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Valparáıso, Chile
ISSN 0716-8446
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Some results on g-regular and g-normal spaces

Zhaowen Li

Abstract. In this paper, map theorem and topological sum theorem on g-regular
(resp. g-normal) spaces are given respectively, and their properties are discussed.

In addition, Urysohn’s Lemma on g-normal spaces is proved.

1. Introduction and preliminaries

It is well-known that g-open subsets in topological spaces are generalized open sets
[3]. Their complements are said to be g-closed sets which were introduced by Levine in
[8]. g-regular and g-normal spaces, which are related to g-closed sets, were introduced
or investigated in [11], [12], [13], [14], etc., In this paper, we give respectively map
theorem and topological sum theorem on g-regular (resp. g-normal) spaces, and show
that g-regular Lindelöf spaces are g-normal. In addition, we obtain Urysohn’s Lemma
on g-normal spaces.

In this paper, spaces always mean topological spaces with no separation properties
assumed, and maps are onto. 2X denotes the power set of X. Let (X, τ) be a space.
If A ⊂ X, cl(A) and int(A) denotes the closure of A in (X, τ). If A ⊂ Y ⊂ X, τY
denotes {U

⋂
Y : U ∈ τ}, clY (A) and intY (A) will respectively denote the closure of

A in (Y, τY ).
We recall some basic definitions and notations. Let X be a space and let A ⊂ X.

A is called g-closed in X [8], if cl(A) ⊂ U whenever U is open and A ⊂ U ; A is called
g-open in X [8], if X − A is g-closed in X. X is called a g-regular space [12], if for
each pair consisting of a point x and a g-closed subset F not containing x, there exist
disjoint open subsets U and V such that x ∈ U and F ⊂ V . X is called a g-normal
space [11], if for each pair consisting of disjoint g-closed subsets A and B, there exist
disjoint open subsets U and V such that A ∈ U and B ⊂ V .

2000 Mathematics Subject Classification. Primary 54C10, 54D10, 54D15.
Key words and phrases. g-closed sets; g-regular spaces; g-normal spaces; Lindelöf spaces; g-
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Let f : X → Y be a map. f is called a perfect map, if f is a continuous and
closed map, and f−1(y) is compact for any y ∈ Y . f is called a g-continuous map [2],
if f−1(V ) is g-open in X for each open subset V of Y .

2. Related results of g-regular spaces

Lemma 2.1 ([10]). If f : X → Y is a map, A ⊂ X and B ⊂ Y . then f−1(B) ⊂ A
if and only if B ⊂ Y − f(X −A).

Lemma 2.2. Let f : (X, τ) −→ (Y, σ) be a g-continuous and closed map. If B is
a g-closed subset of Y , then f−1(B) is a g-closed subset of X.

Proof. Suppose f−1(B) ⊂ U ∈ τ , then B ⊂ Y − f(X − U) by Lemma 2.1.
Since f is a closed map, then Y − f(X − U) ∈ σ. B is g-closed in Y implies that
cl(B) ⊂ Y − f(X − U). By Lemma 2.1, f−1(cl(B)) ⊂ U . Since f is g-continuous,
then f−1(cl(B)) is g-closed in X. Thus cl(f−1(cl(B))) ⊂ U . Hence cl(f−1(B) ⊂ U .
Therefore, f−1(B) is g-closed in X. �

Theorem 2.1. Let f : X → Y be a g-continuous and closed map, and f−1(y) is
compact for any y ∈ Y . If X is g-regular, then Y is also g-regular.

Proof. Suppose y 6∈ B and B is g-closed in Y , then f−1(B)) is g-closed in X
by Lemma 2.2. y 6∈ B implies that f−1(y) ∩ f−1(B) = ∅. For every x ∈ f−1(y),
x 6∈ f−1(B), since X is g-regular, then there exist disjoint open subsets Ux and Vx
of X such that x ∈ Ux and f−1(B) ⊂ Vx. Since {Ux : x ∈ f−1(y)} is a open cover
of set f−1(y) and f−1(y) is compact, then {Ux : x ∈ f−1(y)} has a finite subcover
{Uxi : i 6 n}. Put

U =
n⋃
i=1

Uxi
, V =

n⋂
i=1

Vxi
.

