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On Ulm Support in QTAG-Modules

Ayazul Hasana, Fahad Sikanderb and Firdhousi Begumc

Abstract. A right module M over an associative ring with unity is a QTAG-

module if every finitely generated submodule of any homomorphic image of M is
a direct sum of uniserial modules. Mehdi and Naji introduced the notion of tran-

sitivity for QTAG-modules. Motivated by the transitivity and full transitivity we

study full transitive pairs of QTAG-modules and obtain several characterizations.
Here we examine how the formation of direct sums of QTAG-modules affects tran-

sitivity and full transitivity. We extend this concept by defining Ulm supports of

QTAG-modules and consequently derive more results about the interrelationships
of the various transitivities.

1. Introduction

All the rings R considered here are associative with unity and right modules M
are unital QTAG-modules. An element x ∈M is uniform, if xR is a non-zero uniform
(hence uniserial) module and for any R-module M with a unique decomposition series,
d(M) denotes its decomposition length. For a uniform element x ∈M, e(x) = d(xR)

and HM (x) = sup

{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are the exponent and

height of x in M, respectively. Hk(M) denotes the submodule of M generated by the
elements of height at least k and Hk(M) is the submodule of M generated by the

elements of exponents at most k. M is h-divisible if M = M1 =
∞⋂
k=0

Hk(M) and it is

h-reduced if it does not contain any h-divisible submodule. In other words it is free
from the elements of infinite height.

The cardinality of the minimal generating set of M is denoted by g(M).
For all ordinals α, fM (α) is the αth-Ulm invariant of M and it is equal to

g(Soc(Hα(M))/Soc(Hα+1(M))).
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For a QTAG-module M , there is a chain of submodules M0 ⊃M1 ⊃M2 · · · ⊃Mτ =
0, for some ordinal τ . Mσ+1 = (Mσ)1, where Mσ is the σth-Ulm submodule of M.

Transitive and fully transitive QTAG-modules are defined with the help of U -
sequences. Ulm invariants and Ulm sequences play an important role in the study
of QTAG-modules. Using these concepts transitive and fully transitive modules were
defined in [6]. A QTAG-module M is fully transitive if for x, y ∈ M , U(x) 6 U(y),
there is an endomorphism f of M such that f(x) = f(y) and it is transitive if for any
two elements x, y ∈M , with U(x) 6 U(y), there is an automorphism f of M such that
f(x) = f(y). A QTAG-module M is strongly transitive if for x, y ∈M , U(x) = U(y),
there exists an endomorphism f of M such that f(x) = y.

Singh [7] proved that the results which hold for TAG-modules also hold good for
QTAG-modules.

2. Main Results.

Motivated by the transitivity and full transitivity of QTAG-modules we study
fully transitive pairs of QTAG-modules and obtain several characterizations. Here
we examine how the formation of direct sums of QTAG-modules affects transitivity
and full transitivity. We also extend this concept by defining Ulm support of QTAG-
modules and consequently, derive more results about the inter-relationships of the
various transitivities.

Definition 2.1. Let M1 and M2 be QTAG-modules. Then {M1,M2} is a fully
transitive pair if for every x ∈Mi, y ∈Mj (i, j ∈ {1, 2}) satisfying UMi

(x) 6 UMj
(y),

there exists a homomorphism f form Mi to Mj such that f(x) = y.

Remark 2.1. {M1,M2} is a fully transitive pair whenever M1 and M2 are direct
summands of a fully transitive module.

Now we are able to prove the following:

Proposition 2.1. Let {Mi}i∈I be a collection of QTAG-modules such that for
each i, j ∈ I, {Mi,Mj} is a fully transitive pair. Then the direct sum

⊕
i∈I

Mi is fully

transitive.

