SCIENTIA
Series A: Mathematical Sciences, Vol. 22 (2012), 19–25
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2012

On *h*-Purifiable Submodule of QTAG-module

Gargi Varshney and M.Z. Khan

ABSTRACT. Different concept and decomposition theorems have been done for QTAG-modules by a number of authors. The concept of quasi h-pure submodules were introduced and different characterizations were obtained in [5]. The purpose of this paper is to obtain the relation between purifiability of a submodule and quasi h-pure submodules. Further we obtained results which shows that purifiability of a submodule is very much dependent on the purifiability of a h-pure and h-dense submodule of the given submodule.

Introduction: S. Singh [9] introduced the concept of QTAG-module and did different decomposition theorems. A module M_R is called QTAG-module if it satisfies the condition : Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. Since the different concepts for QTAG-modules have been introduced by different authors and various results based on those concepts have been obtained. In [5], Mohd. Z. Khan and A. Zubair introduced the concept of quasi h-pure submodules and obtained various characterizations and their consequences. In this paper we continue the similar study in term of purifiability of submodules and obtained a characterization. We have also established a necessary and sufficient condition for a submodule to be h-purifiable.

1. **Preliminaries:** Rings considered here are with unity $(1 \neq 0)$ and modules are unital QTAG-module. A module in which the lattice of its submodules is totally ordered is called a serial module; in addition if it has finite composition length it is called uniserial module. An element $x \in M$ is called uniform if xR is a non zero uniform (hence uniserial) submodule of M. If $x \in M$ is uniform then e(x) = d(xR)(The composition length of xR), $H_M(x) = \sup\{d(yR/xR)/x \in yR \text{ and } y \in M$ is uniform } are called exponent of x and height of x in M respectively. For any $n \ge 0, H_n(M) = \{x \in M/H_M(x) \ge n\}$. A submodule N of M is called h-pure in Mif $H_k(N) = N \cap H_k(M)$ for all $k \ge 0$, N is h-neat in M if $H_1(N) = N \cap H_1(M)$. The

²⁰⁰⁰ Mathematics Subject Classification. Primary 16D70 Secondary 20K10.

Key words and phrases. h-dense submodule, almost h-dense submodule, h-pure submodule, h-pure submodule, h-pure hull.

¹⁹

module M is called *h*-divisible if $H_1(M) = M$. For other basic concepts of QTAGmodule one may see [2,3,4,7,8,9].

2. Purifiability

Firstly we recall the following:

Lemma A [2]: If A and B are any two uniserial submodules of a QTAG-module M such that $A \cap B \neq 0$ and $d(A) \leq d(B)$. Then there exists a monomorphism $\sigma: A \longrightarrow B$, which is identity on $A \cap B$.

Definition 2.1:[8] A submodule N of a QTAG-module M is called h-dense if M/N is h-divisible.

Definition 2.2:[7] A submodule N of a QTAG-module M is said to be almost h-dense in M if for every h-pure submodule K of M containing N, M/K is h-divisible.

Now we restate the following :

Theorem 2.3: [Theorem 5, 7] A submodule N of a QTAG-module M is almost h-dense in M if and only if $N + H_n(M) \supseteq Soc(H_{n-1}(M))$ for all $n \ge 1$.

Now before defining the h-purifiable submodule, we would like to adopt the following notations and results from [5].

Notation 2.4 [5]: For any non-negative integer t and for a submodule N of a QTAGmodule M, we denote by $N^t(M)$ the submodule $(N + H_{t+1}(M)) \cap Soc(H_t(M))$, by $N_t(M)$ the submodule $(N \cap Soc(H_t(M))) + Soc(H_{t+1}(M))$ and by $Q_t(M, N) = N^t(M)/N_t(M)$.

