SCIENTIA
Series A: Mathematical Sciences, Vol. 21 (2011), 75–78
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2011

$Y\overline{X}$ domination in bipartite graphs

Y. B. Venkatakrishnan ^a and V. Swaminathan ^b

ABSTRACT. A subset S of X is called a $Y\overline{X}$ dominating set if S is a Y-dominating set and X-S is not a X-dominating set. A subset S of X is called a minimal $Y\overline{X}$ dominating set if any proper subset of S is not a $Y\overline{X}$ dominating set. The minimum cardinality of a minimal $Y\overline{X}$ dominating set is called the $Y\overline{X}$ domination number of G and is denoted by $\gamma_{Y\overline{X}}(G)$. In this paper some results on $Y\overline{X}$ domination number are obtained.

1. Introduction

Let G = (X, Y, E) be a bipartite graph. The bipartite theory of graphs were introduced in [1, 2] and the parameters called X-domination number and Y-domination number were introduced. Two vertices u, v in X are X-adjacent if they are adjacent to a common vertex in Y. The X-neighborhood set of u denoted by $N_Y(u)$ is defined as $N_Y(u) = \{v : u \text{ and } are X - V_Y(u) \}$ adjacent}. The X-degree denoted by $d_Y(u) = |N_Y(u)|$. The minimum and maximum X-degree of a graph G denoted by $\delta_Y(G)$ and $\Delta_Y(G)$ is defined as $\delta_Y(G) = \min\{d_Y(u) : u \in X\}$ and $\Delta_Y(G) = \max\{d_Y(u) : u \in X\}$. A subset D of X is an X-dominating set if every vertex in X - D is X-adjacent to at least one vertex in D. A X-dominating set [1] S is a minimal Xdominating set if no proper subset of S is X-dominating set. The minimum cardinality of a minimal X-dominating set is called the X-domination number of G and is denoted by $\gamma_X(G)$. A subset $S \subseteq X$ which dominates all vertices in Y is called a Y-dominating set [1] of G. The Y-domination number denoted by $\gamma_Y(G)$ is the minimum cardinality of a Y-dominating set of G. A subset S of X is hyper independent [1] if there does not exist a vertex $y \in Y$ such that $N(y) \subseteq S$. The maximum cardinality of a hyper independent set of G is denoted by $\beta_h(G)$. A subset $S \subseteq X$ is hyper X-independent if $N_Y(x) \notin S$, for every $x \in S$. The maximum cardinality of a hyper X-independent set of G is called hyper X-independence number and is denoted by $\beta_{hX}(G).$

75

²⁰⁰⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. $Y\overline{X}$ -dominating set, Y-dominating set, X-dominating set.

2. $Y\overline{X}$ dominating set

DEFINITION 1. A subset S of X is called a $Y\overline{X}$ dominating set if S is a Y-dominating set and X - S is not a X-dominating set.

A subset S of X is called a minimal $Y\overline{X}$ dominating set if any proper subset of S is not a $Y\overline{X}$ dominating set. The minimum cardinality of a minimal $Y\overline{X}$ dominating set is called the $Y\overline{X}$ domination number of G and is denoted by $\gamma_{Y\overline{X}}(G)$.

EXAMPLE 1.

 $S = \{c\}$ is a Y-dominating set but not $Y\overline{X}$ -dominating set. $D = \{a, b, c\}$ is a $Y\overline{X}$ -dominating set.

REMARK 1. If X contains an isolated vertex, then any Y-dominating set will be a $Y\overline{X}$ -dominating set. Therefore, hereafter, by a graph G we mean a bipartite graph G = (X, Y, E); |X| = p, without loops, multiple edges and with no isolated vertex in X and Y.

Remark 2. $\gamma_Y(G) \leq \gamma_{Y\overline{X}}(G)$.

OBSERVATION 1. The complement of a minimal $Y\overline{X}$ -dominating set need not be a $Y\overline{X}$ -dominating set. Consider the graph

 $S = \{a, b\}$ is a minimal $Y\overline{X}$ -dominating set but $X - S = \{c, d\}$ is not a $Y\overline{X}$ -dominating set.

THEOREM 1. Let G be a graph. A Y-dominating set S is a $Y\overline{X}$ -dominating set if and only if S is not a hyper X-independent set.

Proof. Let S be a $Y\overline{X}$ -dominating set of G. Then, X-S is not a X-dominating set. Therefore, there exists $x \in S$ such that x is not X-adjacent to any vertex of X-S. Equivalently, $x \in S$ such that $N_Y(x) \subseteq S$. Therefore, S is not hyper X-independent set.

Conversely, let S be a Y-dominating set which is not a hyper X-independent set. That is, there exists $x \in S$ such that $N_Y(x) \subseteq S$. Equivalently, x is not X-adjacent to any vertex of X - S. Therefore, X - S is not a X-dominating set. Hence, S is a $Y\overline{X}$ -dominating set. \Box

THEOREM 2. A subset S of X is a $Y\overline{X}$ - dominating set if and only if (i) X - S is a hyper independent set. (ii) S is not a hyper X-independent set.

Proof. A subset S of X is a $Y\overline{X}$ -dominating set of G. Then, S is a Y-dominating set and X - S is not a X-dominating set. By Theorem 1, S is not a hyper X-independent set. Since S is a Y-dominating set, every $y \in Y$ is adjacent to a vertex of S. Therefore, $N(y) \notin (X - S)$. Hence, X - S is a hyper independent set.

