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On Ulm Support in QTAG-Modules
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ABSTRACT. A right module M over an associative ring with unity is a QT AG-
module if every finitely generated submodule of any homomorphic image of M is
a direct sum of uniserial modules. Mehdi and Naji introduced the notion of tran-
sitivity for QTAG-modules. Motivated by the transitivity and full transitivity we
study full transitive pairs of Q TAG-modules and obtain several characterizations.
Here we examine how the formation of direct sums of QTAG-modules affects tran-
sitivity and full transitivity. We extend this concept by defining Ulm supports of
QTAG-modules and consequently derive more results about the interrelationships
of the various transitivities.

1. Introduction

All the rings R considered here are associative with unity and right modules M
are unital QT AG-modules. An element x € M is uniform, if xR is a non-zero uniform
(hence uniserial) module and for any R-module M with a unique decomposition series,
d(M) denotes its decomposition length. For a uniform element x € M, e(x) = d(zR)

R
height of = in M, respectively. Hy (M) denotes the submodule of M generated by the
elements of height at least k& and H¥(M) is the submodule of M generated by the

elements of exponents at most k. M is h-divisible if M = M' = (| Hy(M) and it is

and Hys(z) = sup {d (yR) |lye M, x € yR and y uniform} are the exponent and

=0
h-reduced if it does not contain any h-divisible submodule. In other words it is free
from the elements of infinite height.

The cardinality of the minimal generating set of M is denoted by g(M).
For all ordinals a, fy(c) is the at"-Ulm invariant of M and it is equal to

9(Soc(Ho(M))/Soc(Hat1(M))).
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For a QT AG-module M, there is a chain of submodules M° > M! > M?... > M™ =
0, for some ordinal 7. M°*! = (M?)!, where M? is the o*"-Ulm submodule of M.

Transitive and fully transitive QT AG-modules are defined with the help of U-
sequences. Ulm invariants and Ulm sequences play an important role in the study
of QT AG-modules. Using these concepts transitive and fully transitive modules were
defined in [6]. A QT AG-module M is fully transitive if for x,y € M, U(x) < U(y),
there is an endomorphism f of M such that f(z) = f(y) and it is transitive if for any
two elements z,y € M, with U(x) < U(y), there is an automorphism f of M such that
f(z) = f(y). A QT AG-module M is strongly transitive if for x,y € M, U(x) = U(y),
there exists an endomorphism f of M such that f(z) = y.

Singh [7] proved that the results which hold for T'AG-modules also hold good for
QT AG-modules.

2. Main Results.

Motivated by the transitivity and full transitivity of Q7T AG-modules we study
fully transitive pairs of QT AG-modules and obtain several characterizations. Here
we examine how the formation of direct sums of QT AG-modules affects transitivity
and full transitivity. We also extend this concept by defining Ulm support of QT AG-
modules and consequently, derive more results about the inter-relationships of the
various transitivities.

DEFINITION 2.1. Let My and My be QT AG-modules. Then {My, My} is a fully
transitive pair if for every x € M;, y € Mj (i,j € {1,2}) satisfying Un, (x) < Un, (y),
there exists a homomorphism f form M; to M; such that f(x) =y.

REMARK 2.1. {My, Mz} is a fully transitive pair whenever My and My are direct
summands of a fully transitive module.

Now we are able to prove the following:

PROPOSITION 2.1. Let {M,}icr be a collection of QT AG-modules such that for
each i,j € I, {M;, M;} is a fully transitive pair. Then the direct sum @ M; is fully
il
transitive. ©
PRrOOF. For the finite set I = {1,...,n}, put M = M; & ... & M,, and suppose
xz,y € M such that Uy (z) < Up(y). We have to define an endomorphism f of
M such that f(xz) = y. To apply induction on the exponent, consider y such that
d(yR) = 1. Now we may assume that z = (x1,...,2,) and y = (y1,...,yn) such
that Hps(x) = Hpy, (21). Since e(y) = 1, Upg, (1) < Un(y) < Upy, (y;) for all 4. By
assumption, there exist homomorphisms f;’s from M; to M; such that f;(x1) = y;,
1 < i < n. Now, the n x n matrix with first row (f1,..., f) and other rows zero
represents an endomorphism f of M mapping x to y.



