫ +∞

−∞
Re f(it)

dt

x2 + (y − t)2
,

(1.3) Im f(x+ iy) =
x

π

∫ +∞

−∞
Im f(it)

dt

x2 + (y − t)2
.

This formula has numerous applications in harmonic analysis, potential theory, and
partial differential equations. Books on complex variables present examples of integral
evaluation based usually on the residue theorem or on Cauchy’s integral formula. We
shall demonstrate that in certain cases Poisson’s formula is a better tool for integral
evaluation.

One such example was given in Section 8 in [2]. In the present paper we shall use
Poisson’s formula to evaluate a number of integrals from Gradshteyn and Ryzhik’s
table [6]. In Section 3 we prove a version of this formula for principal value integrals
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and apply it to several special cases. Section 5 contains some historical remarks on
the works of Hardy on principal value integrals.

2. Examples

Example 2.1. Let f(z) = e−az = e−axe−iay = e−ax(cos ay − i sin ay), where
a > 0 and z = x+ iy. The function is analytic and bounded for x > 0. Therefore,

(2.1) e−ax(cos ay − i sin ay) =
x

π

∫ +∞

−∞

cos at− i sin at

x2 + (y − t)2
dt.

Separating real and imaginary parts we find

(2.2)

∫ +∞

−∞

cos at

x2 + (y − t)2
dt =

π

x
e−ax cos ay,

∫ +∞

−∞

sin at

x2 + (y − t)2
dt =

π

x
e−ax sin ay

Usually the evaluation of these integrals is not so straightforward. Evaluation by
residues, in fact, is equivalent to the proof of Poisson’s formula.

Example 2.2. We shall apply the same method to the function f(z) = z e−az

which is not bounded on vertical lines in the RHP. To avoid this obstacle we assume
that Poisson’s formula is applied to the bounded on the RHP function f(z) = z e−az

1+εz

for small ε > 0 and then, in the final result, we set ε → 0 . As long as the integrals
are at least conditionally convergent (as they are), the formula works. Thus we get

e−ax(x cos ay + y sin ay) =
x

π

∫ +∞

−∞

t sin at

x2 + (y − t)2
dt,(2.3)

e−ax(y cos ay − x sin ay) =
x

π

∫ +∞

−∞

t cos at

x2 + (y − t)2
dt.(2.4)

In particular, with y = 0 in (2.3) we have

(2.5) e−ax =
1

π

∫ +∞

−∞

t sin at

x2 + t2
dt =

2

π

∫ +∞

0

t sin at

x2 + t2
dt

which is entry 3.723.3 in Gradshteyn and Ryzhik’s table [6]. With y = 0 the first
integral in (2.2) becomes

(2.6)

∫ +∞

−∞

cos at

x2 + t2
dt =

π

x
e−ax

(entry 3.723.2 in that table). A combination of (2.5) and (2.6) with x = 1 gives

(2.7)

∫ +∞

0

cos at+ t sin at

1 + t2
dt = πe−a

which is 3.784.6 in [6].

Example 2.3. Here we use the function f(z) = e−bz cos az, where 0 < a < b.
Clearly,

(2.8) f(it) = cos bt cos at− i sin bt cos at.
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We apply Poisson’s formula, separate the real part, and set y = 0 to get

(2.9)

∫ +∞

0

cos bt cos at

x2 + t2
dt =

π

2x
e−bx cosh ax,

as the integrand is even. This is entry 3.742.3 in [6]. The result is true also for a = b.

Example 2.4. Now we shall prove entry 3.742.5 in [6] which includes two cases.
Taking f(z) = z e−bz cos az, 0 < a < b, we use the same ε-trick as in Example 2.2.
We compute Re f(it) = t cos at sin bt, and then with y = 0,

(2.10)

∫ +∞

0

t sin bt cos at

x2 + t2
dt =

π

2
e−bx cosh ax

(as the integrand is even). Changing the function to f(z) = z e−bz sinh az, this time
Re f(it) = −t cos bt sin at, and we find

(2.11)

∫ +∞

0

t cos bt sin at

x2 + t2
dt =

−π
2
e−bx sinh ax.

Adding (2.10) to (2.11) yields

(2.12)

∫ +∞

0

t sin(a+ b)t

x2 + t2
dt =

π

2
e−(a+b) x,

which is, in fact, (2.5). Note that (2.10) and (2.11) can be obtained directly from (2.9)
by differentiation for b and a correspondingly.

Example 2.5. Let α > 0 and consider the function f(z) = log (1+αz)
z with the

principal value of the logarithm. Then f(it) = −i
t log(1 + iαt) and

(2.13) Re f(it) =
1

t
Arg(1 + iαt) =

arctanα t

t
.