Then U, V are disjoint open subsets of X, f−1(y) ⊂ U and f−1(B) ⊂ V . By
Lemma 2.1, y ∈ Y − f(X − U) and B ⊂ Y − f(X − V ). Let G = Y − f(X − U) and
W = Y − f(X − V ), then G,W are open in Y . U ∩ V = ∅ implies that (X − U) ∪
(X − V ) = X − U ∩ V = X. Thus W ∩G = ∅. Therefore, (Y, σ, I) is g-regular. �

Corollary 2.1. Let f : X → Y be a perfect map. If X is g-regular, then Y is
also g-regular.

Theorem 2.2. g-regular Lindelöf spaces are g-normal spaces.

Proof. Suppose X is a g-regular Lindelöf space. For each pair of disjoint g-
closed subsets A and B of X, x ∈ A implies x 6∈ B. Since X is g-regular, then there
exists disjoint open subsets Ux and Wx of X such that x ∈ Ux and B ⊂ Wx. Now
Ux
⋂
Wx = ∅ implies cl(Ux)

⋂
Wx = ∅. So cl(Ux)

⋂
B = ∅. U = {Ux : x ∈ A} is

an open cover of set A. A ⊂
⋃
x∈A

Ux, since A is g-closed in X, then cl(A) ⊂
⋃
x∈A

Ux.

So U ∪ {X − cl(A)} is an open cover of X. Note that X is a Lindelöf space. Thus
U ∪ {X − cl(A)} has a countable subcover {Un : n ∈ N} ∪ {X − cl(A)}. So X =

(
∞⋃
n=1

Un)
⋃

(X − cl(A)). Hence A ⊂ cl(A) ⊂
∞⋃
n=1

Un, where cl(Un)
⋂
B = ∅ for any

n ∈ N .
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y ∈ B implies y 6∈ A. Since X is g-regular, then there exists disjoint open
subsets Vy and Ly of X such that y ∈ Vy and A ⊂ Ly. Now Vy

⋂
Ly = ∅ implies

cl(Vy)
⋂
Ly = ∅. So cl(Vy)

⋂
A = ∅. V = {Vy : y ∈ B} is an open cover of set B.

Similarly, there exists a countable subset {Vn : n ∈ N} of V such that B ⊂
∞⋃
n=1

Vn,

where cl(Vn)
⋂
A = ∅ for any n ∈ N .

Put

Gn = Un −
n⋃
i=1

cl(Vi), G =
∞⋃
n=1

Gn,

Wn = Vn −
n⋃
i=1

cl(Ui), W =
∞⋃
n=1

Wn.

Obviously, for each n ∈ N , Gn and Wm are open in X. So G and W are open in
X.

Claim : for any n,m ∈ N , Gn ∩Wm = ∅.
(1) If m 6 n, then Wm ⊂ Vm ⊂

m⋃
i=1

cl(Vi) ⊂
n⋃
i=1

cl(Vi). Since Gn
⋂ n⋃
i=1

cl(Vi) = ∅,

then Gn
⋂
Wm = ∅. (2) If m > n, then Gn ⊂ Un ⊂

n⋃
i=1

cl(Ui) ⊂
m⋃
i=1

cl(Ui). Since

Wm

⋂ m⋃
i=1

cl(Ui) = ∅, then Wm

⋂
Gn = ∅. Thus, for any n,m ∈ N , Gn ∩Wm = ∅.

Therefore, G
⋂
W =

∞⋂
n, m=1

(Gn ∩Wm) = ∅.

We will prove that A ⊂ G and B ⊂W .

For x ∈ A, A ⊂
∞⋃
i=1

Un implies that x ∈ Un for some n ∈ N .

Since cl(Vi)∩A = ∅ for any i ∈ N , then x 6∈ cl(Vi) for any i ∈ N . So x 6∈
n⋃
i=1

cl(Vi).