Conversely, conditions (i) and (ii) hold. By the condition (i), X - S is a hyper independent set. Therefore, $N(y) \not\subseteq (X - S)$ for all $y \in Y$. Hence, every $y \in Y$ is adjacent to a vertex of S. Therefore, S is a Y-dominating set. By condition (ii) S is not a hyper X-independent set. Therefore, by Theorem 1, S is a $Y\overline{X}$ -dominating set. \Box

THEOREM 3. For any graph G, every $\gamma_{Y\overline{X}}$ -set intersects with every γ_X -set of G.

Proof. Let S be a γ_X -set of G and let D be a $\gamma_{Y\overline{X}}$ -set of G. Suppose $S \cap D = \phi$, then $S \subseteq X - D$, then X - D contains a X-dominating set S. Therefore, X - D itself a X-dominating set, which is a contradiction.

THEOREM 4. Let S be a $Y\overline{X}$ -dominating set of a graph G. Then S is minimal $Y\overline{X}$ -dominating set if and only if for each vertex $u \in S$ one of the following conditions are satisfied: (i) u has a private neighborhood.

(i) V (Q (Q) V) V (Q

(ii) $X - (S - \{u\})$ is a X-dominating set of G.

Proof. Let S be a minimal $Y\overline{X}$ -dominating set. On the contrary if there exists a vertex $u \in S$ such that u does not satisfy any of the given conditions (i) and (ii), then $S_1 = S - \{u\}$ is a Y-dominating set and $X - (S - \{u\})$ is not a X-dominating set, a contradiction, to S is a minimal $Y\overline{X}$ -dominating set.

Conversely, suppose that S is a $Y\overline{X}$ -dominating set and for each vertex $u \in S$, one of the two conditions holds. Suppose S is not a minimal $Y\overline{X}$ -dominating set. That is there exists $u \in S$ such that $S - \{u\}$ is a $Y\overline{X}$ - dominating set of G. Therefore, $S - \{u\}$ is a Y-dominating set of G. Every $y \in Y$ is adjacent to a vertex $u_1 \in S - \{u\}$, that is condition (i) does not hold. Since $S - \{u\}$ is a $Y\overline{X}$ -dominating set of G, thus $X - (S - \{u\})$ is not a X-dominating set, a contradiction to (ii).

3. Bounds for $Y\overline{X}$ -domination number

THEOREM 5. For any graph G, $\delta_Y(G) + 1 \leq \gamma_{Y\overline{X}}(G) \leq \gamma_Y(G) + \delta_Y(G)$.

Proof. Let $v \in X$ be a vertex with $d_Y(v) = \delta_Y(G)$. Then every $Y\overline{X}$ -dominating set must contain v and X-neighborhood of v. Therefore, $\delta_Y(G) + 1 \leq \gamma_{Y\overline{X}}(G)$.

Let S be a γ_Y -set of G. Let $u \in X$ be such that $d_Y(u) = \delta_Y(G)$. Then at least one vertex $u_1 \in N_Y[u]$ belongs to S. Therefore, $S \cup (N_Y[u] - \{u_1\})$ is a $Y\overline{X}$ -dominating set of G. Therefore, $\gamma_{Y\overline{X}}(G) \leq |S \cup (N_Y[u] - \{u_1\})| = \gamma_Y(G) + \delta_Y(G)$.

THEOREM 6. For any graph G, if $\gamma_{Y\overline{X}}(G) = 2$, then $\Delta_Y(G) = p - 1$ and $\delta_Y(G) = 1$.

Proof. Let us assume $\gamma_{Y\overline{X}}(G) = 2$. By Theorem 5, $\delta_Y(G) \leq \gamma_{Y\overline{X}}(G) - 1 = 2 - 1 = 1$. But $\delta_Y(G) \geq 1$. Hence, $\delta_Y(G) = 1$. Since, $\gamma_Y(G) \leq \gamma_{Y\overline{X}}(G) = 2$. Therefore, $\gamma_Y(G) \leq 2$. If $\gamma_Y(G) = 1$ then $\Delta_Y(G) = p - 1$. Let $\gamma_Y(G) = 2$. Let x_1, x_2 be the two vertices which dominate Y. Let us assume $\Delta_Y(G) \neq p - 1$. Any vertex in X cannot be a X-dominating set. Every Y-dominating set is a X-dominating set. Therefore, $\{x_1, x_2\}$ is a minimal X-dominating set. Complement of a minimal X-dominating set is a X-dominating set. Therefore, $\{x_1, x_2\}$ is a minimal X-dominating set. Complement of a minimal X-dominating set. Therefore, $\gamma_{Y\overline{X}} \geq 3$, a contradiction. Hence, $\Delta_Y(G) = p - 1$.

OBSERVATION 2. Converse of the above need not be true. Consider the graph

References

- Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs I, Congressus Numerantium, Volume 55; December 1986, 5–14.
- [2] Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs II, Congressus Numerantium, Volume 64; November 1988, 137-146.

Received 02 09 2010, revised 18 03 2011

^a Department of Mathematics, SASTRA University, Tanjore, India.

E-mail address: venkatakrish2@maths.sastra.edu

^b Reader(Retd.), Ramanujan Research center, Saraswathi Narayanan College, Madurai, India.

 $E\text{-}mail\ address:\ \texttt{sulanesri@yahoo.com}$