ON ULM SUPPORT IN QTAG-MODULES 11

Now assume e(y) > 1, then a/,y’ € M such that Up(2') < Up(y'), where
R R
d(f’R) =d yy’R = 1. Since e(y’) < e(y), there is an endomorphism ¢ of M
such that ¢(a’) = y/'. Then y — ¢(z) € Soc(M) and Up(z) < Up(y — ¢(x)); hence
there exists an endomorphism ) of M such that ¥(z) =y — ¢(x). Now ¢ + 1) maps x
to y, and it is the required endomorphism. O

The following corollary is an immediate consequence of the above proposition:

COROLLARY 2.1. Let M be a fully transitive QT AG-module and 3 any ordinal.
Then all direct summands of @ M are fully transitive.
B

PROOF. Since M is fully transitive, {M, M} is a fully transitive pair. By Propo-
sition 2.1, @ M is fully transitive, for any ordinal 8. Since the direct summands of

B
fully transitive modules are fully transitive, we are done. 0

LEMMA 2.1. Let M = My ® Ms be a fully transitive QT AG-module and x;,y; €
M; (i ={1,2}). If Upp, (21) < Upry (y2 — 22) and Ung, (y2) < Upyy (Y1 — 1), then there
is an automorphism of M mapping (x1,22) to (y1,y2).

PROOF. Since {M1, M5} is a fully transitive pair, there exist homomorphisms f;
from M; to My and f5 from My to My such that fi1(z1) = yo —x2 and fo(y2) = y1 —21.
1+ fofi fi

I2 1
(w1, 22) = (Y1, Y2). O]

For a QT AG-module M and an ordinal o, fy;(c) denote o*"-Ulm invariant of M,
defined by Mehdi et.al [5].

The matrix ) represents an automorphism ¢ of My & M, such that

DEFINITION 2.2. If M is a h-reduced QT AG-module of length p, the Ulm support,
denoted by supp(M), of M is the set of all ordinals o < p for which fyr (o) is non-zero.

REMARK 2.2. If My and My are QT AG-modules with supp(M1)C supp(Ms), then
every U-sequence relative to My is also a U-sequence relative to My. In particular,
for every x € My, there is an element y € My such that Upr, () < U, (y).

LEMMA 2.2. Let M = M7 @ My be a fully transitive QT AG-module and
supp(Hy,(M1)) C supp(H,(M2)). If v € H, (M), there is an automorphism of M
mapping x to an element (y,z) € My & My with Up(x) = Ung, (2).

PRrROOF. Put z = (a,b), and consider an automorphism ¢ of M such that ¢(z) =

(a1,b1) and Hpg (a)) # Har (b)), whenever ajR # 0. Here o} € M; and b} € M,
b

such that d(a,1§> = d(b’lﬁ) = 4. Since supp(H,(M1)) C supp(H,(Mz)), we may
ay 1

choose by € H,(Ms) such that Unr, (a1) = U, (b2). By full transitivity, there exists

a homomorphism f; : M; — My such that f1(a1) = ba. Therefore the composite
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automorphism < (1) Jil ) ¢ of My ® Ms maps z onto (ay,by + be). Since H(b)) #

H(b}), where d(b}g) = d(%) =4 and ViR # 0, we compute Upy, (by + b2) =
1 2

UM2(b1)/\UM2(b2) = UMg(bl)/\U]Wl (al) = UM(IL') Here UM2(b1)/\UM2(b2) = UMZ(bQ)
if UM2 (bg) < U]\/IQ (bl) and it is UM2 (bl) if UM2 (bl) < (]]\/[2 (bg) If we put z = (bl +b2 s
we get the required result.