Proof. For the finite set I = {1, ..., n}, put M = M1 ⊕ ... ⊕Mn and suppose
x, y ∈ M such that UM (x) 6 UM (y). We have to define an endomorphism f of
M such that f(x) = y. To apply induction on the exponent, consider y such that
d(yR) = 1. Now we may assume that x = (x1, . . . , xn) and y = (y1, . . . , yn) such
that HM (x) = HM1

(x1). Since e(y) = 1, UM1
(x1) 6 UM (y) 6 UMi

(yi) for all i. By
assumption, there exist homomorphisms fi’s from M1 to Mi such that fi(x1) = yi,
1 6 i 6 n. Now, the n × n matrix with first row (f1, ..., fn) and other rows zero
represents an endomorphism f of M mapping x to y.
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Now assume e(y) > 1, then x′, y′ ∈ M such that UM (x′) 6 UM (y′), where

d

(
xR

x′R

)
= d

(
yR

y′R

)
= 1. Since e(y′) < e(y), there is an endomorphism φ of M

such that φ(x′) = y′. Then y − φ(x) ∈ Soc(M) and UM (x) 6 UM (y − φ(x)); hence
there exists an endomorphism ψ of M such that ψ(x) = y− φ(x). Now φ+ψ maps x
to y, and it is the required endomorphism. �

The following corollary is an immediate consequence of the above proposition:

Corollary 2.1. Let M be a fully transitive QTAG-module and β any ordinal.
Then all direct summands of

⊕
β

M are fully transitive.

Proof. Since M is fully transitive, {M,M} is a fully transitive pair. By Propo-
sition 2.1,

⊕
β

M is fully transitive, for any ordinal β. Since the direct summands of

fully transitive modules are fully transitive, we are done. �

Lemma 2.1. Let M = M1 ⊕M2 be a fully transitive QTAG-module and xi, yi ∈
Mi (i = {1, 2}). If UM1

(x1) 6 UM2
(y2 − x2) and UM2

(y2) 6 UM1
(y1 − x1), then there

is an automorphism of M mapping (x1, x2) to (y1, y2).

Proof. Since {M1,M2} is a fully transitive pair, there exist homomorphisms f1

from M1 to M2 and f2 from M2 to M1 such that f1(x1) = y2−x2 and f2(y2) = y1−x1.

The matrix

(
1 + f2f1 f1

f2 1

)
represents an automorphism φ of M1 ⊕M2 such that

φ(x1, x2) = (y1, y2). �

For a QTAG-module M and an ordinal σ, fM (σ) denote σth-Ulm invariant of M ,
defined by Mehdi et.al [5].

Definition 2.2. If M is a h-reduced QTAG-module of length ρ, the Ulm support,
denoted by supp(M), of M is the set of all ordinals σ < ρ for which fM (σ) is non-zero.

Remark 2.2. If M1 and M2 are QTAG-modules with supp(M1)⊆ supp(M2), then
every U -sequence relative to M1 is also a U -sequence relative to M2. In particular,
for every x ∈M1, there is an element y ∈M2 such that UM1

(x) 6 UM2
(y).

Lemma 2.2. Let M = M1 ⊕M2 be a fully transitive QTAG-module and
supp(Hω(M1)) ⊆ supp(Hω(M2)). If x ∈ Hω(M), there is an automorphism of M
mapping x to an element (y, z) ∈M1 ⊕M2 with UM (x) = UM2

(z).

Proof. Put x = (a, b), and consider an automorphism φ of M such that φ(x) =
(a1, b1) and HM1

(a′1) 6= HM2
(b′1), whenever a′1R 6= 0. Here a′1 ∈ M1 and b′1 ∈ M2,

such that d

(
a1R

a′1R

)
= d

(
b1R

b′1R

)
= i. Since supp(Hω(M1)) ⊆ supp(Hω(M2)), we may

choose b2 ∈ Hω(M2) such that UM1
(a1) = UM2

(b2). By full transitivity, there exists
a homomorphism f1 : M1 → M2 such that f1(a1) = b2. Therefore the composite
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automorphism

(
1 f1

0 1

)
φ of M1 ⊕M2 maps x onto (a1, b1 + b2). Since H(b′1) 6=

H(b′2), where d

(
b1R

b′1R

)
= d

(
b2R

b′2R

)
= i and b′1R 6= 0, we compute UM2

(b1 + b2) =

UM2
(b1)∧UM2

(b2) = UM2
(b1)∧UM1

(a1) = UM (x). Here UM2
(b1)∧UM2

(b2) = UM2
(b2)

if UM2
(b2) 6 UM2

(b1) and it is UM2
(b1) if UM2

(b1) < UM2
(b2). If we put z = (b1 + b2),

we get the required result.

