SCIENTIA Series A: Mathematical Sciences, Vol. 23 (2012), 67–73 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2012

Some results on *g*-regular and *g*-normal spaces

Zhaowen Li

ABSTRACT. In this paper, map theorem and topological sum theorem on *g*-regular (resp. *g*-normal) spaces are given respectively, and their properties are discussed. In addition, Urysohn's Lemma on *g*-normal spaces is proved.

1. Introduction and preliminaries

It is well-known that g-open subsets in topological spaces are generalized open sets [3]. Their complements are said to be g-closed sets which were introduced by Levine in [8]. g-regular and g-normal spaces, which are related to g-closed sets, were introduced or investigated in [11], [12], [13], [14], etc., In this paper, we give respectively map theorem and topological sum theorem on g-regular (resp. g-normal) spaces, and show that g-regular Lindelöf spaces are g-normal. In addition, we obtain Urysohn's Lemma on g-normal spaces.

In this paper, spaces always mean topological spaces with no separation properties assumed, and maps are onto. 2^X denotes the power set of X. Let (X, τ) be a space. If $A \subset X$, cl(A) and int(A) denotes the closure of A in (X, τ) . If $A \subset Y \subset X$, τ_Y denotes $\{U \bigcap Y : U \in \tau\}$, $cl_Y(A)$ and $int_Y(A)$ will respectively denote the closure of A in (Y, τ_Y) .

We recall some basic definitions and notations. Let X be a space and let $A \subset X$. A is called g-closed in X [8], if $cl(A) \subset U$ whenever U is open and $A \subset U$; A is called g-open in X [8], if X - A is g-closed in X. X is called a g-regular space [12], if for each pair consisting of a point x and a g-closed subset F not containing x, there exist disjoint open subsets U and V such that $x \in U$ and $F \subset V$. X is called a g-normal space [11], if for each pair consisting of disjoint g-closed subsets A and B, there exist disjoint open subsets U and V such that $A \in U$ and $B \subset V$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C10, 54D10, 54D15.

Key words and phrases. g-closed sets; g-regular spaces; g-normal spaces; Lindelöf spaces; g-continuous maps; Topological sums; Urysohn's Lemma.

This work is supported by the National Natural Science Foundation of China (No. 11061004) and the Science Research Project of Guangxi University for Nationalities (No. 2011QD015).

⁶⁷

ZHAOWEN LI

Let $f: X \to Y$ be a map. f is called a perfect map, if f is a continuous and closed map, and $f^{-1}(y)$ is compact for any $y \in Y$. f is called a g-continuous map [2], if $f^{-1}(V)$ is g-open in X for each open subset V of Y.

2. Related results of g-regular spaces

LEMMA 2.1 ([10]). If $f: X \to Y$ is a map, $A \subset X$ and $B \subset Y$. then $f^{-1}(B) \subset A$ if and only if $B \subset Y - f(X - A)$.

LEMMA 2.2. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be a g-continuous and closed map. If B is a g-closed subset of Y, then $f^{-1}(B)$ is a g-closed subset of X.

PROOF. Suppose $f^{-1}(B) \subset U \in \tau$, then $B \subset Y - f(X - U)$ by Lemma 2.1. Since f is a closed map, then $Y - f(X - U) \in \sigma$. B is g-closed in Y implies that $cl(B) \subset Y - f(X - U)$. By Lemma 2.1, $f^{-1}(cl(B)) \subset U$. Since f is g-continuous, then $f^{-1}(cl(B))$ is g-closed in X. Thus $cl(f^{-1}(cl(B))) \subset U$. Hence $cl(f^{-1}(B) \subset U$. Therefore, $f^{-1}(B)$ is g-closed in X.

THEOREM 2.1. Let $f : X \to Y$ be a g-continuous and closed map, and $f^{-1}(y)$ is compact for any $y \in Y$. If X is g-regular, then Y is also g-regular.