It is trivial to see that

$$N^{t}(M) = (N + H_{t+1}(M)) \cap Soc(H_{t}(M))$$
$$= Soc(N \cap H_{t}(M) + H_{t+1}(M))$$

and

$$N_t(M) = (N \cap Soc(H_t(M))) + Soc(H_{t+1}(M))$$
$$= (Soc(N))^t(M)$$

Theorem 2.5 [Theorem 4.2, 5]: If N and K are submodules of QTAG-module M such that $N \subseteq K$ and K is h-pure in M, then the module $Q_n(M, N)$ and $Q_n(K, N)$ are isomorphic, for all n.

Theorem 2.6 [Theorem 4.3, 5]: If N is *h*-neat submodule of M, then N is *h*-pure in M if and only if $Q_n(M, N) = 0$ for all $n \in Z^+$.

Now we define h-purifiable submodule:

Definition 2.7: A submodule N of a QTAG-module M is called h-purifiable in M if there exists a submodule K of M minimal among the h-pure submodules of M containing N.

Such K is called h-pure hull of N in M.

Now we restate the following:

Theorem 2.8 [6]: A submodule N of a QTAG-module M is h-purifiable in M if and only if there exists a h-pure submodule K of M such that $Soc(H_n(K)) \subseteq N \subseteq K$ for some $n \in Z^+$.

Proposition 2.9: If N is a h-purifiable submodule of a QTAG-module M; then there exists $m \in Z^+$ such that $Q_n(M, N) = 0$ for all $n \ge m$.

Proof: If N itself is an h-pure submodule, then by [Theorem 4.7, 5], $Q_n(M, N) = 0$ for all $n \ge 0$. Now appealing Theorem 2.8, we get an h-pure submodule K of M and $m \in Z^+$ such that $Soc(H_m(K)) \subseteq N \subseteq K$. Now for $n \ge m$ it is trivial to see that $N^n(K) = (N + H_{n+1}(K)) \cap Soc(H_n(K)) = Soc(H_n(K)) = N_n(K)$. Hence, $Q_n(K, N) = 0$ for all $n \ge m$. Therefore from Theorem 2.5, we get $Q_n(M, N) = 0$ for all $n \ge m$.

Now we generalize [Theorem 66.3, 1] and is of very interesting nature.

Theorem 2.10: If M is a QTAG-module then every h-dense subsocle of M supports an h-pure and h-dense submodule.

Proof: Let S be a subsocle of M and S be h-dense; then $Soc(M) = S + Soc(H_k(M))$ for all $k \in Z^+$. Let N be maximal with the property Soc(N) = S. Firstly we show that N is h-neat submodule of M. Let x be a uniform element in $N \cap H_1(M)$, then for a uniform element $y \in M$, we have d(yR/xR) = 1. If $y \in N$, then $x \in H_1(N)$. Let $y \notin N$ then $S \underset{\neq}{\subset} Soc(N + yR)$. Hence, there exists a uniform element $z \in Soc(N + xR)$ such that $z \notin S$ and z = u + yr where $u \in N$ and $r \in R$. Trivially yrR = yR, hence without any loss of generality we can assume z = u + y. Define $\eta : yR \longrightarrow uR$ such that $\eta(yr) = ur$. Let yr = 0, then zr = ur. If zrR = zR then $z \in S$, a contradiction, therefore zr = 0 and we get ur = 0, consequently η is a well defined epimorphism. Therefore, uR is a uniform submodule. Since $u + y \in Soc(M)$, $H_1(uR) = H_1(yR)$, but xR is a maximal submodule of M; hence $H_1(yR) = xR$ and we get $x \in H_1(N)$. Thus, $N \cap H_1(M) = H_1(N)$. Now suppose $N \cap H_n(M) = H_n(N)$ and let x be a uniform element in $N \cap H_{n+1}(M)$; then d(yR/xR) = 1 for some uniform element $y \in H_n(M)$. Since N is h-neat in M, there is a uniform element $y' \in N$ such that d(y'R/xR) = 1. Hence by Lemma A, there is an isomorphism $\sigma: yR \longrightarrow y'R$ which is identity on xR. The map $\eta: yR \longrightarrow (y-y')R$ where $\sigma(y) = y'$ is an epimorphism with $xR \subseteq \text{Ker } \eta$. Hence, $e(y - y') \leq 1$ and we get $y - y' \in Soc(M) = S + Soc(H_n(M))$. Therefore, y - y' = s + t for some $s \in S, t \in H_n(M)$. Consequently, $y - t = y' + s \in N \cap H_n(M) = H_n(N)$. Since $y - y' - s \in Soc(M), H_1(yR) = H_1((y' + s)R) \subseteq H_{n+1}(N)$. Hence, $x \in H_{n+1}(N)$. Therefore, N is h-pure submodule of M.