With y = 0 we find from (1.1)

(2.14)
log (1 + αx)

x2
=

1

π

∫ +∞

−∞

arctanαt

t

dt

x2 + t2
=

2

π

∫ +∞

0

arctanαt

t

dt

x2 + t2

which is entry 4.535.9 in [6].

At the end of this section we present two more examples with integrals from [6].
The functions to which Poisson’s formula is applied are aso listed. Details are left to
the reader.

Example 2.6. This is entry 3.725(3) from [6]. Prove that for every x > 0,

(2.15)

∫ +∞

0

sin at cos bt

t

dt

x2 + t2
=

π

2x2
e−bx sinh ax, when 0 < a < b,

Here f(z) = 1
z e
−bz sinh az. Also in this entry,

(2.16)

∫ +∞

0

sin at cos bt

t

dt

x2 + t2
=

π

2x2
(1− e−ax cosh bx), when 0 < b < a.

For this case we use the function f(z) = 1
z (1− e−az cosh bz).
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Example 2.7. Prove that for every x > 0, a > 0, b > 0,

(2.17)

∫ +∞

0

cos bt

b2 + t2
dt

x2 + t2
=

π

2bx

be−ax − xe−ab

b2 − x2

(entry 3.728 in [6]). Hint: Use the function

f(z) =
be−az − ze−ab

b2 − z2
.

3. Poisson’s formula for principal value integrals

We can evaluate by Poisson’s formula also principal value integrals.

Example 3.1. Taking f(z) = sech az, a > 0 , with z = x+ iy, we find from (1.2)

(3.1) P

∫ +∞

−∞

1

cos at

dt

x2 + (y − t)2
= Re

π

x cosh az
,

since cosh (ait) = cos at . Setting y = 0 and using the fact that the integrand is even,
we find

(3.2) P

∫ +∞

0

1

cos at

dt

x2 + t2
=

π

2x cosh ax

This evaluation is justified by the proposition below (a modification of Poisson’s for-
mula). As we shall see, the imaginary part of f(z) is represented by a certain series
(not appearing here).

Before stating the proposition we need some definitions. Recall that if the function
f(x) is defined on [a, b] except at some point c, where a < c < b, then

(3.3) P

∫ b

a

f(x) dx = lim
ε→0

(∫ c−ε

a

f(x) dx+

∫ b

c+ε

f(x) dx

)
.

The function sec(at) in example (3.1) has an infinite sequence of simple poles on the
real axis. We shall give below a formal definition of a principal value integral for
functions of this nature; and this definition will be used in Poisson’s formula.

Definition 3.1. Let { ick, ck ∈ R} be a finite or infinite sequence of numbers on
the y-axis such that |ck − cm| > d > 0, k 6= m . For every 0 < ε < d/2 we define
the contour L(ε) to be the y-axis indented to the right at the points of this sequence,
so that each ick is isolated from the RHP by a small semicircle centered at ick and
with radius ε . Here ε is so small that the semicircles do not touch each other. The
contour is oriented upward. Next, we define the set M(ε) to be L(ε) without the
small semicircles, that is, M(ε) is the union of all segments [ick−1 + iε, ick − iε]
on the y-axis. When the sequence is finite, say, ic0, ..., icm, we add to M(ε) also the
infinite intervals (−i∞, ic0 − iε] and [icm + iε, +i∞). Likewise, when the sequence
is bounded from one side only, we add one such infinite interval at that side.
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Definition 3.2. Let ick and M(ε) be as in the above definition. If the function
g(z) is defined on the imaginary axis except at the points ick, then we define

(3.4) P

∫ ∞
−∞

g(it)dt = lim
ε→0

∫
M(ε)

g(it) dt.

Proposition 3.1. Suppose f(z) is a holomorphic function on the closed RHP
with simple poles ick on the y-axis, which are separated as in Definition 3.1. We want
the residues at these poles to be purely imaginary, that is, of the form iek, with ek real
numbers. Suppose ε > 0, and let L(ε) be the indented contour defined for the sequence
of poles. We assume that the function f(z) is bounded to the right of L(ε) (including
on L(ε) itself) for every ε > 0. Finally, we require that the series

(3.5)
∑
k

ek
x2 + (ck − y)2

be convergent for any x > 0 and y real. In that case, Poison’s formula (1.2) holds
and the integral exists as a principal value integral. That is, for any x > 0 and any
−∞ < y <∞ we have

(3.6) Ref(x+ iy) =
1

π
P

∫ +∞

−∞
Ref(it)

x

x2 + (y − t)2
dt.

