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c© Universidad Técnica Federico Santa Maŕıa 2011

The Tits alternative for short generalized tetrahedron groups

B. Fine a A. Hulpke b V. große Rebel c G. Rosenberger d S. Schauerte c

Abstract. A generalized tetrahedron group is defined to be a group admitting
the following presentation: 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) =

W r
3 (x, z) = 1〉, 2 ≤ l, m, n, p, q, r, where each Wi(a, b) is a cyclically reduced

word involving both a and b. These groups appear in many contexts, not least as
fundamental groups of certain hyperbolic orbifolds or as subgroups of generalized
triangle groups. In this paper, we build on previous work to show that the Tits
alternative holds for short generalized tetrahedron groups, that is, if G is a short
generalized tetrahedron group then G contains a non-abelian free subgroup or is
solvable-by-finite. The term Tits alternative comes from the respective property
for finitely generated linear groups over a field (see [Ti]).

1. Introduction

If T is a tetrahedron in 3-dimensional Euclidean, hyperbolic or spherical space
whose dihedral angles are submultiples of π, then the reflections in the faces of T
generate a discrete group of isometries. The index 2 subgroup of orientation-preserving
isometries in this group is generated by reflections around the edges of any of the faces
of T , and has a presentation of the form

(1.1) 〈x, y, z | xl = ym = zn = (xy−1)p = (yz−1)q = (zx−1)r = 1〉,
where 2 ≤ l, m, n, p, q, r. These groups are called ordinary tetrahedron groups. Coxeter
has shown in [Co] that an ordinary tetrahedron group of the form 1.1 is finite if and
only if the Coxeter matrix

(1.2) C =




1 − cos(π
l ) − cos( π

m ) − cos(π
n )

− cos(π
l ) 1 − cos(π

p ) − cos(π
r )

− cos( π
m ) − cos(π

p ) 1 − cos(π
q )

− cos(π
n ) − cos(π

r ) − cos(π
q ) 1
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has positive determinant. Following Vinberg we call a group G defined by a presenta-
tion

(1.3) G = 〈x, y, z | xl = ym = zn = W p
1 (x, y) = W q

2 (y, z) = W r
3 (x, z) = 1〉,

2 ≤ l, m, n, p, q, r, where each Wi(a, b) is a cyclically reduced word involving both a and
b, a generalized tetrahedron group. For the following we may always assume that each
Wi(a, b) also is not a proper power in the free product on a and b (that only would
increase the exponents). A generalized tetrahedron group G is called a Tsaranov
generalized tetrahedron group if, in addition, W1(x, y) = xαyβ , W2(y, z) = yγzδ,
W3(x, z) = xεzζ , with 1 ≤ α, ε < l, 1 ≤ β, γ < m, 1 ≤ δ, ζ < n. Here we call
a generalized tetrahedron group G a short generalized tetrahedron group if all the
cyclically reduced words Wi(a, b) have length ≤ 4 in the respective free product on a
and b.

Certain operations on presentations of this form 1.3 do not change the groups
defined by the presentations. With this in mind, we say that two presentations P1

and P2 of the form 1.3 are equivalent if P2 can be obtained from P1 by a sequence of
operations of the following type:

1. Replace a generator a of order k by a new generator d = aα, where α is
coprime to k, and then amend the relations accordingly.

2. Apply a permutation to the generators x, y and z.
3. If Vi(a, b) is a cyclically reduced conjugate of Wi(a, b) in the free product on

a and b, then replace the relator W ki
i (a, b) by V ki

i (a, b), where ki ∈ {p, q, r},
respectively.

4. Replace the relator W ki
i (a, b) by V ki

i (a, b), where Vi(a, b) is the inverse of
Wi(a, b) and ki ∈ {p, q, r}, respectively.

5. If a is a generator of order 2, if b is a generator of order k, if α and β are
coprime to k, and if we have a relator of the form W = (abα)2, then replace
W by (abβ)2.

It is clear that, if P1 and P2 are equivalent, then P1 and P2 define the same group. In
the following we often replace a presentation of the form 1.3 by an equivalent one and
work in fact up to equivalence. The purpose of this paper is to prove the following

Theorem 1.1. Let G be a short generalized tetrahedron group. Then G satisfies
the Tits alternative, that is, G contains a non-abelian free subgroup or is solvable-by-
finite.