PROOF. Suppose $y \notin B$ and B is g-closed in Y, then $f^{-1}(B)$ is g-closed in Xby Lemma 2.2. $y \notin B$ implies that $f^{-1}(y) \cap f^{-1}(B) = \emptyset$. For every $x \in f^{-1}(y)$, $x \notin f^{-1}(B)$, since X is g-regular, then there exist disjoint open subsets U_x and V_x of X such that $x \in U_x$ and $f^{-1}(B) \subset V_x$. Since $\{U_x : x \in f^{-1}(y)\}$ is a open cover of set $f^{-1}(y)$ and $f^{-1}(y)$ is compact, then $\{U_x : x \in f^{-1}(y)\}$ has a finite subcover $\{U_{x_i} : i \leq n\}$. Put

$$U = \bigcup_{i=1}^{n} U_{x_i}, \quad V = \bigcap_{i=1}^{n} V_{x_i}.$$

Then U, V are disjoint open subsets of X, $f^{-1}(y) \subset U$ and $f^{-1}(B) \subset V$. By Lemma 2.1, $y \in Y - f(X - U)$ and $B \subset Y - f(X - V)$. Let G = Y - f(X - U) and W = Y - f(X - V), then G, W are open in Y. $U \cap V = \emptyset$ implies that $(X - U) \cup (X - V) = X - U \cap V = X$. Thus $W \cap G = \emptyset$. Therefore, (Y, σ, \mathcal{I}) is g-regular. \Box

COROLLARY 2.1. Let $f : X \to Y$ be a perfect map. If X is g-regular, then Y is also g-regular.

THEOREM 2.2. g-regular Lindelöf spaces are g-normal spaces.

PROOF. Suppose X is a g-regular Lindelöf space. For each pair of disjoint gclosed subsets A and B of X, $x \in A$ implies $x \notin B$. Since X is g-regular, then there exists disjoint open subsets U_x and W_x of X such that $x \in U_x$ and $B \subset W_x$. Now $U_x \cap W_x = \emptyset$ implies $cl(U_x) \cap W_x = \emptyset$. So $cl(U_x) \cap B = \emptyset$. $\mathcal{U} = \{U_x : x \in A\}$ is an open cover of set A. $A \subset \bigcup_{x \in A} U_x$, since A is g-closed in X, then $cl(A) \subset \bigcup_{x \in A} U_x$. So $\mathcal{U} \cup \{X - cl(A)\}$ is an open cover of X. Note that X is a Lindelöf space. Thus $\mathcal{U} \cup \{X - cl(A)\}$ has a countable subcover $\{U_n : n \in N\} \cup \{X - cl(A)\}$. So $X = (\bigcup_{n=1}^{\infty} U_n) \bigcup (X - cl(A))$. Hence $A \subset cl(A) \subset \bigcup_{n=1}^{\infty} U_n$, where $cl(U_n) \cap B = \emptyset$ for any $n \in N$.

 $y \in B$ implies $y \notin A$. Since X is g-regular, then there exists disjoint open subsets V_y and L_y of X such that $y \in V_y$ and $A \subset L_y$. Now $V_y \bigcap L_y = \emptyset$ implies $cl(V_y) \bigcap L_y = \emptyset$. So $cl(V_y) \bigcap A = \emptyset$. $\mathcal{V} = \{V_y : y \in B\}$ is an open cover of set B.

Similarly, there exists a countable subset $\{V_n : n \in N\}$ of \mathcal{V} such that $B \subset \bigcup V_n$, where $cl(V_n) \bigcap A = \emptyset$ for any $n \in N$.

Put

$$\begin{split} G_n &= U_n - \bigcup_{i=1}^n cl(V_i), \quad G = \bigcup_{n=1}^\infty G_n, \\ W_n &= V_n - \bigcup_{i=1}^n cl(U_i), \quad W = \bigcup_{n=1}^\infty W_n. \end{split}$$

Obviously, for each $n \in N$, G_n and W_m are open in X. So G and W are open in X.

Claim : for any $n, m \in N, G_n \cap W_m = \emptyset$.