Now we have to ensure the existence of the elements a1, b; and the automorphism
¢ of M. We apply induction on the maximum m of the set
Sn(a,b) ={i <w: Hyy(a') = Hpp, (V') # o0}, where o/ € M and b € M such that

e

If Spr(a,b) is empty, then ¢ = Ip;. If the maximum of Sps(a,b) is m = 0,
then either H(a') > H(V') or H(a') < H(V'), here d aft) _ d DR 1. Sup-
pose Hyy (a’) > Hpy, (V). Therefore Hyy (a’) > Hpy(a) + 1, hence o/ R = o) R for

'R bR
alR
some a; € Mand H(ay) > H(a), here d R
ay
. a1 R bR o
H(ay) = H@®Y) if of R = 0, here d(ai’R) = d(b”R) = 4. Since Upy (a1 —a) =
(H(a),00,...) = Up,(b1) and {My, My} is a fully transitive pair, there is a homo-
morphism fo : My — M such that fo(b;) = a1 — a. Therefore the automorphism
( ; (1) > of My & My maps (a,b) to (a1,b1) as required. If H(a') < H(V), we
2
fi
1

obtain a suitable automorphism of the form ( (1)

) = 1. Put by = b and we have

) and we are done.

R
Now assume that Sps(a,b) is non-empty and has maximum m > 0. If d<Z’R> =
VR
morphism 1 of M such that ¥(a’,b') = (az, b2) and H(ah) # H(by), here d(%ﬁ) _
a3
baR

d(b’2R> = i, whenever a4 R # 0. Again we put 2’ = (¢,d) = ¥(z). Since 2" = (ag, ba),

b
d< R) = 1, then Sys(a’, ) has maximum < m. Inductively there exists an auto-

'R
d (:”R) = 1, Sp(e,d) is empty or has maximum 0. By the previous argument
there exists an automorphism ¢ of M such that ¢(c,d) = ¢(z) = (a1,b1) and

H(a;) # H(b;), whenever a;R # 0. Here d(mﬁ) = d<l;1§> = ¢ and the result
a; i

follows.

PROPOSITION 2.2. Let M = My & M be a fully transitive QT AG-module and
supp(H,(My)) C supp(H,,(Ms)). If My is transitive, then M is transitive.
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PROOF. Suppose x,y € H, (M) have the same U-sequences in M. By Lemma
2.2, there exist automorphisms fi, fo of M such that fi(z) = (z1,22) and fa(y) =
(y1,y2), therefore Ups,(z2) = Up(z) = Up(y) = Unr,(y2). Since Upr(z1 — y1, 22 —
y2) = Un(fi(x)), we have Uy, (x2) < Upg, (y1 — x1). As My is transitive, there is an
automorphism f] of My such that f](z2) = y2 and because M is fully transitive, there
is a homomorphism f} from My to M; such that fi(xs) = y1 —x1. If we put ¢ =
( J}' ]?, ), then it is an automorphism of M. Also (fy ‘9 f1)(x) = y, thus (f5 "¢ f1)

2 N1

is the required automorphism and we are done. O

COROLLARY 2.2. If {N;} is a collection of direct summands of any power of the
QT AG-module M, such that M is transitive and fully transitive, then the direct sum
M @ (®&N;) is transitive and fully transitive.

PRrROOF. By Proposition 2.1, M @ (&N;) is fully transitive. Since supp(H,,(N;))
C supp(H,,(M)), then by Proposition 2.2, the direct sum is also transitive. O

We observe that a fully transitive QT AG-module M with transitive direct sum-
mand N is itself transitive provided that H, (M) and H,(N) have the same Ulm
support. We investigate the conditions under which transitivity and fully transitivity
are equivalent.

THEOREM 2.1. Let M be a QT AG-module with a decomposition M = M; & My
such that H,(M,) and H,(Ms) have the same Ulm supports. Then M is fully tran-
sitive if and only if M is transitive.

