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On Some QTAG-Modules

Alveera Mehdi

Abstract. In this paper we study totally projective QTAG-modules and the

extensions of bounded QTAG-modules. In the first section we study totally pro-

jective modules M/N and M ′/N ′ where N , N ′ are isomorphic nice submodules
of M and M ′ respectively. In fact the height preserving isomorphism between

nice submodules is extented to the isomorphism from M onto M ′ with the help

of Ulm-Kaplansky invariants. In the second section extensions of the bounded
QTAG-modules are studied. Here the invariants are automorphisms of bounded

submodules of the extending module together with the cardinality of the minimal

generating set of maximal summand of the extension module. The equivalence of
epimorphisms is the main tool in this study.

1. Introduction.

All the rings R considered here are associative with unity. A module M over R
is a QTAG-module if any finitely generated submodule of any homomorphic image
of M is a direct sum of uniserial modules. Here modules are unital. If the lattice
of the submodules of M is totally ordered, it is called a serial module and if the
composition length of a serial module is finite it is a uniserial module. An x ∈ M
is uniform if xR is a nonzero uniform (hence uniserial) submodule of M . For any
module M with a composition series, d(M) denotes its length. For a uniform element
x ∈M , e(x) = d(xR) is the exponent of x and H(x) the height of x is sup{d(U/xR)}
where U runs through all the uniserial modules containing x. For an integer k > 0,
Hk(M) is the submodule of M generated by the elements of height at least k and

M1 =
∞⋂

k=0

Hk(M) or HωM . M is k-bounded if H(x) 6 k for all x ∈ M and it is

h-divisible if M1=M (or H1(M) = M). A submodule N of M is h-pure in M if
Hk(N) = Hk(M) ∩N for all k ∈ Z+ and it is h-neat in M if H1(M) ∩N = H1(N).
The isotype submodule N ⊂M is defined as Hσ(N) = Hσ(M)∩N by using transfinite
induction where Hσ(M)=

⋂
ρ<σ

Hρ(M). For the next ordinal ω+1, Hω+1(M) is defined
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as H1(Hω(M)) and Hω2(M) is Hω(Hω(M)). N is nice in M if for all ordinals σ,
Hσ(M/N) = (Hσ(M) +N)/N .

M is reduced if it doesn’t contain any h-divisible module or it is free from the ele-
ments of infinite height. For a reduced QTAG-module, there is a chain of submodules
M = M0 ⊃M1 ⊃M2 ⊃M3 ⊃ ......Mτ = 0 for some ordinal τ , where Mσ+1= (Mσ)1.
If ρ is a limit ordinal then Mρ is equal to Mρ =

⋂
σ<ρ

Mσ. Here Mσ is the σth Ulm

submodule of M and Mσ = Mσ/Mσ+1 is the σth Ulm factor of M . M0,M1, · · · ,, is
the Ulm sequence of M and τ is the length of M .

The cardinality of the minimal generating set of uniform elements of M is denoted
by g(M) and the σth Ulm-Kaplansky invariant ofM , fM (σ) is g(Soc(Hσ(M))/Soc(Hσ+1(M))).

2. Nice Submodules of Totally Projective QTAG-Modules

In a QTAG-module M , a submodule N ⊂ M is nice if Hσ(M/N) = (Hσ(M) +
N)/N for all ordinals σ, i.e. every coset of M modulo N may be represented by an
element of the same height and x is said to be proper with respect to N if x is the
element of maximum height in x+N [3].

We start by the following result :

Proposition 2.1. In a QTAG-module M , N ⊂ M is nice in M if and only if every
coset of N contains an element of maximum height.

Proof. Suppose every coset of N has an element of maximum height. Assume on
contrary that N is not nice. Let x + N ∈ M/N such that HM/N (x + N) > HM (x),
x + N be the coset of minimum height and x be the element of maximum height in

x+N . Let y +N ∈M/N such that d
( (y +N)R

(x+N)R

)
= 1 and H(y +N) > H(x) where

y is the element of maximum height in y +N . Since x +N ∈ (y +N)R, x = yr + z
for some r ∈ R, z ∈ N , implying that H(y) < H(x). Also H(y) = H(y +N) > H(x).