2. Preliminary results

For the benefit of the reader, we will list here some preliminary definitions and
results we will need in this paper. Suppose that G is defined by the presentation
G = 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) = W r

3 (x, z) = 1〉 of the form
1.3. Let (after conjugation if necessary) W1(x, y) = xα1yβ1 . . . xαk1 yβk1 with k1 ≥ 1,
1 ≤ αi < l, 1 ≤ βi < m for each i. We similary take k2 and k3 to be half the length
of the cyclically reduced words W2(y, z) and W3(x, z) respectively. G can be realized
as a triangle of groups, that is, as the colimit of the diagram of groups and injective
homomorphisms shown in the figure in which
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G1 = 〈x, y | xl = ym = W p
1 (x, y) = 1〉,

G2 = 〈y, z | ym = zn = W q
2 (y, z) = 1〉,

G3 = 〈x, z | xl = zn = W r
3 (x, z) = 1〉,

A = 〈x | xl = 1〉, B = 〈y | ym = 1〉 and C = 〈z | zn = 1〉. We refer G1, G2 and G3 as
vertex groups and A,B, C as edge groups. Groups with a presentation as G1, G2 and
G3 are called generalized triangle groups. Using the improved Spelling Theorem for
generalized triangle groups Howie and Kopteva [HK] were able to show the following.

Theorem 2.1. Let G be a generalized tetrahedron group of the form 1.3 as above.
a) If 1

/
pk1

+ 1
/
qk2

+ 1
/
rk3

< 1 then G contains a non-abelian free subgroup.

b) If 1
/
pk1

+ 1
/
qk2

+ 1
/
rk3

= 1 then G contains a non-abelian free subgroup
except in the case of (up to equivalence)

〈x, y, z | x2 = y2 = z2 = (xy)p = (yz)q = (zx)r = 1〉
with 1

/
p + 1

/
q + 1

/
r = 1, where G is abelian-by-finite.

Hence, the Tits alternative holds, if the triangle of groups for G is negatively
curved or Euclidean. Therefore we are left with the spherical cases (up to equivalence)
S1 : 〈x, y, z | xl = ym = zn = W p

1 (x, y) = (yγzδ)2 = (xεzζ)2 = 1〉, p ≥ 2.
S2 : 〈x, y, z | xl = ym = zn = (xαyβ)p = (yγzδ)q = (xεzζ)r = 1〉, p ≥ 3,

and q ≥ 3, r = 2 with 1
/
p + 1

/
q > 1

/
2 or

q = 2, r ≥ 3 with 1
/
p + 1

/
r > 1

/
2.

S3 : 〈x, y, z | xl = ym = zn = (xα1yβ1xα2yβ2)2 = (yγzδ)q = (xεzζ)r = 1〉,
(q, r) = (2, 3) or (q, r) = (3, 2).
We call a generalized tetrahedron group a short spherical generalized tetrahedron

group if it is short and spherical.
We also need several preliminary results about linear representations. Let G be

a generalized tetrahedron group given by a presentation of the form 1.3. If L is a
linear group and G → L is a representation of G in L, we say that ρ is essential if
the elements ρ(x), ρ(y), ρ(z), ρ(W1(x, y)), ρ(W2(y, z)) and ρ(W3(x, z)) have orders
l, m, n, p, q, r respectively in ρ(G). In this case, we also have essential representations
of the three generalized triangle groups G1, G2 and G3, defined above as the vertex
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groups of the triangle of groups for G. In the following we use the notation G1, G2

and G3 for these vertex groups for G.

Theorem 2.2. [FLRR] Every generalized tetrahedron group admits an essential
representation in PSL(2,C).

The next Theorem (see [FR] and [ERST]) is very useful to prove Theorem 1.1.

Theorem 2.3 (Fortsetzungssatz). Let G be the generalized tetrahedron group de-
fined by the presentation G = 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) =

W r
3 (x, z) = 1〉 and let G1 be the generalized triangle group defined by the presentation

G1 = 〈x, y | xl = ym = W p
1 (x, y) = 1〉. Suppose that ρ1 is an essential representation

of G1 into PSL(2,C) with X = ρ1(x) and Y = ρ1(y) and that one of the following two
possibilities occurs:

(1) tr([X, Y ]) 6= 2;
(2) (n, q, r) 6= (2, 2, 2) and 〈X, Y 〉 is an infinite metabelian subgroup of PSL(2,C).

Then there is an essential representation ρ : G → PSL(2,C) such that X = ρ(x) and
Y = ρ(y).
Moreover, if in case (1) the group 〈X, Y 〉 is non-elementary, then G contains a non-
abelian free subgroup in both cases.

Remark 2.4. A subgroup of PSL(2,C) is said to be non-elementary if it is not
solvable-by-finite; such a subgroup must contain a free subgroup of rank 2.