Now we have to ensure the existence of the elements a1, b1 and the automorphism
φ of M . We apply induction on the maximum m of the set
SM (a, b) = {i < ω : HM1

(a′) = HM2
(b′) 6=∞}, where a′ ∈ M1 and b′ ∈ M2 such that

d

(
aR

a′R

)
= d

(
bR

b′R

)
= i.

If SM (a, b) is empty, then φ = IM . If the maximum of SM (a, b) is m = 0,

then either H(a′) > H(b′) or H(a′) < H(b′), here d

(
aR

a′R

)
= d

(
bR

b′R

)
= 1. Sup-

pose HM1(a′) > HM2(b′). Therefore HM1(a′) > HM1(a) + 1, hence a′R = a′1R for

some a1 ∈ Mand H(a1) > H(a), here d

(
a1R

a′1R

)
= 1. Put b1 = b and we have

H(a′′1) = H(b′′1) if a′′1R = 0, here d

(
a1R

a′′1R

)
= d

(
bR

b′′R

)
= i. Since UM1

(a1 − a) =

(H(a),∞, ...) > UM2
(b1) and {M1,M2} is a fully transitive pair, there is a homo-

morphism f2 : M2 → M1 such that f2(b1) = a1 − a. Therefore the automorphism(
1 0
f2 1

)
of M1 ⊕ M2 maps (a, b) to (a1, b1) as required. If H(a′) < H(b′), we

obtain a suitable automorphism of the form

(
1 f1

0 1

)
and we are done.

Now assume that SM (a, b) is non-empty and has maximum m > 0. If d

(
aR

a′R

)
=

d

(
bR

b′R

)
= 1, then SM (a′, b′) has maximum < m. Inductively there exists an auto-

morphism ψ of M such that ψ(a′, b′) = (a2, b2) and H(a′2) 6= H(b′2), here d

(
a2R

a′2R

)
=

d

(
b2R

b′2R

)
= i, whenever a′2R 6= 0. Again we put x′ = (c, d) = ψ(x). Since x′′ = (a2, b2),

d

(
x′R

x′′R

)
= 1, SM (c, d) is empty or has maximum 0. By the previous argument

there exists an automorphism φ of M such that φ(c, d) = φψ(x) = (a1, b1) and

H(ai) 6= H(bi), whenever aiR 6= 0. Here d

(
a1R

aiR

)
= d

(
b1R

biR

)
= i and the result

follows. �

Proposition 2.2. Let M = M1 ⊕M2 be a fully transitive QTAG-module and
supp(Hω(M1)) ⊆ supp(Hω(M2)). If M2 is transitive, then M is transitive.
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Proof. Suppose x, y ∈ Hω(M) have the same U -sequences in M . By Lemma
2.2, there exist automorphisms f1, f2 of M such that f1(x) = (x1, x2) and f2(y) =
(y1, y2), therefore UM2(x2) = UM (x) = UM (y) = UM2(y2). Since UM (x1 − y1, x2 −
y2) > UM (f1(x)), we have UM2(x2) 6 UM1(y1 − x1). As M2 is transitive, there is an
automorphism f ′1 of M2 such that f ′1(x2) = y2 and because M is fully transitive, there
is a homomorphism f ′2 from M2 to M1 such that f ′2(x2) = y1 − x1. If we put ψ =(

1 0
f ′2 f ′1

)
, then it is an automorphism of M . Also (f−1

2 ψf1)(x) = y, thus (f−1
2 ψf1)

is the required automorphism and we are done. �

Corollary 2.2. If {Ni} is a collection of direct summands of any power of the
QTAG-module M , such that M is transitive and fully transitive, then the direct sum
M ⊕ (⊕Ni) is transitive and fully transitive.

Proof. By Proposition 2.1, M ⊕ (⊕Ni) is fully transitive. Since supp(Hω(Ni))
⊆ supp(Hω(M)), then by Proposition 2.2, the direct sum is also transitive. �

We observe that a fully transitive QTAG-module M with transitive direct sum-
mand N is itself transitive provided that Hω(M) and Hω(N) have the same Ulm
support. We investigate the conditions under which transitivity and fully transitivity
are equivalent.

Theorem 2.1. Let M be a QTAG-module with a decomposition M = M1 ⊕M2

such that Hω(M1) and Hω(M2) have the same Ulm supports. Then M is fully tran-
sitive if and only if M is transitive.