This implies that N is nice in M . The converse is trivial.

From the above discussion the following consequences are immediate:

(i) Direct summands of a QTAG-module are nice.
(ii) All finitely generated submodules are nice.
(iii) For every ordinal α, Hα(M) is always nice in M .

We may recall that x ∈ x+N is the element of maximum height in x+N , then
x is proper with respect to N .

Proposition 2.2. Let N, K be submodules of a QTAG-module M such that K is
nice in M and N/K is nice in M/K. Then N is nice in M .
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Proof. Consider x+N ∈M/N . Since M/N is nice in M/K, we have HM/N (x+N) =
H(x + K + N/K) = H(x + y + z) for some suitable y ∈ K, z ∈ N and the results
follows.

To study nice modules and totally projective modules in the light of Ulm invariants
we need the following definitions:

Definition 2.3. For a submodule N of a QTAG-module M and an ordinal α we
define N(α) = {x | x ∈ M, e(x) 6 1, H(x) > α and H(x + y) > α for some y ∈ N},
i.e.

N(α) = Soc(Hα(M)) ∩ (N +Hα+1(M)).

Definition 2.4. For a submodule N of QTAG-module M and an ordinal α, the αth

Ulm invariant of M relative to N is defined as

fα(M,N) = g
(
SocHα(M)/(SocHα(M) ∩ (Hα+1(M) +N))

)
[2.8, 4]

Remark 2.5. Soc(Hα(M)) ∩
(
Hα+1(M) + N)

)
is same as N(α) and if N = 0,

fα(M,N) = fM (α).

Definition 2.6. Let N , N ′ be submodules of QTAG-modules M , M ′ respectively. A
homomorphism f : M → M ′ is said to be height preserving if HM (x) = HM ′(f(x))
for every uniform element x ∈ N .

Theorem 2.7. Let N, N ′ be nice submodules of QTAG-modules M and M ′ re-
spectively such that M/N and M ′/N ′ are reduced. Let f : N → N ′ be a height
preserving isomorphism and fα(M,N) = fα(M ′, N ′). For each ordinal α consider an
isomorphism ψα : Soc(Hα(M))/N(α) → Soc(Hα(M ′))/N ′(α). If x ∈ M , then there
are nice submodules K and K ′ of M and M ′ respectively and a height preserving
isomorphism f1 : K → K ′ extending f such that

(a) K = N + xR
(b) K/N and K ′/N ′ are finitely generated
(c) for each ordinal α, ψα induces an isomorphism K(α)/N(α) → K ′(α)/N ′(α)
(d) fα(M,K) = fα(M ′,K ′)

Proof. Consider an element x ∈M which is proper with respect to N such that there
exists an element y ∈ N satisfying d(xR/yR) > 1.

Now H(y) > H(x) + 1. Let H(x) = β. Now two cases arise.

Case 1. If H(y) > β + 1, consider an element z with H(z) > β and yR = z′R where

d
( zR
z′R

)
= 1.

Then e(x−z) = 1, H(x−z) = β and x−z is proper with respect to N . Therefore
if ψβ(x − z + N(β)) = u + N ′(β) then e(u) = 1 and H(u) = β and u is proper with
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respect to N ′. Consider an element w with height greater than β and d
(wR
vR

)
= 1 for

some v. We define f(y) = v and extend f by sending x to w+u. We put K = N +xR
and K ′ = N ′ + (w + u)R. The submodules K and K ′ are nice because K/N , K ′/N ′

are finitely generated and N, N ′ are nice. For the ordinals α(6= β), K(α) = N(α)
and K ′(α) = N ′(α) and ψα induces an isomorphism K(α)/N(α) → K ′(α)/N ′(α). If
α = β then x − z ∈ K(α) and ψα(x − z +N(α)) = u +N ′(α) ∈ K ′(α)/N ′(α). Now
d(K/N) = 1 and there is a natural epimorphism K/N → K(α)/N(α). Therefore
g(K(α)/N(α)) = g(K ′(α)/N ′(α)) = 1 and ψα induces an isomorphism, implying (d).
Case 2. If H(y) = β + 1. Again consider an element w such that H(w) > β and an