If G1 is as in Theorem 2.3 and 〈X,Y 〉 is an abelian group other than the elementary
abelian group of order 4, then there always exists an essential representation σ : G1 →
PSL(2,C) such that 〈σ(x), σ(y)〉 is an infinite metabelian group.

From this we get the following extensions for which we have to look at certain
special cases for G1. A proof is given in [FR] together with a little correction in
[EHRT].

Theorem 2.5. Let G be the generalized tetrahedron group defined by the presen-
tation G = 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) = W r

3 (x, z) = 1〉 and
suppose l ≤ m and that W1(x, y) = xα1yβ1 . . . xαk1 yβk1 , 1 ≤ αi < l, 1 ≤ βi < m for
all i, where k1 ≥ 2 and W1(x, y) is not a proper power in the free product on x and y.
Assume further that one of the following holds

1) m ≥ 4 and p ≥ 3;
2) p ≥ 4;
3) l ≥ 3 and p ≥ 3.

Then G contains a non-abelian free subgroup.

Theorem 2.6. Let G be the generalized tetrahedron group defined by the presenta-
tion G = 〈x, y, z | xl = ym = zn = W p

1 (x, y) = W q
2 (y, z) = W r

3 (x, z) = 1〉 and suppose
l ≤ m and that W1(x, y) = xα1yβ1 . . . xαk1 yβk1 , k1 ≥ 1 and 1 ≤ αi < l, 1 ≤ βi < m
for all i. Suppose that 1

/
l + 1

/
m + 1

/
p < 1 and (n, q, r) 6= (2, 2, 2). Then G contains

a non-abelian free subgroup.
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Theorems 2.3, 2.5 and 2.6 hold in a symmetric manner for the vertex groups G2

and G3 also.
Using the above preliminary results we were able to prove the following.

Theorem 2.7. [FHgRR] Let G be a generalized tetrahedron group given by a
presentation of the form 1.3. If (p, q, r) 6= (2, 2, 2) then G satisfies the Tits alternative,
that is, G contains a non-abelian free subgroup or is solvable-by-finite.

From Theorem 2.7 and the result of Howie and Kopteva now the Tits alternative
holds unless G has a presentation (up to equivalence)

(2.1) G = 〈x, y, z | xl = ym = zn = W 2
1 (x, y) = (yγzδ)2 = (xεzζ)2 = 1〉,

with W1(x, y) = xα1yβ1 · · ·xαkyβk , k ≥ 1, l, m, n ≥ 2; 1 ≤ α1, . . . , αk, ε < l, 1 ≤
β1, . . . , βk, γ < m and 1 ≤ δ, ζ < n. We may assume 2 ≤ l ≤ m.

For this situation we have a preliminary result.

Theorem 2.8. [FR] Let G be a generalized tetrahedron group given by a presen-
tation of the form 1.3 with (p, q, r) = (2, 2, 2). Suppose l ≤ m and 1

/
l + 1

/
m < 1

/
2.

Then G has a free subgroup of rank two with the possible exceptions n = 2 and
(l, m) = (3, 8), (3, 10), (4, 5), (4, 6), (4, 8) or (5, 6).

Theorem 2.8 holds in a symmetric manner for the vertrex groups G2 and G3 also.
We now would like to prove that the Tits alternative holds in general for (p, q, r) =

(2, 2, 2). Unfortunately, all the methods used in [FHgRR] do not work analogously
in this case. The situation is much more difficult. Hence, to get an impression, we
consider in the following short spherical generalized tetrahedron groups.

Let G be a short spherical generalized tetrahedron group. If G is equivalent to a
Tsaranov generalized tetrahedron group then G satisfies the Tits alternative.

Theorem 2.9. [HgRR] Let G be a Tsaranov generalized tetrahedron group. Then
G satisfies the Tits alternative, that is, G contains a non-abelian free subgroup or is
solvable-by-finite.

In the following we consider short spherical generalized tetrahedron groups which
are not equivalent to Tsaranov generalized tetrahedron groups.

Theorem 2.10.
Let A,B, C, D ∈ SL(2,C) with A ·B = C and D arbitrary. Let

A =
(

a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
, C =

(
c1 c2

c3 c4

)
, D =

(
d1 d2

d3 d4

)
,

~d =




d1

d2

d3

d4


 , ~r =




tr(D)
tr(AD)
tr(BD)
tr(CD)


 and M =




1 0 0 1
a1 a3 a2 a4

b1 b3 b2 b4

c1 c3 c2 c4


 .