Now let $\bar{x} \in Soc(M/N) = (Soc(M) + N)/N$ be a uniform element; then by [Lemma 3.9, 9] there exists a uniform element $x' \in M$ such that $\bar{x} = \bar{x'}$ and e(x') = 1. Since $Soc(M) = S + Soc(H_k(M))$ for all k, we get $\bar{x} \in H_k(M/N)$ for every k. Hence, $\bar{x} \in \bigcap_{k=1}^{\infty} H_k(M/N)$ and appealing to [Theorem 3.11, 9], we get M/N is h-divisible. Hence, N is h-dense in M.

Observation: Using the notations used earlier, the *h*-purity can be established as: Since $Soc(M) = Soc(N) + Soc(H_k(M))$ for all $k \in Z^+$, it is easy to see that $N^n(M) = N_n(M)$ and $Q_n(M, N) = 0$ for all $n \in Z^+$. Since N is *h*-neat, therefore by [Theorem 4.7, 5], N is *h*-pure in M.

Theorem 2.11: If N is almost h-dense submodule of a QTAG-module M. Then N is h-purifiable in M if and only if there exists $m \in Z^+$ such that $Q_n(M, N) = 0$ for all $n \ge m$.

Proof: Let N be h-purifiable then by Theorem 2.9, we get $Q_n(M, N) = 0$ for all $n \ge m$. Conversely, suppose that $Q_n(M, N) = 0$ for all $n \ge m$ and N is almost h-dense in M. Then $N^n(M) = N_n(M) = Soc(N \cap H_n(M)) + Soc(H_{n+1}(M))$. Since N is almost h-dense in M, therefore by Theorem 2.3, we get $Soc(H_n(M)) = Soc(N \cap H_n(M)) + Soc(H_{n+1}(M))$ for all $n \ge m$. Therefore, $Soc(N \cap H_m(M))$ is h-dense subsocle of $H_m(M)$. Now appealing to Theorem 2.10, we can find an h-pure submodule K of $H_m(M)$ such that $Soc(K) \subseteq N \cap H_m(M) \subseteq K$. It is easy to see that $H_m(M)/K$ is h-divisible submodule of M/K and $H_m(M)/K \cap (N+K)/K = 0$. Hence there exists a submodule T/K such that $(N + K)/K \subseteq T/K$ and $M/K = H_m(M)/K \oplus T/K$. Now by [Proposition 2.5, 4], T is h-pure submodule of M. Trivially $T \cap H_m(M) = K$, but $T \cap H_m(M) = H_m(T)$; so $H_m(T) = K$. Hence, $Soc(H_m(K)) \subseteq Soc(K) \subseteq N$. Hence by Theorem 2.8, we get N to be h-purifiable.

3. Role of *h*-pure and *h*-dense submodules

In this section we show that h-purifiability of a submodule depends upon the h-purifiability of an h-pure and h-dense submodule of the given submodule.

Firstly we prove the following results for obtaining a necessary and sufficient condition for h-purifiability.

Theorem 3.1: If B is an h-pure and h-dense submodule of a submodule K of a QTAG-module M, then $Q_n(M, N) = Q_n(M, B)$ for all $n \in Z^+$.