element v with d
(wR
vR

)
= 1. Let f(y) = v. Then H(w) = β because H(v) = β + 1. If

H(w + w′) > β + 1 where w′ ∈ N ′, then H(w′) = β and w′ = f(u) where H(u) = β
and H(x + u) = β. Therefore x + u is proper with respect to N and H(x′) > β + 1

where d
( (x+ u)R

x′R

)
= 1. If w ∈ N ′ then w = 0 and H(w) > H(x), thus following case

(i) we may infer that w is proper with respect to N . We may extend f by defining
f(x) = w. Let K = N + xR and K ′ = N ′ + wR. If α > β, then x ∈ Hα+1(M)
and u + x + N(α) = 0 therefore K(α)/N(α) = 0 = K ′(α)/N ′(α). If α = β then
H(x+ u) = β and H(x′) > β + 1. Again by case (i) K(α)/N(α) = 0 = K ′(α)/N ′(α)
and the result follows. A p-group is totally projective if and only if it has a nice system
[Th 82.3,1]. On the similar lines it can be proved for QTAG-modules. Thus totally
projective QTAG-modules may be defined in terms of nice submodules as follows:

Definition 2.8. A reduced QTAG-module M is totally projective if there is a family
A of nice systems of M such that

(i) {0} ∈ A;
(ii) the sum of the submodules of any subset of A is in A;
(iii) if N,K ∈ A and N/K is countably generated, then there exists L ∈ A with

L ⊇ N and L/N is countably generated.

Remark 2.9. Countably generated reduced QTAG-modules are totally projective.

Now we are able to prove the following theorem:

Theorem 2.10. Let M, M ′ be QTAG-modules and N, N ′ their nice submodules
respectively. Let M/N and M ′/N ′ be totally projective and fα(M,N) = fα(M ′, N ′).
Then every height preserving isomorphism ψ : N → N ′ extends to an isomorphism
from M to M ′.

Proof. Let ψα : Soc(Hα(M))/N(α) → Soc(Hα(M ′))/N ′(α) be an isomorphism for
every ordinal α. Since M/N and M ′/N ′ are totally projective, there exist families
A, A′ of nice submodules of M/N and M ′/N ′ respectively [Definition 2.8]. Let F
be the family of all height preserving isomorphisms L→ L′, which are the extensions
of ψ such that L/N ∈ A, L′/N ′ ∈ A′ and for each α, ψα induces an isomorphism
L(α)/N(α) → L′(α)/N ′(α). Now F contains a maximal element ψ0 : L→ L′ and by
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assumption the Ulm invariants fα(M,L) = fα(M ′, L′) and by Proposition 2.3 L and L′

are nice submodules and for each α, ψα induces an isomorphism Soc(Hα(M))/L(α) →
Soc(Hα(M ′))/L′(α).

Let M 6= L and x ∈ M , x 6∈ L. By Theorem 2.7 there are nice submodules K =
L+xR and K ′ = L′+ψ0(x)R and a height preserving isomorphism K → K ′ extending
ψ0 such that ψα induces an isomorphism K(α)/N(α) → K ′(α)/N ′(α) and hence an

isomorphism K(α)/N(α) → K ′(α)/N ′(α). Now K ⊂ L1 such that L1 = K+
∞∑

i=1

x1iR,

L1/N ∈ A. Again there is a height preserving isomorphism mapping K + x1iR onto

K ′
1 which is an extension of the isomorphism K → K ′. Now K ′

1 ⊂ L′1 = K ′
1 +

∞∑
i=1

y2iR

with L′1/N
′ ∈ A′ and there is a height preserving isomorphism K1 → K ′

1 +y21R which

extends the previous isomorphism. Now K1 ⊂ L2 = K1 +
∞∑

i=1

x2iR with L2/N ∈ A.

This implies that there is a height preserving isomorphism K1+x12R+x21R→ K ′
2

extending the previous isomorphism. Now K ′
2 ⊂ L′2 = K ′

2 +
∞∑

i=1

y3iR with L′2/N
′ ∈

A′. On repeating the process we get a height preserving isomorphism from ∪Li =
∪Ki → ∪L′i, extending ψ0 and satisfying the given conditions. But (∪Li)/N ∈ A and
(∪L′i)/N ′ ∈ A′. This implies that L = M . Similarly L′ = M ′.