Proof. We shall mimic the classical proof of Poisson’s formula [14, chapter 6]
for bounded functions on the RHP. For any small ε > 0 we consider the contour
L(ε) defined above. Then we take a closed, counterclockwise oriented contour C(R)
consisting of a semicircle in the RHP centered at the origin, with radius R, and with
ends ± iR lying on L(ε) between the poles. On the left side C(R) is closed by the
part of L(ε) between ± iR. For a given z = x+ iy with x > 0 we take R so large that
z is inside C(R) . By Cauchy’s integral formula,

(3.7) f(z) =
1

2πi

∮
C(R)

f(λ)
dλ

λ− z
.

At the same time, for the point z∗ = −x+ iy which is outside C(R) we have

(3.8) 0 =
1

2πi

∮
C(R)

f(λ)
dλ

λ− z∗
.

By subtraction
(3.9)

f(z) =
1

2πi

∮
C(R)

f(λ)

(
1

λ− z
− 1

λ− z∗

)
dλ =

1

πi

∮
C(R)

f(λ)
x

(λ− iy)2 − x2
dλ.

When R→∞ the integral on the proper semicircle approaches zero and the integra-
tion, after adjusting the direction, reduces to L(ε)

(3.10) f(z) =
−1

πi

∫
L(ε)

f(λ)
x

(λ− iy)2 − x2
dλ =

1

πi

∫
L(ε)

f(λ)
x

x2 − (λ− iy)2
dλ

Now we look at the small semicircles separating the poles. Let Ck(ε) be one such
semicircle with radius ε and centered at the simple pole ick where the residue is iek,
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and ck, ek, are real numbers. Then by Jordan’s lemma (Theorem 1 in 3.1.4, [15])

(3.11) lim
ε→0

1

πi

∫
Ck(ε)

f(λ)
x

x2 − (λ− iy)2
dλ =

iekx

x2 + (ck − y)2
.

Note that this value is purely imaginary. From (3.9)

(3.12) f(z) = lim
ε→0

1

πi

∫
M(ε)

f(λ)
x

x2 − (λ− iy)2
dλ+

∑
k

iekx

x2 + (ck − y)2

and with λ = it in this integral we have

(3.13) f(z) = lim
ε→0

1

π

∫
M(ε)

f(it)
x

x2 + (t− y)2
dt+

∑
k

iekx

x2 + (ck − y)2
.

The limit here is the principal value integral. Separating the real parts here we find

(3.14) Re f(z) =
1

π

∫ ∞
−∞

Ref(it)
x

x2 + (t− y)2
dt.

The proof is completed.

The function f(z) = sech az in Example 3.1 has simple poles ick = (2k + 1) πi2a ,

k = 0, ±1, ±2, ... , with residues iek = i(−1)k+1 . The corresponding series (3.5) is
obviously convergent.

4. Examples with principal value integrals

The collection of Gradshteyn and Ryzhik [6] contains several very interesting
principal value integrals which can be evaluated by the modified Poisson formula.

Example 4.1. For every a > 0,

(4.1) P

∫ +∞

0

t

sin at

dt

x2 + t2
=

π

2 sinh ax

This is Gradshteyn and Ryzhik’s integral 3.747.3, similar to (3.1). To prove it we apply
Poisson’s formula to f(z) = z

sinh az , a > 0 . Since the function is unbounded on vertical
lines, we use again the ε-trick from Example 2.2 (i.e. we work with f(z) = z

(1+εz) sinh az

first, and then set ε→ 0), This yields

(4.2) Re
z

sinh az
=

1

π
P

∫ +∞

−∞

t

sin at

x

x2 + (y − t)2
dt

Setting y = 0 and then reducing by x, we come to (4.1), as the integrand is even.

Note that here the function f(z) has simple poles kπ i
a , k = 0, ±1, ±2, ... , with

residues (−1)kkπ i
a2 .

Example 4.2. We shall present here a group of five integrals extending five Grad-
shteyn and Ryzhik entries, namely, 3.743 (1-4) and 3.744, the last one in the list below.
They all can be proved by Poisson’s formula (3.6). The function f(z), z = x+ iy, for
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which the formula is applied, is listed on the LHS of the equations. The entries in [6]
correspond to y = 0 . In each case 0 < a < b.