Proof: Since B is h-dense in K, then we have $K = B + H_{n+1}(K)$ for all $n \ge 0$ and hence, $K + H_{n+1}(M) = B + H_{n+1}(M)$. Therefore, $K^n(M) = B^n(M)$ for all $n \ge 0$. Further, $K_n(M) = (Soc(K))^n(M) = (Soc(K) + H_{n+1}(M)) \cap Soc(H_n(M))$ Now appealing to [Prop.6, 3], we get

$$K_n(M) = \left(Soc(B) + Soc(H_{n+1}(K)) + H_{n+1}(M)\right) \cap Soc(H_n(M))$$
$$= \left(Soc(B) + H_{n+1}(M)\right) \cap Soc(H_n(M))$$
$$= B_n(M)$$

Hence, $Q_n(M, K) = Q_n(M, B)$.

Proposition 3.2: If B is a h-pure and h-dense submodule of a submodule K of a QTAG-module M. If K is h-purifiable in M, then B is h-purifiable in M.

Proof: Let T be a h-pure hull of K in M. Since B is h-dense in K we get, K/B is h-divisible, so $T/B = K/B \oplus L/B$. Appealing to [Proposition 2.5, 4] we get, L to be h-pure submodule of T and hence L is h-pure in M. Let N be a h-pure submodule of M such that $B \subseteq N \subseteq L$. Then we claim that K + N is a h-pure submodule of M. Since $K = B + H_n(K)$, we have $K + N = H_n(K) + N$. Therefore,

$$(K+N) \cap H_n(M) = (H_n(K)+N) \cap H_n(M)$$
$$= H_n(K) + (N \cap H_n(M))$$
$$= H_n(K) + H_n(N)$$
$$= H_n(K+N)$$

for all $n \ge 0$.

Since T is a h-pure hull of K in M, we have K + N = T and

$$L = (K + N) \cap L = N + (K \cap L) = N + B = N$$

Therefore, L is a h-pure hull of B in M.

Proposition 3.3: If B is a h-pure and h-dense submodule of a submodule K of a QTAG-module M and if N be a h-pure hull of B in M and Soc(N) = Soc(B), then K + N is a h-pure hull of K in M.

Proof: Since K/B is h-divisible, we have $K = B + H_n(K)$. Now $K + N = B + H_n(K) + N = N + H_n(K)$ and hence $(K + N) \cap H_n(M) = (N + H_n(K)) \cap H_n(M) = H_n(K) + N \cap H_n(M) = H_n(K) + H_n(N) = H_n(K + N)$ for all $n \ge 0$. Therefore, K + N is h-pure submodule of M. Since Soc(N) = Soc(B), so $Soc(K \cap N) = Soc(B)$, so $N \cap K$ is an essential extension of B in K. Since h-pure submodules have no proper essential extensions, therefore we get, $K \cap N = B$. Now we show that Soc(K + N) = Soc(K), which will yield that N + K is h-pure hull of K in M. Using [Lemma 1, 2] we can proceed as: If $x \in Soc(K + N)$ then $H_1(xR) = 0$ and x = k + t where $k \in K, t \in N$, then $H_1(tR) = H_1(kR) \subseteq N \cap K = B \cap H_1(K) = H_1(B)$. Hence, $H_1(tR) = H_1(kR) = H_1(bR)$ for $b \in B$. Hence, $k - b \in Soc(K)$ and $t + b, t - b \in Soc(N) = Soc(B)$. Hence $x = k - b + b + t \in Soc(K)$ and we get Soc(K + N) = Soc(K).

Proposition 3.4: If K is a h-pure hull of a submodule N of a QTAG-module M such that $Soc(K) \neq Soc(N)$. Then there exists $m \in Z^+$ such that $Q_m(M, N) \neq 0$.