Thus x ∈ Gn, so x ∈ G. Therefore A ⊂ G.
The proof of B ⊂W is similar. �

Lemma 2.3. Let (X, τ) be a space. Then
(1) If A ⊂ Y ⊂ X, A is g-closed in Y and Y is closed in X, then A is g-closed in

X.
(2) If A ⊂ Y ⊂ X, A is g-closed in X, then A is g-closed in Y .
(3) If B, Y ⊂ X, B is g-closed in X and Y is closed in X, then B∩Y is g-closed

in X.

Proof. (1) Suppose A ⊂ U ∈ τ , then A ⊂ U ∩ Y ∈ τY . Since A is g-closed
in Y , then cl(A) ∩ Y = clY (A) ⊂ U ∩ Y . Since A ⊂ Y and Y is closed in X, then
cl(A) ⊂ Y . Thus cl(A) ⊂ U ∩ Y ⊂ U . Therefore A is g-closed in X.

(2) Suppose A ⊂ U ∈ τY , then U = V ∩ Y for some V ∈ τ . Now A ⊂ V ∈ τ .
Since A is g-closed in X, then cl(A) ⊂ V . Thus clY (A) = cl(A) ∩ Y ⊂ V ∩ Y = U .
Therefore A is g-closed in Y .

(3) Suppose B ∩ Y ⊂ U ∈ τ , then B ⊂ U ∪ (X − Y ) ∈ τ . Since B is g-closed
in X, then cl(B) ⊂ U ∪ (X − Y ). Thus cl(B ∩ Y ) ⊂ cl(B) ∩ cl(Y ) = cl(B) ∩ Y ⊂
(U ∪ (X − Y )) ∩ Y = U ∩ Y ⊂ U . Therefore B ∩ Y is g-closed in Y . �



70 ZHAOWEN LI

Lemma 2.4 ([12]). If (X, τ) is g-regular and Y is closed in X, then Y is g-regular.

Theorem 2.3. Let {Xα : α ∈ Λ} be a family of pairwise disjoint spaces. Then⊕
α∈

∧Xα is a g-regular space if and only if every Xα is a g-regular space.

Proof. The proof of Necessity follows from Lemma 2.7.
Sufficiency. Let X =

⊕
α∈

∧Xα and let x 6∈ F and F be g-closed in X. Since every

Xα is open-and-closed in X, then for any α ∈ Λ, F ∩Xα is g-closed in Xα by Lemma
2.6. Obviously, there exists β ∈ Λ such that x ∈ Xβ . Since Xβ is g-regular, then there
exist disjoint open subsets U and V of Xβ such that x ∈ U and F ∩ Xβ ⊂ V . So
F ⊂ V ∪ (X −Xβ). Since Xβ is open-and-closed in X, then U and V ∪ (X −Xβ) are
disjoint open subsets of X. Therefore X is g-regular. �

3. Related results of g-normal spaces

Theorem 3.1. X is g-normal if and only if for each g-closed subset F of X and
g-open subset W of X containing F , there exists a sequence {Un} of open subsets of

X such that F ⊂
∞⋃
n=1

Un and cl(Un) ⊂W for any n ∈ N .

Proof. The proof of Necessity is obvious.
Sufficiency. Suppose A and B are disjoint g-closed subsets of X. Let F = A and

W = X−B, by hypothesis, there exists sequence {Un} of open subsets of X such that

A ⊂
∞⋃
n=1

Un and cl(Un) ∩B = ∅ for any n ∈ N .

And let F = B and W = X − A, by hypothesis, there exists a sequence {Vn} of
open subsets of X such that

B ⊂
∞⋃
n=1

Vn and cl(Vn) ∩A = ∅ for any n ∈ N .

Put

Gn = Un −
n⋃
i=1

cl(Vi), G =
∞⋃
n=1

Gn,

Hn = Vn −
n⋃
i=1

cl(Ui), H =
∞⋃
n=1

Hn.

Obviously, for each n ∈ N , Gn and Hm are open in X. So G and H are open in
X.

By a similar way as in the proof of Theorem 2.5, we can prove that G
⋂
H = ∅,

A ⊂ G and B ⊂ H. �

Below we give Urysohn’s Lemma on g-normal spaces.