Remark 2.11. Two totally projective QTAG-modules are isomorphic if they have
the same Ulm invariants.

3. Extensions of Bounded QTAG-Modules

Among the QTAG-modules without elements of infinite height the closed modules
[2] and the direct sums of uniserial modules are very significant. For these two types of
QTAG-modules, Ulm invariants play an important role to distinguish non-isomorphic
modules. In the previous section we characterized totally projective modules of arbi-
trary length in terms of nice submodules. Here we study the modules M for which
H1(M1) = 0 andM/M1 is closed. These modules form a class of extensions of modules
N for which H1(N) = 0.

Let M be a QTAG-module. To study the extensions by M of 1-bounded QTAG-
module, we consider the family of epimorphisms f : N →M such that H1(Ker f) = 0.

Definition 3.1. In the class of epimorphisms f : N → M , H1(Ker f) = 0, two
epimorphisms f1 and f2 are equivalent if there exists an isomorphism φ from the
domain of f1 to the domain of f2 and an automorphism ψ of M such that ψf1 = f2φ.
This is denoted by (ψ, φ) : f1 ∼= f2.

Remark 3.2. With f : N →M we associate a cardinal number m(f) and a submod-
ule Kf ⊆M such that

m(f) = g(Ker f/H1(N) ∩Ker f)
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and
Kf = f(Soc(N)).

Definition 3.3. Two submodules L1 and L2 of a QTAG-module M are equivalent if
∃ an automorphism ψ of M such that ψ(L1) = L2. This is denoted by ψ : L1

∼= L2.
Remark 3.4. If (ψ, φ) : f1 ∼= f2 then m(f1) = m(f2) and ψ : Kf1 → Kf2 i.e. m and

K are invariants. We start with the following results:

Lemma 3.5. Let f1 : N1 →M and f2 : N2 →M be epimorphisms such that Ker fi ⊆
Soc(H1(Ni)), i = 1, 2. Let ψ be an epimorphism of M such that ψf1(Soc(N1)) =
f2(Soc(N2)) and φ be a map from a h-neat submodule L of N1 to N2 such that
f2φ = ψf1 on L. Then φ may be extended to an epimorphism φ̄ : N1 → N2 such that
f2φ̄ = ψf1.

Proof. Consider x ∈ H1(N1). Now there exists y ∈ N1 such that d
(yR
xR

)
= 1.

Consider f−1
2 ψf1y = y′ (say). Now y′ ∈ N2 and there exists x′ ∈ N2 such that

d
(y′R
x′R

)
= 1. For x ∈ H1(N1) we define φ∗(x) = x′. In order to prove that φ∗ is a

homomorphism we have to show that φ∗(0) = 0.

But e(x) = 1 for all x ∈ Soc(N1), ψf1(Soc(N1)) = f2(Soc(N2)), f−1
2 f2(Soc(N2)) =

Soc(N2) + Ker f2 = Soc(N2) and H1(Soc(N2)) = 0.

Similarly the map given by x′ → x, is a map from H1(N2) to H1(N1) which is an
inverse for φ∗. Thus φ∗ is an isomorphism from H1(N1) to H1(N2), satisfying f2φ∗ =
ψf1 on H1(N1). Since L is h-neat and f2φ = ψf1, φ∗ = φ on H1(N1)∩L = H1(L). By
defining φ∗(z) = φ(z) for all z ∈ L, we may extend the domain of φ∗ to L+H1(N1).
Now N1/(L + H1(N1)) is 1-bounded. Consider the minimal generating set {x̄i} of
N1/(L+H1(N1)) where xi ∈ N1. Now the elements yi may be selected from N2 such
that ψf1(xi) = f2(yi). We may define

φ̄(x+ Σxiri) = φ∗(z) + Σyiri

where z ∈ L+H1(N1).