(1) If $m \leq n$, then $W_m \subset V_m \subset \bigcup_{i=1}^m cl(V_i) \subset \bigcup_{i=1}^n cl(V_i)$. Since $G_n \bigcap \bigcup_{i=1}^n cl(V_i) = \emptyset$, then $G_n \bigcap W_m = \emptyset$. (2) If m > n, then $G_n \subset U_n \subset \bigcup_{i=1}^n cl(U_i) \subset \bigcup_{i=1}^m cl(U_i)$. Since $W_m \bigcap \bigcup_{i=1}^m cl(U_i) = \emptyset$, then $W_m \bigcap G_n = \emptyset$. Thus, for any $n, m \in N$, $G_n \cap W_m = \emptyset$. Therefore, $G \cap W = \bigcap_{n, m=1}^{\infty} (G_n \cap W_m) = \emptyset$. We will prove that $A \subset G$ and $B \subset W$. For $x \in A$, $A \subset \bigcup_{i=1}^{\infty} U_n$ implies that $x \in U_n$ for some $n \in N$. Since $cl(V_i) \cap A = \emptyset$ for any $i \in N$, then $x \notin cl(V_i)$ for any $i \in N$. So $x \notin \bigcup_{i=1}^{n} cl(V_i)$. Thus $x \in G_n$, so $x \in G$. Therefore $A \subset G$.

The proof of $B \subset W$ is similar.

LEMMA 2.3. Let (X, τ) be a space. Then

(1) If $A \subset Y \subset X$, A is g-closed in Y and Y is closed in X, then A is g-closed in Χ.

(2) If $A \subset Y \subset X$, A is g-closed in X, then A is g-closed in Y.

(3) If B, $Y \subset X$, B is g-closed in X and Y is closed in X, then $B \cap Y$ is g-closed in X.

PROOF. (1) Suppose $A \subset U \in \tau$, then $A \subset U \cap Y \in \tau_Y$. Since A is q-closed in Y, then $cl(A) \cap Y = cl_Y(A) \subset U \cap Y$. Since $A \subset Y$ and Y is closed in X, then $cl(A) \subset Y$. Thus $cl(A) \subset U \cap Y \subset U$. Therefore A is q-closed in X.

(2) Suppose $A \subset U \in \tau_Y$, then $U = V \cap Y$ for some $V \in \tau$. Now $A \subset V \in \tau$. Since A is g-closed in X, then $cl(A) \subset V$. Thus $cl_Y(A) = cl(A) \cap Y \subset V \cap Y = U$. Therefore A is g-closed in Y.

(3) Suppose $B \cap Y \subset U \in \tau$, then $B \subset U \cup (X - Y) \in \tau$. Since B is g-closed in X, then $cl(B) \subset U \cup (X - Y)$. Thus $cl(B \cap Y) \subset cl(B) \cap cl(Y) = cl(B) \cap Y \subset cl(B) \cap C$ $(U \cup (X - Y)) \cap Y = U \cap Y \subset U$. Therefore $B \cap Y$ is g-closed in Y.

ZHAOWEN LI

LEMMA 2.4 ([12]). If (X, τ) is g-regular and Y is closed in X, then Y is g-regular.

THEOREM 2.3. Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a family of pairwise disjoint spaces. Then $\bigoplus X_{\alpha}$ is a g-regular space if and only if every X_{α} is a g-regular space. $\alpha \in \bigwedge$

PROOF. The proof of Necessity follows from Lemma 2.7.

Sufficiency. Let $X = \bigoplus X_{\alpha}$ and let $x \notin F$ and F be g-closed in X. Since every $\alpha \in \Lambda$

 X_{α} is open-and-closed in X, then for any $\alpha \in \Lambda$, $F \cap X_{\alpha}$ is g-closed in X_{α} by Lemma 2.6. Obviously, there exists $\beta \in \Lambda$ such that $x \in X_{\beta}$. Since X_{β} is g-regular, then there exist disjoint open subsets U and V of X_{β} such that $x \in U$ and $F \cap X_{\beta} \subset V$. So $F \subset V \cup (X - X_{\beta})$. Since X_{β} is open-and-closed in X, then U and $V \cup (X - X_{\beta})$ are disjoint open subsets of X. Therefore X is g-regular.

3. Related results of *g*-normal spaces

THEOREM 3.1. X is g-normal if and only if for each g-closed subset F of X and g-open subset W of X containing F, there exists a sequence $\{U_n\}$ of open subsets of X such that $F \subset \bigcup_{n=1}^{\infty} U_n$ and $cl(U_n) \subset W$ for any $n \in N$.

PROOF. The proof of Necessity is obvious.