Proof. Suppose M is full transitive and let x, y ∈ Hω(M) such that UM (x) =
UM (y). By Lemma 2.2, there are automorphisms f1, f2 of M such that f1(x) =
(a, b), f2(y) = (c, d), satisfying UM (x) = UM1

(a) and UM (y) = UM2
(d). Since UM (x) =

UM (y) we have UM1(a) 6 UM2(b), UM2(d), hence UM1(a) 6 UM2(d− b). Similarly, we
obtain UM2(d) 6 UM1(c − a). Then by Lemma 2.1, there exists an automorphism ψ
of M such that ψ(a, b) = (c, d). Now f−1

2 ψf1(x) = y is the required automorphism of
M . Thus M is transitive.

Conversely, suppose M is transitive. Consider B = B′⊕B′, where B′ is the basic
submodule of M . Then N = M⊕B is transitive since B is separable. The structure of
the modules B and Hω(N) = Hω(M1)⊕Hω(M2) implies that N has no Ulm invariants
equal to one. Therefore N is fully transitive, whence M is fully transitive. �

The following corollary is the immediate consequence of the above result.

Corollary 2.3. The following conditions are equivalent for a QTAG-module:

(i) For all ordinals β,
⊕
β

M is fully transitive.

(ii) For some β > 0,
⊕
β

M is fully transitive.

(iii) For all β > 1,
⊕
β

M is transitive.
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(iv) For some β > 1,
⊕
β

M is transitive.

Proof. The implications (i)⇒ (ii) and (iii)⇒ (iv) are trivial.

Suppose (ii) holds, and β(> 1) is a fixed ordinal. Since M is a summand of a fully
transitive module, it is fully transitive. Also by Corollary 2.1,

⊕
β

M is fully transitive.

Since β > 1, then
⊕
β

M = M1 ⊕ M2 such that supp(Hω(M1) = supp(Hω(M2) =

supp(Hω(M). Hence, by Theorem 2.1,
⊕
β

M is transitive. Therefore (iii) holds.

Finally, suppose (iv) holds. Put
⊕
β

M = M1 ⊕M2 and
⊕
β

M is transitive, then by

Theorem 2.1,
⊕
β

M is fully transitive. Therefore M is fully transitive, and Corollary

2.1, yields condition (i). �

Corollary 2.4. Let {Mi}i∈I be a collection of QTAG-modules. If there exists
an ordinal σ such that Mi/Hσ(Mi) is totally projective and {Hσ(Mi), Hσ(Mj)} is a
fully transitive pair for each i, j ∈ I, then

⊕
i∈I

Mi is fully transitive. Moreover, if there

exists a partition I = I1 ∪ I2 such that the modules
⊕
i∈I1

Hσ+ω(Mi) and
⊕
i∈I2

Hσ+ω(Mi)

have equal Ulm supports, then
⊕
i∈I

Mi is transitive.

Proof. Let M =
⊕
i∈I

Mi. Then by Proposition 2.1, Hσ(M) =
⊕
i∈I

Hσ(Mi) is fully

transitive. Since
M

Hσ(M)
∼=
⊕
i∈I

Mi

Hσ(Mi)
is totally projective, M is fully transitive.

Again by Theorem 2.1, Hσ(M) is transitive and it follows that M is transitive. �

Lastly, we establish the relation among transitive, fully transitive and strongly
transitive modules.

Theorem 2.2. If M = M1 ⊕M2 and supp(Hω(M1)) = supp(Hω(M2)), then the
following are equivalent:

(i) M is strongly transitive;
(ii) M is fully transitive;
(iv) M is transitive.

Proof. The equivalence of (ii) and (iii) follows from Theorem 2.1 and the im-
plication (ii)⇒ (i) is trivial.
Suppose (i) holds, and let B denote the basic submodule of M . Now put N =
M ⊕ B ⊕ B. Since M is strongly transitive, then N is also strongly transitive. By
the result, Let M be a strongly transitive QTAG-module such that M has atmost
two Ulm invariants equal to 1. If M has exactly two Ulm invariants corresponding to
successive ordinals, then M is fully transitive, in [4], so N is fully transitive, because
no Ulm invariant of N is equal to one. As a summand of a fully transitive module,
M is also fully transitive. Therefore (ii) holds. �
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