Then M · ~d = ~r and det(M) = tr([A,B]) − 2. Moreover, if det(M) 6= 0, that
is tr([A,B]) 6= 2, then detD = d1d4 − d2d3 = 1 defines a quadratic polynomial
f(t) ∈ K[t], K = Q(a1, a2, a3, a4, b1, b2, b3, b4, tr(D), tr(AD), tr(BD)), with highest
coefficient α2 = −1

/
det M and zeros tr(ABD) and tr(BAD).
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This Theorem may be used in the following manner. Let G be a generalized
tetrahedron group with vertex groups G1, G2 and G3 as above. Let ρ1 : G1 →
PSL(2,C), ρ1(x) = X, ρ2(y) = Y , be an essential representation of G1 into PSL(2,C).
Let 〈X, Y 〉 be non-cyclic and finite, that is, 〈X,Y 〉 is isomorphic to a dihedral group
D2n, n ≥ 2, A4, S4 or A5. We remark that tr([X, Y ]) 6= 2. Then we use Theorem 2.10
to construct Z to get an essential representation ρ : G → PSL(2,C) with ρ(x) = X,
ρ(y) = Y and ρ(z) = Z. If XY Z has infinite order then 〈X, Y, Z〉 is non-elementary,
and hence, G has a non-abelian free subgroup.

3. Proof of the Main Theorem 1.1

In the following let G be a short spherical generalized tetrahedron group given by
a presentation

(3.1) G = 〈x, y, z | xl = ym = zn = (xα1yβ1xα2yβ2)p = (yγzδ)q = (xεzζ)r = 1〉,
with 2 ≤ l, m, n, p, q, r and 1 ≤ α1, α2, ε < l, 1 ≤ β1, β2, γ < m and 1 ≤ δ, ζ < n. We
may assume l ≤ m. We have m ≥ 3 because W1(x, y) = xα1yβ1xα2yβ2 is not a proper
power.

In what follows we always use the known fact that the only finite subgroups of
PSL(2,C) are, up to isomorphism, the cyclic groups Zn for all n ∈ N, the dihedral
groups D2n for all n ∈ N, n ≥ 2, the alternating groups Ak for k = 4, 5 and the
symmetric group S4.

In many cases a generalized tetrahedron group G has in an obvious manner an
ordinary tetrahedron group as a homomorphic image. If this image has a free subgroup
of rank 2, then G also has one. For ordinary tetrahedron groups we have a criterion
which only depends on the orders of the relators, that is, on the Coxeter Matrix C.

Theorem 3.1. [FHgRR] Let G be an ordinary tetrahedron group, given by the
presentation G = 〈x, y, z | xl = ym = zn = (xy−1)p = (yz−1)q = (zx−1)r = 1〉, where
2 ≤ l, m, n, p, q, r. Let C be the Coxeter matrix 1.2.

(i) If detC < 0 then G has a non-abelian free subgroup.
(ii) If det C = 0 then G has a non-abelian free subgroup or is abelian-by-finite.

In the latter case, G is isomorphic to the Euclidean group 〈x, y, z | x2 = y2 =
z2 = (xy)f1 = (yz)f2 = (xz)f3 = 1〉, where f1, f2, f3 ≥ 2 and 1

/
f1

+ 1
/
f2

+

1
/
f3

= 1.

Remark 3.2. We already know that G is finite if and only if det C > 0.

Also, quite often we get in an obvious manner as homomorphic images groups of
certain SN -type, that is, groups with a presentation H = 〈a, b, c | ae1 = be2 = ce3 =
Rf1

1 (a, b) = Rf2
2 (a, c) = 1〉, 2 ≤ e1, e2, e3, f1, f2, where Ri(x, y) is a cyclically reduced

word in x, y involving both x and y for i = 1, 2 (see [FR]).

Theorem 3.3. Let H be as above. If at least one of e2, e3, f1, f2 is greater than 2
then H has a free subgroup of rank 2.

From now on let G be a short spherical generalized tetrahedron group given by a
presentation of the form 3.1. Let, without loss of generality, l ≤ m. By Theorem 2.7
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we know that G satisfies the Tits alternative if (p, q, r) 6= (2, 2, 2). Hence, from now
on let (p, q, r) = (2, 2, 2).

Theorem 3.4. Let G be a short spherical generalized tetrahedron group given
by a presentation of the form 3.1 with (p, q, r) = (2, 2, 2). If 1

/
l + 1

/
m < 1

/
2 or

1
/
m + 1

/
n < 1

/
2 or 1

/
l + 1

/
n < 1

/
2 then G has a free subgroup of rank 2.

Proof. We may assume that 2 ≤ l ≤ m. Then m ≥ 3 because xα1yβ1xα2yβ2 is
not a proper power.