Since f2(yiri) = ψf1(xiri), z + Σxiri = 0 suggests that φ∗(x′iri) = y′iri where

d
(x′iR
xiR

)
= d

(y′iR
yiR

)
= 1, this implies that

φ̄(z + Σxiri) = φ∗(z) + φ∗(Σxiri) = φ∗(z + Σxiri) = φ∗(0) = 0,

again implying thatf2φ̄ = ψf1.
To prove that φ̄ is one to one consider φ̄(x) = 0.Now

f2φ̄(x) = ψf1(x) = 0,

which implies that

x ∈ Ker f1 ⊆ H1(N1).
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The image of φ̄ contains H1(N2) ⊇ Ker f2 and maps onto M under f2, it must
coincide with N2.

This implies that φ̄ is an isomorphism.

Lemma 3.6. Let N1, N2, M be the QTAG-modules and f1, f2 the homomorphisms
from N1, N2 onto M such that H1(Ker fi) = 0, i = 1, 2 and Ker f1/(H1(N1) ∩
Ker f1) ∼= Ker f2/(H1(N2) ∩ Ker f2). Then if ψ is an automorphism of M such that
ψf1(Soc(N1)) = f2(Soc(N2)), there exists an isomorphism φ : N1 → N2 such that
f2φ = ψf1.

Proof. Let Ker fi = (H1(Ni) ∩Ker fi)⊕ Li, i = 1, 2. Now L1
∼= L2 and being direct

summands Li are pure in Ni. Therefore we have Ni = Li ⊕N ′
i . By Lemma 3.5 when

L = 0 we may get a map from N ′
1 to N ′

2 which gives the required map φ : N1 → N2

when combined with any isomorphism from L1 to L2.

Lemma 3.7. Let M be a QTAG-module, m a cardinal number and K a submodule
of Soc(M). Then ∃ an epimorphism f : N →M such that H1(Ker f) = 0, m(f) = m
and Kf = K.

Proof. Consider a QTAG-module M0 such that H1(M0) = M and Soc(M0) =
Soc(M). This is possible because M0 is an extension of M with uniserial modules
of length one. Again consider a direct sum L of m uniserial modules of length one,
put N = L ⊕ M0/K and define f : N → M such that f(x) = 0 for x ∈ L and

f(x0 +K) = y0 where x0 ∈M0 and d
(x0R

y0R

)
= 1. Now x+ (x0 +K) ∈ Soc(N) if and

only if y0 ∈ K. This implies that f(Soc(N)) = K.

Again f(x + (x0 + K)) = 0 if and only if y0 = 0 and Soc(M0) = Soc(M) ⊆
H1(M0),which implies that

Ker f = L+ (H1(N) ∩Ker f) and m(f) = g(L) = m.

An immediate consequence of the above results may be stated as follows:

Theorem 3.8. Let M be a QTAG-module and A the class of extensions by M
of direct sum of uniserial modules of length 1, i.e. A be the class of epimorphisms
f : N →M such that H1(Ker f) = 0. Let A′ be the set of submodules of Soc(M), the
equivalence between f1, f2 ∈ A be a pair (ψ, φ) of isomorphisms such that ψf1 = f2φ,
and an equivalence between K1,K2 ∈ A′ be an automorphism ψ of M such that
ψ(K1) = K2. Then the map which associates to f , the pair (m(f),Kf ) gives a 1− 1
correspondence between equivalence classes of elements of A and pairs (m(f),Kf )
related to the elements of A′. If m(f1) = m(f2) and ψ : Kf1

∼= Kf2 , then ψ may
be lifted to an isomorphism φ such that (ψ, φ) : f1 ∼= f2. If m(f1) = 0 then φ can
be chosen to agree with any partial lifting of ψ whose domain is h-neat (or neat)
submodule of the domain of f1.

There are many other interesting problems which are still open.
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Problem 1. Let M be an uncountably generated QTAG-module with a countably
generated basic submodules. Then how many non-isomorphic submodulesN exist such
that H1(N1) is a uniserial module and N/H1(N1) is isomorphic to M . For a QTAG

module M , the submodules Hk(M), k = 0, 1, 2, · · · form a neighborhood system of
zero. Thus a topology arises known as h-topology. Closed and dense submodules are
already defined with respect to this topology[2]. bf Problem 2. Let M,M ′ be closed

QTAG-modules and N,N ′ dense submodules of Soc(M) and Soc(M ′) respectively. If
N,N ′ are isomorphic, is it possible to extend this to an isomorphism from M onto
M ′?
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