Proof: From Theorem 2.8 and Theorem 2.3, there exists $n \in Z^+$ such that $Soc(H_n(K)) \subseteq N$ and $Soc(H_t(K)) \subseteq N + H_{t+1}(K)$ for all $t \ge 0$. Since $Soc(K) \ne Soc(N)$, the smallest n such that $Soc(H_n(K)) \subseteq N$, we have $n \ne 0$.

Now taking n = m - 1, $N^m(K) = Soc(H_m(K))$ while $N_m(K) \subset N$. Therefore, $N^m(K) \neq N_m(K)$ but by [Theorem 2.1, 5], $Q_m(M,N) \cong Q_m(M,K) \neq 0$. Hence, $Q_m(M,N) \neq 0$.

Proposition 3.5: Let N be a submodule of a QTAG-module M. if N is h-purifiable in M, then $N \cap H_n(M)$ is h-purifiable in $H_n(M)$ for all $n \ge 0$. Conversely, if $N \cap H_n(M)$ is h-purifiable in $H_n(M)$ for some $n \ge 1$, then N is h-purifiable in M.

Proof: Let K be h-pure hull of N in M, then trivially $H_n(K)$ is h-pure submodule $H_n(M)$ for all $n \in Z^+$. Also $H_n(K) = K \cap H_n(M) \supseteq N \cap H_n(M)$.

Now we claim that $H_n(K)$ is *h*-pure hull of $N \cap H_n(M)$ in $H_n(M)$. Let *T* be *h*-pure submodule of $H_n(M)$ such that $H_n(K) \supseteq T \supseteq N \cap H_n(M)$. Trivially $N \cap H_n(K) \subseteq N \cap H_n(M)$ and $N \cap H_n(K) \supseteq T \cap N \supseteq N \cap H_n(M)$; consequently $H_n(K) \supseteq T \supseteq N \cap H_n(M) = N \cap H_n(K)$. Now appealing to [Theorem 4.12, 5], we can extend N + T to an *h*-pure submodule *D* of *K* such that $D \cap H_n(K) = T$ (we can note that $(N + T) \cap H_n(K) = T + N \cap H_n(K) = T$). Thus, D = K and we get $H_n(K) = T$. Hence, $H_n(K)$ is *h*-pure hull of $N \cap H_n(M)$ in $H_n(M)$. Conversely, let $N \cap H_n(M)$ be *h*-purifiable in $H_n(M)$ and *T* be *h*-pure hull of $N \cap H_n(M)$ in $H_n(M)$. Then as done above $(N + T) \cap H_n(M) = T$ and N + T can be extended to an *h*-pure submodule *K* of *M* such that $K \cap H_n(M) = T$. Clearly $T = H_n(K)$. Appealing to Theorem 2.8 there exists $m \in Z^+$ such that $Soc(H_m(T)) \subseteq H_n(M)$; so $Soc(H_{m+n}(K)) \subseteq N \subseteq K$. Hence by Theorem 2.8, *N* is *h*-purifiable in *M*.

Theorem 3.6: If N is a submodule of a QTAG-module M. Then N is h-purifiable if and only if all basic submodules of N are h-purifiable.

Proof: Let all basic submodules of N be h-purifiable. Then by Theorem 3.1 and Theorem 2.11, there exists $m \in Z^+$ such that $Q_n(M, N) = 0$ for all $n \ge m$. Hence $Q_n(H_m(M), N \cap H_m(M)) = 0$ for all $n \ge 0$. Let B be a basic submodule of $N \cap H_n(M)$; then $N/B = (N \cap H_n(M))/B \oplus T/B$ and we get T to be h-pure in N (see [Proposition 2.5, 4]) also $T/B \cong N/(N \cap H_m(M)) \cong (N + H_m(M))/H_m(M)$ is trivially bounded. Hence, T is also a direct sum of uniserial modules and we get T to be a basic submodule of N. As given, T is h-purifiable in M, therefore $T \cap H_m(M) = B$ is h-purifiable in $H_m(M)$ by Proposition 3.5; consequently B is h-purifiable basic submodule of $N \cap H_m(M)$ in $H_m(M)$, and $Q_n(H_m(M), B) = 0$ for all $n \ge 0$. Now let Lbe a h-pure hull of B in $H_m(M)$, then $Q_n(L, B) = 0$ for all $n \ge 0$, and by Proposition 3.4, Soc(L) = Soc(B). Hence by Proposition 3.3, $N \cap H_m(M)$ is h-purifiable in $H_m(M)$ and so by Proposition 3.5, N is h-purifiable in M. The converse follows from Theorem 3.2.