Sufficiency. Suppose A and B are disjoint g-closed subsets of X. Let F = A and W = X - B, by hypothesis, there exists sequence $\{U_n\}$ of open subsets of X such that

 $A \subset \bigcup_{n=1}^{\infty} U_n$ and $cl(U_n) \cap B = \emptyset$ for any $n \in N$. And let F = B and W = X - A, by hypothesis, there exists a sequence $\{V_n\}$ of open subsets of X such that

$$B \subset \bigcup_{n=1}^{\infty} V_n$$
 and $cl(V_n) \cap A = \emptyset$ for any $n \in N$.

Put

$$G_n = U_n - \bigcup_{i=1}^n cl(V_i), \quad G = \bigcup_{n=1}^\infty G_n,$$

$$H_n = V_n - \bigcup_{i=1}^n cl(U_i), \quad H = \bigcup_{n=1}^\infty H_n.$$

Obviously, for each $n \in N$, G_n and H_m are open in X. So G and H are open in X.

By a similar way as in the proof of Theorem 2.5, we can prove that $G \cap H = \emptyset$, $A \subset G$ and $B \subset H$. \Box

Below we give Urysohn's Lemma on q-normal spaces.

THEOREM 3.2. X is g-normal spaces if and only if for each pair of disjoint gclosed subsets A and B of X, there exists a continuous mapping $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

PROOF. Sufficiency. Suppose for each pair of disjoint g-closed subsets A and Bof X, there exists a continuous mapping $f: X \to [0,1]$ such that $f(A) = \{0\}$ and

 $f(B) = \{1\}$. Put $U = f^{-1}([0, 1/2)), V = f^{-1}((1/2, 1])$, then U and V are disjoint open subsets of X such that $A \subset U$ and $B \subset V$. Hence X is g-normal.

Necessity. Suppose X is g-normal. For each pair of disjoint g-closed subsets A and B of X, $A \subset X - B$, where A is g-closed and X - B in X is g-open in X, by Corollary 2.12 in [14], there exists an open subset $U_{1/2}$ of X such that

 $A \subset U_{1/2} \subset cl(U_{1/2}) \subset X - B.$

Since $A \subset U_{1/2}$, A is g-closed in X and $U_{1/2}$ is g-open in X, then there exists an open subset $U_{1/4}$ of X such that $A \subset U_{1/4} \subset cl(U_{1/4}) \subset U_{1/2}$ by Corollary 2.12 in [14]. Since $cl(U_{1/2}) \subset X - B$, $cl(U_{1/2})$ is g-closed in X and X - B is g-open in X, then there exists an open subset $U_{3/4}$ of X such that $cl(U_{1/2}) \subset U_{3/4} \subset cl(U_{3/4}) \subset X - B$ by Corollary 2.12 in [14]. Thus, there exist two open subsets $U_{1/2}$ and $U_{3/4}$ of X such that

 $A \subset U_{1/4} \subset cl(U_{1/4}) \subset U_{1/2} \subset cl(U_{1/2}) \subset U_{3/4} \subset cl(U_{3/4}) \subset X - B.$

We get a family $\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\}$ of open subsets of X, denotes $\{U_{m/2^n} : 1 \leq m < 2^n, n \in N\}$ by $\{U_{\alpha} : \alpha \in \Gamma\}$. $\{U_{\alpha} : \alpha \in \Gamma\}$ satisfies the following condition:

(1) $A \subset U_{\alpha} \subset cl(U_{\alpha}) \subset X - B$,

(2) if $\alpha < \alpha'$, then $cl(U_{\alpha}) \subset U_{\alpha'}$.

We define $f: X \to [0, 1]$ as follows:

$$f(x) = \begin{cases} \inf\{\alpha \in \Gamma : x \in U_{\alpha}\}, & \text{if } x \in U_{\alpha} \text{ for some } \alpha \in \Gamma, \\ 1, & \text{if } x \notin U_{\alpha} \text{ for any } \alpha \in \Gamma. \end{cases}$$

For each $x \in A$, $x \in U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so $f(x) = inf\{\alpha \in \Gamma : x \in U_{\alpha}\} = inf\Gamma = 0$. Thus, $f(A) = \{0\}$.

For each $x \in B$, $x \notin X - B$ implies $x \notin U_{\alpha}$ for any $\alpha \in \Gamma$ by (1), so f(x) = 1. Thus, $f(B) = \{1\}$.

We have to show f is continuous.