Theorem 3.2. X is g-normal spaces if and only if for each pair of disjoint g-
closed subsets A and B of X, there exists a continuous mapping f : X → [0, 1] such
that f(A) = {0} and f(B) = {1}.

Proof. Sufficiency. Suppose for each pair of disjoint g-closed subsets A and B
of X, there exists a continuous mapping f : X → [0, 1] such that f(A) = {0} and
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f(B) = {1}. Put U = f−1([0, 1/2)), V = f−1((1/2, 1]), then U and V are disjoint
open subsets of X such that A ⊂ U and B ⊂ V . Hence X is g-normal.

Necessity. Suppose X is g-normal. For each pair of disjoint g-closed subsets A
and B of X, A ⊂ X − B, where A is g-closed and X − B in X is g-open in X, by
Corollary 2.12 in [14], there exists an open subset U1/2 of X such that

A ⊂ U1/2 ⊂ cl(U1/2) ⊂ X −B.
Since A ⊂ U1/2, A is g-closed in X and U1/2 is g-open in X, then there exists an

open subset U1/4 of X such that A ⊂ U1/4 ⊂ cl(U1/4) ⊂ U1/2 by Corollary 2.12 in
[14]. Since cl(U1/2) ⊂ X−B, cl(U1/2) is g-closed in X and X−B is g-open in X, then
there exists an open subset U3/4 of X such that cl(U1/2) ⊂ U3/4 ⊂ cl(U3/4) ⊂ X −B
by Corollary 2.12 in [14]. Thus, there exist two open subsets U1/2 and U3/4 of X such
that

A ⊂ U1/4 ⊂ cl(U1/4) ⊂ U1/2 ⊂ cl(U1/2) ⊂ U3/4 ⊂ cl(U3/4) ⊂ X −B.
We get a family {Um/2n : 1 6 m < 2n, n ∈ N} of open subsets of X, denotes

{Um/2n : 1 6 m < 2n, n ∈ N} by {Uα : α ∈ Γ}. {Uα : α ∈ Γ} satisfies the following
condition:

(1) A ⊂ Uα ⊂ cl(Uα) ⊂ X −B,
(2) if α < α′, then cl(Uα) ⊂ Uα′ .

We define f : X → [0, 1] as follows:

f(x) =

{
inf{α ∈ Γ : x ∈ Uα}, if x ∈ Uα for some α ∈ Γ,
1, if x 6∈ Uα for any α ∈ Γ.

For each x ∈ A, x ∈ Uα for any α ∈ Γ by (1), so f(x) = inf{α ∈ Γ : x ∈ Uα} =
infΓ = 0. Thus, f(A) = {0}.

For each x ∈ B, x 6∈ X − B implies x 6∈ Uα for any α ∈ Γ by (1), so f(x) = 1.
Thus, f(B) = {1}.

We have to show f is continuous.
For x ∈ X and α ∈ Γ, we have the following Claim:
Claim 1: if f(x) < α , then x ∈ Uα.
Suppose f(x) < α, then inf{α ∈ Γ : x ∈ Uα} < α, so there exists α1 ∈ {α ∈

Γ : x ∈ Uα} such that α1 < α. By (2), cl(Uα1) ⊂ Uα. Notice that x ∈ Uα1 . Hence
x ∈ Uα.

Claim 2: if f(x) > α , then x 6∈ cl(Uα).
Suppose f(x) > α, then there exists α1 ∈ Γ such that α < α1 < f(x). Notice

that α1 ∈ {α ∈ Γ : x ∈ Uα} implies α1 > inf{α ∈ Γ : x ∈ Uα} = f(x). Thus,
α1 6∈ {α ∈ Γ : x ∈ Uα}. So x 6∈ Uα1

. By (2), cl(Uα) ⊂ Uα1
. Hence x 6∈ cl(Uα).

Claim 3: if x 6∈ cl(Uα), then f(x) > α.
Suppose x 6∈ cl(Uα), we claim that α < β for any β ∈ {α ∈ Γ : x ∈ Uα}.