Lastly we prove the following result which is of particular interest.

Theorem 3.6: If N is almost h-dense submodule of a QTAG-module M and K is h-pure hull of Soc(N). Then $Q_n(M,N) \cong (Soc(H_n(M)) + K) / (Soc(H_{n+1}(M)) + K))$ for all $n \in \mathbb{Z}^+$.

Proof: As N is almost h-dense in M, then appealing to Theorem 2.3, we have $N^n(M) = Soc(H_n(M))$ Since K is h-pure hull of Soc(N) in M, Soc(K) = Soc(N). Therefore, $N_n(M) = Soc(N \cap H_n(M)) + Soc(H_{n+1}(M)) = Soc(H_n(K)) + Soc(H_{n+1}(M))$. So we get $Q_n(M, N) = Soc(H_n(M))/(Soc(H_n(K)) + Soc(H_{n+1}(M)))$. Now we define a map $\eta : Q_n(M, N) \longrightarrow (Soc(H_n(M)) + K)/(Soc(H_{n+1}(M)) + K)$ given as $\eta(x + Soc(H_n(K)) + Soc(H_{n+1}(M))) = x + Soc(H_{n+1}(M)) + K$. Then trivially η is well defined and onto homomorphism. Now we show that η is one-one. Let $x + Soc(H_n(K)) + Soc(H_{n+1}(M)) \in \text{Ker } \eta$, then $x \in Soc(H_{n+1}(M)) + K$, so $x = y + k, y \in Soc(H_{n+1}(M)), k \in K$ and we get $x - y = k \in K \cap Soc(H_n(M))$ but K is h-pure in M; hence $x - y \in Soc(H_n(K))$, which yields $x \in Soc(H_n(K)) + Soc(H_{n+1}(M))$. Therefore, Ker $\eta = 0$ and we get η to be an isomorphism.

References

- [1] L. Fuchs: Infinite Abelian Groups, Vol-I, Academic Press, New York, (1973).
- [2] M. Zubair Khan: On h-purity in QTAG-modules, Communications in Algebra, 16 (1988), 2649-2660.
- [3] M. Zubair Khan: On h-purity in QTAG-modules II, Communications in Algebra, 17 (1989), 1387-1394.
- [4] M. Zubair Khan and R. Bano: Some decomposition theorems in abelian groups like modules, Soochow J. Math., 18 (1992), 1-7.
- [5] M. Zubair Khan and A. Zubair: On Quasi h-pure submodules of QTAGmodules, Internat. J. Math. and Math. Sci., 24 (2000), 493-499.
- [6] M. Zubair Khan and Gargi Varshney: Some decomposition theorems on QTAG-modules, Communicated.
- [7] Mofeed Ahmad, A. Halim Ansari and M. Zubair Khan: Some decomposition theorems on S₂ modules, *Tamkang J. Math.*, 11 (1980), 203-208.
- [8] Mofeed Ahmad, A. Halim Ansari and M. Zubair Khan: Some decomposition theorems on S₂ modules III, *Tamkang J. Math.*, 12 (1981), 147-154.
- [9] S. Singh: Abelian groups like modules, Act. Math. Hung., 50 (1987), 85-95.

Received 12 06 2011 , revised 04 05 2012

Current address: Department of Mathematics, Aligarh Muslim University, Aligarh-202 002, India *E-mail address*: gargi2110@gmail.com

E-mail address: mz alig@yahoo.com