For $x \in X$ and $\alpha \in \Gamma$, we have the following Claim:

Claim 1: if $f(x) < \alpha$, then $x \in U_{\alpha}$.

Suppose $f(x) < \alpha$, then $\inf\{\alpha \in \Gamma : x \in U_{\alpha}\} < \alpha$, so there exists $\alpha_1 \in \{\alpha \in \Gamma : x \in U_{\alpha}\}$ such that $\alpha_1 < \alpha$. By (2), $cl(U_{\alpha_1}) \subset U_{\alpha}$. Notice that $x \in U_{\alpha_1}$. Hence $x \in U_{\alpha}$.

Claim 2: if $f(x) > \alpha$, then $x \notin cl(U_{\alpha})$.

Suppose $f(x) > \alpha$, then there exists $\alpha_1 \in \Gamma$ such that $\alpha < \alpha_1 < f(x)$. Notice that $\alpha_1 \in \{\alpha \in \Gamma : x \in U_\alpha\}$ implies $\alpha_1 \ge \inf\{\alpha \in \Gamma : x \in U_\alpha\} = f(x)$. Thus, $\alpha_1 \notin \{\alpha \in \Gamma : x \in U_\alpha\}$. So $x \notin U_{\alpha_1}$. By (2), $cl(U_\alpha) \subset U_{\alpha_1}$. Hence $x \notin cl(U_\alpha)$.

Claim 3: if $x \notin cl(U_{\alpha})$, then $f(x) \ge \alpha$.

Suppose $x \notin cl(U_{\alpha})$, we claim that $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_{\alpha}\}$. Otherwise, there exists $\beta \in \{\alpha \in \Gamma : x \in U_{\alpha}\}$ such that $\alpha \ge \beta$. $x \notin cl(U_{\alpha})$ implies $\alpha \notin \{\alpha \in \Gamma : x \in U_{\alpha}\}$. So $\alpha \neq \beta$. Thus $\alpha > \beta$. By (2), $cl(U_{\beta}) \subset U_{\alpha}$. So $x \notin \beta$, contridiction. Therefore $\alpha < \beta$ for any $\beta \in \{\alpha \in \Gamma : x \in U_{\alpha}\}$. Hence $\alpha \leq inf\{\alpha \in \Gamma : x \in U_{\alpha}\} = f(x)$.

For $x_0 \in X$, if $f(x_0) \in (0, 1)$, suppose V is an open neighborhood of $f(x_0)$ in [0, 1], then there exists $\varepsilon > 0$ such that $(f(x_0) - \epsilon, f(x_0) + \epsilon) \subset V \cap (0, 1)$. Pick $\alpha', \alpha'' \in \Gamma$ such that

 $0 < f(x_0) - \epsilon < \alpha' < f(x_0) < \alpha'' < f(x_0) + \epsilon < 1.$ By Claim 1 and Claim 2, $x_0 \in U''_{\alpha}, x_0 \notin cl(U'_{\alpha})$. Put $U = U''_{\alpha} - cl(U'_{\alpha})$, then U is an open neighborhood of x_0 in X.

We will prove that $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon)$. if $y \in f(U)$, then y = f(x)for some $x \in U$. $x \in U$ implies that $x \in U''_{\alpha}$ and $x \notin cl(U'_{\alpha})$. Since $x \in U''_{\alpha}$, then $\alpha'' \in \{\alpha \in \Gamma : x \in U_{\alpha}\}.$ Thus, $\alpha'' \ge \inf\{\alpha \in \Gamma : x \in U_{\alpha}\} = f(x).$ Notice that $\alpha'' < f(x_0) + \epsilon$. Therefore $f(x) < f(x_0) + \epsilon$. Since $x \notin cl(U'_{\alpha})$, then $f(x) \ge \alpha'$ by Claim 3. Notice that $f(x_0) - \epsilon < \alpha'$. Therefore $f(x) > f(x_0) - \epsilon$. Hence, $f(U) \subset (f(x_0) - \epsilon, f(x_0) + \epsilon).$

Therefore, $f(U) \subset V$. This implies f is continuous at x_0 .

if $f(x_0) = 0$, or 1, the proof that f is continuous at x_0 is similar.

THEOREM 3.3. Let $f: X \to Y$ be a g-continuous and closed map. If X is gnormal, then Y is g-normal.