Otherwise, there exists β ∈ {α ∈ Γ : x ∈ Uα} such that α > β. x 6∈ cl(Uα) implies
α 6∈ {α ∈ Γ : x ∈ Uα}. So α 6= β. Thus α > β. By (2), cl(Uβ) ⊂ Uα. So
x 6∈ β, contridiction. Therefore α < β for any β ∈ {α ∈ Γ : x ∈ Uα}. Hence
α 6 inf{α ∈ Γ : x ∈ Uα} = f(x).
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For x0 ∈ X, if f(x0) ∈ (0, 1), suppose V is an open neighborhood of f(x0) in [0, 1],
then there exists ε > 0 such that (f(x0) − ε, f(x0) + ε) ⊂ V

⋂
(0, 1). Pick α′, α′′ ∈ Γ

such that
0 < f(x0)− ε < α′ < f(x0) < α′′ < f(x0) + ε < 1.

By Claim 1 and Claim 2, x0 ∈ U ′′α , x0 6∈ cl(U ′α). Put U = U ′′α − cl(U ′α), then U
is an open neighborhood of x0 in X.

We will prove that f(U) ⊂ (f(x0) − ε, f(x0) + ε). if y ∈ f(U), then y = f(x)
for some x ∈ U . x ∈ U implies that x ∈ U ′′α and x 6∈ cl(U ′α). Since x ∈ U ′′α , then
α′′ ∈ {α ∈ Γ : x ∈ Uα}. Thus, α′′ > inf{α ∈ Γ : x ∈ Uα} = f(x). Notice that
α′′ < f(x0) + ε. Therefore f(x) < f(x0) + ε. Since x 6∈ cl(U ′α), then f(x) > α′

by Claim 3. Notice that f(x0) − ε < α′. Therefore f(x) > f(x0) − ε. Hence,
f(U) ⊂ (f(x0)− ε, f(x0) + ε).

Therefore, f(U) ⊂ V . This implies f is continuous at x0.
if f(x0) = 0, or 1, the proof that f is continuous at x0 is similar. �

Theorem 3.3. Let f : X → Y be a g-continuous and closed map. If X is g-
normal, then Y is g-normal.

Proof. Suppose A and B are disjoint g-closed subsets of Y , then f−1(A) and
f−1(B) are disjoint g-closed subsets of X by Lemma 2.2. Since X is g-normal, then
exist disjoint open subsets U and V of X such that f−1(A) ⊂ U and f−1(B) ⊂ V .
By Lemma 2.1, A ⊂ Y − f(X −U) and B ⊂ Y − f(X − V ). Note that Y − f(X −U)
and Y − f(X − V ) are disjoint open subsets of Y . Hence X is g-normal. �

Corollary 3.1. Let f : X → Y be a continuous and closed map. If X is g-
normal, then Y is g-normal.

Theorem 3.4. Let {Xα : α ∈ Λ} be a family of pairwise disjoint spaces. Then⊕
α∈

∧Xα is a g-normal space if and only if every Xα is a g-normal space.

Proof. The proof of Necessity follows from that fact that the g-normality is
closed heredity.

Sufficiency. Let X =
⊕
α∈

∧Xα and let A and B be disjoint g-closed subsets of X.

Then for any α ∈ Λ, A∩Xα and B∩Xα are disjoint g-closed subsets of Xα by Lemma
2.8. Since Xα is g-regular, then there exist disjoint open subsets Uα and Vα of Xα

such that A ∩Xα ⊂ Uα and B ∩Xα ⊂ Vα.
Clearly,

A = A
⋂
X = A

⋂
(
⋃
α∈

∧Xα) ⊂ U =
⋃
α∈

∧Uα,

B = B
⋂
X = B

⋂
(
⋃
α∈

∧Xα) ⊂ V =
⋃
α∈

∧Vα.

If α 6= β, then Uα ∩ Vβ ⊂ Xα ∩ Xβ = ∅. Thus for any α, β ∈ Λ, Uα ∩ Vβ = ∅.
Hence U

⋂
V =

⋂
α, β∈Λ

(Uα ∩ Vβ) = ∅.

Since every Xα is open in X, then U and V are open in X. Therefore X is
g-normal. �
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