Case 1: 1
/
l + 1

/
m < 1

/
2

If n ≥ 3 then G has a non-abelian free subgroup by Theorem 2.8. Now, let n = 2.
Also, by Theorem 2.8 we only have to consider the cases

(l,m) = (3, 8), (3, 10), (4, 5), (4, 6), (4, 8) and (5, 6).

If G1 has a non-elementary image in PSL(2,C) then G has a non-abelian free subgroup.
Now assume that G1 has no non-elementary image in PSL(2,C). Then, if ρ1 : G1 →
PSL(2,C) is an essential representation, ρ1(G1) is cyclic or infinite metabelian. We
may assume that ρ1(G1) is cyclic (if ρ(G1) is infinite metabelian then there exists an
essential representation ρ′1 : G1 → PSL(2,C) with ρ′1(G1) cyclic). We write W1(x, y) =
xα1yβ1xα2yβ2 .

(1) (l,m) = (3, 8)
Then necessarily α1 +α2 ≡ 0(mod 3) and β1 +β2 ≡ 4(mod 8). We introduce
the relation y4 = 1 and get the factor group
Ḡ = 〈x, y, z | x3 = y4 = z2 = W 2

1 (x, y) = (yγz)2 = (xαz)2 = 1〉 where β1

and β2 are reduced mod 4 (if γ = 4 then we have just y4z = z and z2 = 1 in
Ḡ). Now Ḡ1 = 〈x, y | x3 = y4 = W 2

1 (x, y) = 1〉 has a non-elementary image
in PSL(2,C), see [R]. Hence Ḡ, and therefore G, has a free subgroup of rank
2. The cases (l, m) = (3, 10), (4, 5) and (5, 6) are analogous.

(2) (l,m) = (4, 6)
G has a factor group
Ḡ = 〈x, y, z | x4 = y6 = z2 = W 2

1 (x, y) = (yz)2 = (xz)2 = 1〉 which we now
consider (if Ḡ has a non-abelian free subgroup then also G). Then necessarily
one of the following three cases holds:
(a) α1 + α2 ≡ 0(mod 4) and β1 + β2 ≡ 3( mod 6),
(b) α1 + α2 ≡ 2(mod 4) and β1 + β2 ≡ 0( mod 6),
(c) α1 + α2 ≡ 2(mod 4) and β1 + β2 ≡ 3( mod 6).

If (a) holds then we introduce the relation y3 = 1 and get a factor group
of Ḡ which has a non-elementary image in PSL(2,C), and hence, Ḡ has a
free group of rank 2.

If (b) holds then we introduce the relation x2 = 1 and get the factor
group
¯̄G = 〈x, y, z | x2 = y6 = z2 = (xyβ1xyβ2)2 = (yz)2 = (xz)2 = 1〉 with
β1 + β2 ≡ 0( mod 6), we have β1 6= β2 and may assume that β1 ≤ β2, β1|6.
Then (β1, β2) = (1, 5) or (2, 4). In both cases ¯̄G has a non-elementary image
in PSL(2,C), and hence, Ḡ has a free group of rank 2.
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Now, if (c) holds then (up to equivalence) we may assume that W1(x, y) =
xyxy2. Let H be the subgroup of Ḡ generated by y and y. H has index 2
in Ḡ and a presentation H = 〈x, y, | x4 = y6 = (xyxy2)2 = 1〉. H has a
free subgroup of rank 2 because 1

/
4 + 1

/
6 < 1

/
2 (see [BMS]). The case

(l,m) = (4, 8) is analogous.
Case 2: 1

/
m + 1

/
n < 1

/
2

Again, if l ≥ 3 then G has a free subgroup of rank 2 by Theorem 2.8, and if l = 2 the
we have to consider the cases

(m,n) = (3, 8), (3, 10), (4, 5), (4, 6), (4, 8),

(5, 6), (8, 3), (10, 3), (5, 4), (6, 4), (8, 4) and (6, 5).

(1) (m, n) = (3, 8)
Up to equivalence, we may assume that
G = 〈x, y, z | x2 = y3 = z8 = W 2

1 (x, y) = (yzδ)2 = (xz)2 = 1〉 with
1 ≤ δ ≤ 4, δ|8. G2 = 〈y, z | y3 = z8 = (yzδ)2 = 1〉 has a non-elementary
image in PSL(2,C). Hence, G has a free subgroup of rank 2. The cases
(m, n) = (3, 10), (4, 5), (5, 6), (8, 3), (10, 3), (5, 4) and (6, 5) are analogous.