PROOF. Suppose M is full transitive and let x,y € H, (M) such that Uy (z) =
Uup(y). By Lemma 2.2, there are automorphisms fi, fo of M such that fi(x) =
(a,b), f2(y) = (¢, d), satistying Uns(x) = Un, (a) and Unr (y) = Uns, (d). Since Un(z) =
Uni(y) we have Upy, (a) < Upr, (b), Uns, (d), hence Upy, (a) < Upg,(d — b). Similarly, we
obtain Uy, (d) < Upg, (¢ — a). Then by Lemma 2.1, there exists an automorphism )
of M such that v (a,b) = (c,d). Now f; '1pfi(x) =y is the required automorphism of
M. Thus M is transitive.

Conversely, suppose M is transitive. Consider B = B’ ® B’, where B’ is the basic
submodule of M. Then N = M & B is transitive since B is separable. The structure of
the modules B and H,,(N) = H,(M;)® H,,(M>) implies that N has no Ulm invariants
equal to one. Therefore N is fully transitive, whence M is fully transitive. O

The following corollary is the immediate consequence of the above result.
COROLLARY 2.3. The following conditions are equivalent for a QT AG-module:
(i) For all ordinals B, @ M is fully transitive.
B
(13) For some B >0, @ M is fully transitive.
B

(#91) For all B> 1, @ M is transitive.
B
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(iv) For some 8> 1, @ M is transitive.
B

PRrROOF. The implications (i) = (i7) and (¢it) = (iv) are trivial.

Suppose (i7) holds, and B(> 1) is a fixed ordinal. Since M is a summand of a fully
transitive module, it is fully transitive. Also by Corollary 2.1, @ M is fully transitive.
B

Since 8 > 1, then @M = M; & M, such that supp(H,(M1) = supp(H,(Msz) =
B
supp(H,,(M). Hence, by Theorem 2.1, @ M is transitive. Therefore (iii) holds.
B

Finally, suppose (iv) holds. Put @ M = M; & M and @ M is transitive, then by
B B
Theorem 2.1, @ M is fully transitive. Therefore M is fully transitive, and Corollary
B

2.1, yields condition (i). O

COROLLARY 2.4. Let {M;};cr be a collection of QT AG-modules. If there exists
an ordinal o such that M;/H,(M;) is totally projective and {Hs(M;), Ho(M;)} is a
fully transitive pair for each i,j € I, then @ M; is fully transitive. Moreover, if there

il
exists a partition I = I U Iy such that the modules @ Hyiw(M;) and @ Hyyo(M;)
icly i€l
have equal Ulm supports, then €@ M; is transitive.
il
PROOF. Let M = @ M;. Then by Proposition 2.1, H,(M) = @ H,(M;) is fully
i€l il

M i
HU(M> i€l Ha(Ml)
Again by Theorem 2.1, H,(M) is transitive and it follows that M is transitive. O

transitive. Since is totally projective, M is fully transitive.

Lastly, we establish the relation among transitive, fully transitive and strongly
transitive modules.

THEOREM 2.2. If M = M; & M> and supp(H,,(M)) = supp(H,,(Mz)), then the
following are equivalent:
(1) M is strongly transitive;
(i) M 1is fully transitive;
(iv) M is transitive.

PRrOOF. The equivalence of (ii) and (éii) follows from Theorem 2.1 and the im-
plication (i7) = (i) is trivial.
Suppose (i) holds, and let B denote the basic submodule of M. Now put N =
M & B & B. Since M is strongly transitive, then N is also strongly transitive. By
the result, Let M be a strongly transitive QT AG-module such that M has atmost
two Ulm invariants equal to 1. If M has exactly two Ulm invariants corresponding to
successive ordinals, then M is fully transitive, in [4], so N is fully transitive, because
no Ulm invariant of N is equal to one. As a summand of a fully transitive module,
M is also fully transitive. Therefore (i7) holds. O
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