PROOF. Suppose A and B are disjoint g-closed subsets of Y, then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint g-closed subsets of X by Lemma 2.2. Since X is g-normal, then exist disjoint open subsets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. By Lemma 2.1, $A \subset Y - f(X - U)$ and $B \subset Y - f(X - V)$. Note that Y - f(X - U)and Y - f(X - V) are disjoint open subsets of Y. Hence X is g-normal. \square

COROLLARY 3.1. Let $f: X \to Y$ be a continuous and closed map. If X is gnormal, then Y is g-normal.

THEOREM 3.4. Let $\{X_{\alpha} : \alpha \in \Lambda\}$ be a family of pairwise disjoint spaces. Then $\bigoplus X_{\alpha}$ is a g-normal space if and only if every X_{α} is a g-normal space. $\alpha \in \Lambda$

PROOF. The proof of Necessity follows from that fact that the g-normality is closed heredity.

Sufficiency. Let $X = \bigoplus X_{\alpha}$ and let A and B be disjoint g-closed subsets of X. $\alpha \in \bigwedge$

Then for any $\alpha \in \Lambda$, $A \cap X_{\alpha}$ and $B \cap X_{\alpha}$ are disjoint g-closed subsets of X_{α} by Lemma 2.8. Since X_{α} is g-regular, then there exist disjoint open subsets U_{α} and V_{α} of X_{α} such that $A \cap X_{\alpha} \subset U_{\alpha}$ and $B \cap X_{\alpha} \subset V_{\alpha}$.

Clearly,

$$A = A \bigcap X = A \bigcap (\bigcup_{\alpha \in \Lambda} X_{\alpha}) \subset U = \bigcup_{\alpha \in \Lambda} U_{\alpha},$$

$$B = B \bigcap X = B \bigcap (\bigcup_{\alpha \in \Lambda} X_{\alpha}) \subset V = \bigcup_{\alpha \in \Lambda} V_{\alpha}.$$

If $\alpha \neq \beta$, then $U_{\alpha} \cap V_{\beta} \subset X_{\alpha} \cap X_{\beta} = \emptyset$. Thus for any $\alpha, \beta \in \Lambda$, $U_{\alpha} \cap V_{\beta} = \emptyset$. Hence $U \cap V = \bigcap_{\alpha, \beta \in \Lambda} (U_{\alpha} \cap V_{\beta}) = \emptyset.$

Since every X_{α} is open in X, then U and V are open in X. Therefore X is \square g-normal.

References

- 1. S. P. Arya and M. P. Bhamini, A generalization of normal spaces, Mat. Vesnik, 35(1983), 1-10.
- 2. K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Men. Fac. Sci. Kochi. Univ. Math., 12(1991), 5-13.
- 3. Á. Császár, Generalized open sets, Acta Math. Hungar., 75(1997), 65-87.
- 4. Á. Császár, Normal generalized topologies, Acta Math. Hungar., 115(2007), 309-313.
- 5. R. Engelking, General Topology, PWN, Warszawa, 1977.
- 6. L. Kalantan, Results about $\kappa\text{-normality},$ Topology Appl., 125(2002), 47-62.
- 7. L. Kalantan and P. Szeptycki, κ-normality and products of ordinals, Topology Appl., 123(2002), 537-545.
- 8. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2), 19(1970), 89-96.
- 9. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer Math Monthly, 70(1963), 36-41.
- 10. S. Lin, Metric spaces and topology of function spaces, Chinese Scientific Publ., Beijing, 2004.
- 11. B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12(1986), 140-144.
- 12. T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Math., 20(1999), 67-74.
- 13. M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(2008), 365-371.
- 14. M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math. Hungar., 125(2009), 327-340.
- 15. J. H. Park, Almost p-normal, mildly p-normal spaces and some functions, Chaos, Solitons and Fractals, 18(2003), 267-274.
- 16. J. K. Park, J. H. Park, Mildly generalized closed sets, almost normal and mildly normal spaces, Chaos, Solitons and Fractals, 20(2004), 1103-1111.

Received 08 07 2011, revised 07 08 2012

College of Mathematics and Computer Science, GUANGXI UNIVERSITY FOR NATIONALITIES, NANNING, GUANGXI 530006, P.R.CHINA

E-mail address: lizhaowen8846@126.com