(2) (m, n) = (4, 6)
Up to equivalence, we may assume that
G = 〈x, y, z | x2 = y4 = z6 = W 2

1 (x, y) = (yγzδ)2 = (xzζ)2 = 1〉 with 1 ≤
γ ≤ 2, γ|4, 1 ≤ δ ≤ 3, δ|6 and 1 ≤ ζ ≤ 5. G2 = 〈y, z | y4 = z6 = (yγzδ)2 = 1〉
has a non-elementary image in PSL(2,C) if δ 6= 3 and hence, G has a free
subgroup of rank 2 if δ 6= 3. This argument also holds if δ = 3 and γ = 1.
If δ = 3 and γ = 2 then we introduce the relation y2 = 1 and get a factor
group which contains a free subgroup of rank 2 by Theorem 3.3. The cases
(m, n) = (4, 8), (6, 4) and (8, 4) are analogous.

Case 3: 1
/
l + 1

/
n < 1

/
2

Then m ≥ 3, and G has a free subgroup of rank 2 by Theorem 2.8. ¤

Theorem 3.5. Let G be a short spherical generalized tetrahedron group given
by a presentation of the form 3.1 with (p, q, r) = (2, 2, 2). If 1

/
l + 1

/
m = 1

/
2 or

1
/
m + 1

/
n = 1

/
2 or 1

/
l + 1

/
n = 1

/
2 then G has a free subgroup of rank 2.

Proof. We may assume that l ≤ m and m ≥ 3.
Let first l = 2. Then 1

/
m + 1

/
n = 1

/
2 and hence, (m,n) = (3, 6), (6, 3) or (4, 4).

Here the results and methods described in Sections 2 and 3, including the reduction to
factor groups, work very well to get a free subgroup of rank 2, except in the following
case:
G = 〈x, y, z | x2 = y6 = z3 = (xyxy4)2 = (xz)2 = (yz)2 = 1〉. Let H be the subgroup
generated by a = y, b = xyx and c = z. H has index 2 in G and a presentation
H = 〈a, b, c | a6 = b6 = c3 = (ba4)2 = (ab4)2 = (ac)2 = (bc−1)2 = 1〉. Now
ba4 = b(a−1)−4 = b(a−1)2 and (ab4)−1 = b−4a−1 = b2a−1. If we replace a by a−1 and
c by c−1 we get for H a presentation H = 〈a, b, c | a6 = b6 = c3 = (a2b)2 = (ab2)2 =
(ac)2 = (bc)2 = 1〉. Let A,B ∈ PSL(2,C) with trA = trB =

√
3 and tr(AB) = 1.
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Then A6 = B6 = (A2B)2 = (BA2)2 = 1 and tr[A,B] = 2. We may choose A and
B so that < A, B > is infinite metabelian. By the Fortsetungssatz 2.3 we now may
construct C ∈ PSL(2,C) with C3 = (AC)2 = (BC)2 = 1 which defines an essential
representation ρH : H → PSL(2,C), a 7→ A, b 7→ B, c 7→ C such that ρH(H) is
non-elementary. Hence, G has a free subgroup of rank 2.

Now, let l ≥ 3. If m ≥ 6 or n ≥ 6 the G has a free subgroup of rank 2 by
Theorem 2.3 and Theorem 3.4. Now, let m < 6 and n < 6. If Then 1

/
l + 1

/
m < 1

/
2

or 1
/
l + 1

/
n < 1

/
2 or 1

/
m + 1

/
n < 1

/
2 then G has a free subgroup of rank 2 by

Theorem 3.4. Let 1
/
l + 1

/
m ≥ 1

/
2 and 1

/
l + 1

/
n ≥ 1

/
2 and 1

/
m + 1

/
n ≥ 1

/
2.

Case 1: 1
/
l + 1

/
m = 1

/
2

Then l = m = 4 because l ≤ m < 6. If n ≥ 5 then G has a free subgroup of rank 2 by
Theorem 3.4. Now, let 2 ≤ n ≤ 4.

(1) n = 2
Then G has the factor group
Ḡ = 〈x, y, z | x4 = y4 = z2 = W 2

1 (x, y) = (yz)2 = (xz)2 = 1〉 with
W1(x, y) = xα1yβ1xα2yβ2 because (xαz)2 = 1 and (yγz)2 = 1 are conse-
quences of z2 = (xz)2 = 1 and z2 = (yz)2 = 1, respectively. Let H be the
subgroup of Ḡ generated by x and y. H has index 2 in Ḡ and a presentation
H = 〈x, y | x4 = y4 = W 2