(4.3) Re
sinh az

sinh bz
=

1

π
P

∫ +∞

−∞

sin at

sin bt

x

x2 + (y − t)2
dt,

(4.4) Re
z sinh az

cosh bz
=
−1

π
P

∫ +∞

−∞

t sin at

cos bt

x

x2 + (y − t)2
dt,

(4.5) Re
z cosh az

sinh bz
=

1

π
P

∫ +∞

−∞

t cos at

sin bt

x

x2 + (y − t)2
dt,

(4.6) Re
cosh az

cosh bz
=

1

π
P

∫ +∞

−∞

cos at

cos bt

x

x2 + (y − t)2
dt,

(4.7) Re
sinh az

z cosh bz
=

1

π
P

∫ +∞

−∞

sin at

t cos bt

x

x2 + (y − t)2
dt.

Note that when y = 0 all integrands here are even functions in t and the integrals on
the entire line (−∞,∞) equal twice the integrals on [0,∞). All these integrals appear
also in table [5] as Fourier sine or cosine transforms. When y = 0, we can reduce by
x in equations (4.4) and (4.5), so the integrals become correspondingly

(4.8)
sinh ax

cosh bx
=
−1

π
PV

∫ +∞

−∞

sin at

cos bt

t

x2 + t2
dt =

−2

π
PV

∫ +∞

0

sin at

cos bt

t

x2 + t2
dt,

(4.9)
cosh ax

sinh bx
=

1

π
PV

∫ +∞

−∞

cos at

sin bt

t

x2 + t2
dt =

2

π
PV

∫ +∞

0

cos at

sin bt

t

x2 + t2
dt.

The above examples, we hope, illustrate well the method of integral evaluation by
Poisson’s formula. There are many other integrals in Gadshteyn and Ryzhik’s table
[6] (and also in other places) that can be approached by this technique.

Remark. In [3] several hyperbolic integrals similar to some integrals in the present
paper were evaluated. For example, the following integral was evaluated

(4.10)
1

π

∫ +∞

0

1

cosh at

x

x2 + t2
dt = 2

∞∑
k=1

(−1)k−1

2ax+ (2k − 1) π
.

This is equation (7.1) in [3] and entry 3.522.3 in [6]. The integral is very similar to
(3.2), with a hyperbolic cosine instead of trigonometric cosine. There are, however,
big differences, as the integral in (4.10) is uniformly convergent, while the one in (3.2)
is a principal value integral. The Poison formula cannot be applied for (4.10) in a
straightforward manner. If we consider the function f(z) = 1

cos az on the RHP , then

its boundary value on the y-axis is indeedf(it) = 1
cosh at , but this function has a

sequence of poles in the RHP and Poisson’s formula is not applicable. We need a
different method to compute explicitly the harmonic function

(4.11) u(x+ iy) =
1

π

∫ +∞

−∞

1

cosh at

x

x2 + (y − t)2
dt .
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5. Some historical remarks

Principal value integrals were introduced by Cauchy, who evaluated many such
integals by the residue method. In particular, Cauchy evaluated in his book [4] the
five integrals (4.3) – (4.7) (see the notes on p.121 in [7] and also paragraph 6 on p.
373 in [8]). His solutions were long and elaborate, but the new theory and the method
were revolutionary. Many years after Cauchy, at the beginning of the 20th century
Hardy undertook a thorough study of principal value integrals, providing a detailed
and strict definition, proving various properties, and evaluating many integrals of the
type presented here. Hardy was obviously very much involved in this matter, as he
published six papers dedicated to principal value integrals in the period 1900 -1909,
namely [7] – [12]. Hardy’s papers on integral calculus can be found in the fifth volume
of his collected works [13]. A contemporary treatment of such principal value integrals
by the method of contour integration is given by Antimorov et al in chapter 8 of the
book [1].

In [7], pp. 137-139, Hardy evaluated the integral

(5.1) P

∫ +∞

0

cos at tan bt
tdt

x2 + t2
=
π cosh ax

e2bx + 1
,

where 0 6 a < b . This integral can be proved by Poisson’s formula using the function

(5.2) f(z) =
z cosh az

e2bz + 1
=
z e−bz cosh az

2 cosh bz
.

Hardy showed that the integral is continuous for a at a = 0 and therefore,

(5.3) P

∫ +∞

0

tan bt
t

x2 + t2
dt =

π

e2bx + 1

which is entry 3.749 (1) in [6]. Following Hardy ([10], pp. 85-86) we can make the
following observation about this integral: Putting a = b in (4.8) we arrive at

(5.4) P

∫ +∞

0

tan bt
t

x2 + t2
dt =

−π
2

tanh bx

which contradicts (5.3). This shows that the integral in (4.8) is not continuous for
a at a = b. A similar remark can be made for the integral in (4.9).
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