1 (x, y) = W 2(x−1, y−1) = 1〉. If α1 = α2 = 2
then we may write H as a free product H = H1 ∗A H2 with amalgamation,
where H1 = 〈x | x4 = 1〉, H2 = 〈x2, y | (x2)2 = y4 = (x2yβ1x2yβ2)2 = 1〉
and A = 〈x2 | (x2)2 = 1〉. Recall that (x2y−β1x2y−β2)2 = 1 is a conse-
quence of (x2)2 = (x2yβ1x2yβ2)2 = 1. H, and hence G, has a free subgroup
of rank 2. Analogously we may handle the case β1 = β2 = 2. Now, let
gcd(α1, α2) = gcd(β1, β2) = 1. We may assume that α1 = β1 = 1. If
(α2, β2) = (1, 3) then H = 〈x, y | x4 = y4 = (xyxy3)2 = 1〉, and H, and
hence G, has a free subgroup of rank 2, see [R]. Analogously we may handle
the case (α2, β2) = (3, 1). In all the other possibilities for (α2, β2) we get a
non-elementary image for H in PSL(2,C), and hence G has a free subgroup
of rank 2.

(2) n = 3
We remark that a group K = 〈a, b | a3 = b4 = (ab2)2 = 1〉 has a non-
elementary image in PSL(2,C). Therefore, the results and methods described
in Section 2 and 3 work (up to equivalence) exept in the case G = 〈x, y, z |
x4 = y4 = z3 = (xyxy3)2 = (yz)2 = (xz)2 = 1〉. We introduce the relation
(xy)2 = 1 and get the factor group
Ḡ = 〈x, y, z | x4 = y4 = z3 = (xy)2 = (yz)2 = (xz)2 = 1〉 which has a free
subgroup of rank 2 [HgRR].

(3) n = 4
Then
G = 〈x, y, z | x4 = y4 = z4 = (xα1yβ1xα2yβ2)2 = (yγzδ)2 = (xεzζ)2 = 1〉
with 1 ≤ α1, α2, ε ≤ 3, 1 ≤ β1, β2, γ ≤ 3, 1 ≤ δ, ζ ≤ 3. We write again
W1(x, y) = xα1yβ1xα2yβ2 . Let first α1 = α2 = 2. Then we may assume that
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β1 = 1 because W1(x, y) is not a proper power. If β2 = 2 then G1 has a non-
elementary image in PSL(2,C), and hence G has a free subgroup of rank 2.
If β2 = 3 then we introduce the relation (x2y)2 = 1 and get the factor group
Ḡ = 〈x, y, z | x4 = y4 = z4 = (x2y)2 = (yγzδ)2 = (xεzζ)2 = 1〉, and Ḡ has
a free subgroup of rank 2 by [HgRR]. This handles the case α1 = α2 = 2.
Analogously we get the result if β1 = β2 = 2.

Now, let gcd(α1, α2) = gcd(β1, β2) = 1. We may assume that α1 = β1 =
1 With respect to case 1 (1), without loss of generality, we may assume that
W1(x, y) = xyxy3 (otherwise G has a free subgroup of rank 2). Then we
introduce the relation (xy)2 = 1 and get the factor group ¯̄G = 〈x, y, z | x4 =
y4 = z4 = (xy)2 = (yγzδ)2 = (xεzζ)2 = 1〉 which has a free subgroup of rank
2 by [HgRR].

Now, let 1
/
l + 1

/
m > 1

/
2. Then l = 3 because 3 ≤ l ≤ m < 6. Then

also 1
/
l + 1

/
n > 1

/
2 because l = 3 and n < 6.

Case 2: 1
/
m + 1

/
n = 1

/
2

Then m = n = 4 because m, n < 6. Here the results and methods described in Section
2 and 3 work to get a free subgroup of rank 2.

¤

Theorem 3.6. Let G be a short spherical generalized tetrahedron group given
by a presentation of the form 3.1 with (p, q, r) = (2, 2, 2). If 1

/
l + 1

/
m > 1

/
2,

1
/
m + 1

/
n > 1

/
2 and 1

/
l + 1

/
n > 1

/
2 then G is either finite, infinite solvable or

has a free subgroup of rank 2.

Proof. All finite generalized tetrahedron groups are described (up to equiva-
lence) in [FHHgRRS], especially the short spherical ones. Now, let G be infinite.
Again, we may assume l ≤ m and 3 ≤ m. Here the results and methods described
in Sections 2 and 3, including the reductions to factor groups or, especially, ordinary
tetrahedron groups, work very well exept in the following cases (up to equivalence):

(1) l = n = 2, m = 4 and G = 〈x, y, z | x2 = y4 = z2 = (xyxy2)2 = (yz)2 =
(xz)2 = 1〉. Let H be the subgroup of G generated by x and y. H has index
2 in G and a presentation H = 〈x, y, | x2 = y4 = (xyxy2)2 = 1〉 which is
infinite solvable. Hence, G is infinite solvable.

(2) l = 2, m = n = 4 and G = 〈x, y, z | x2 = y4 = z4 = (xyxy3)2 = (yz)2 =
(xz2)2 = 1〉. Let H be the subgroup of G generated by a = y, b = xyx,
c = z and d = xzx. H has index 2 in G and a presentation H = 〈a, b, c, d |
a4 = b4 = c4 = d4 = (ab3)2 = c2d2 = (ac)2 = (bd)2 = 1〉. We introduce in
H the relations c2 = d2 = 1 and get the factor group H̄ = 〈a, b, c, d | a4 =
b4 = c2 = d2 = (ab)2 = (ac)2 = (bd)2 = 1〉. H̄ can be written as a free
product H̄ = H1 ∗A H2 with amalgamation with H1 = 〈a, b, c | a4 = b4 =
c2 = (ab)2 = (ac)2 = 1〉, H2 = 〈a, b, d | a4 = b4 = d2 = (ab)2 = (bd)2 = 1〉
and A = 〈a, b | a4 = b4 = (ab)2 = 1〉. H1 has a free subgroup of rank 2 [FR],
and hence also G.

(3) l = 2, m = n = 4 and G = 〈x, y, z | x2 = y4 = z4 = (xyxy3)2 = (yz)2 =
(xz)2 = 1〉. Let H be the subgroup of G generated by a = y, b = xyx and
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c = z. H has index 2 in G and a presentation H = 〈a, b, c | a4 = b4 =
c4 = (ab3)2 = (bc3)2 = (ac)2 = 1〉 which has a free subgroup of rank 2 by
Theorem 3.5, and hence also G.

(4) l = 2, m = 4, n = 3 and G = 〈x, y, z | x2 = y4 = z3 = (xyxy3)2 = (yz)2 =
(xz)2 = 1〉. Let H be the subgroup of G generated by a = y, b = xyx and
c = z. H has index 2 in G and a presentation H = 〈a, b, c | a4 = b4 =
c3 = (ab3)2 = (bc2)2 = (ac)2 = 1〉 which has a free subgroup of rank 2 by
Theorem 3.5, and hence also G.

(5) l = 2, m = 4, n = 2 and G = 〈x, y, z | x2 = y4 = z2 = (xyxy3)2 =
(yγz)2 = (xz)2 = 1〉, 1 ≤ γ ≤ 2. Let H be the subgroup of G generated
by a = y, b = xyx and c = z. H has index 2 in G and a presentation
H = 〈a, b, c | a4 = b4 = c2 = (ab3)2 = (bγc)2 = (aγc)2 = 1〉 which has a free
subgroup of rank 2 by Theorem 3.5, and hence also G.

(6) l = 2, m = 5, n = 3 and G = 〈x, y, z | x2 = y5 = z3 = (xyxy2)2 =
(yz)2 = (xz)2 = 1〉. The polynomial for xyxy2 is λ(t2 − 1). We choose
X,Y ∈ PSL(2,C) with trX = 0, trY = λ = 2 cos π

5 and tr(XY ) = 1.
Using Theorem 2.10 we construct Z ∈ PSL(2,C) with trZ = −1, tr(XZ) =
tr(Y Z) = 0. Then x 7→ X, y 7→ Y , z 7→ Z defines an essential representation
ρ : G → PSL(2,C) with non-real tr(XY Z). Hence, G has a free subgroup of
rank 2.

(7) l = 2, m = 6, n = 2 and G = 〈x, y, z | x2 = y6 = z2 = (xyxyβ2)2 = (yz)2 =
(xz)2 = 1〉, 2 ≤ β2 ≤ 5. Let H be the subgroup of G generated by x and y.
H has index 2 in G and a presentation H = 〈x, y | x2 = y6 = (xyxyβ2)2 = 1〉.
If β2 = 3 or 5 then H has a free subgroup of rank 2 [R], and hence also G.
If β = 2 or 4 then H is infinite solvable [R] and hence also G.

(8) l = 2, m = 6, n = 2 and G = 〈x, y, z | x2 = y6 = z2 = (xyβ1xyβ2)2 =
(y3z)2 = (xz)2 = 1〉, (β1, β2) = (1, 2), (1, 4) or (2, 4). Let H be the subgroup
of G generated by a = x, b = y and c = zyz. H has index 2 in G and
a presentation H = 〈a, b, c | a2 = b6 = c6 = (abβ1abβ2)2 = (acβ1acβ2)2 =
b3c3 = 1〉. If we introduce the relations b3 = c3 = 1 in H then we get the
factor group H̄ = 〈a, b, c | a2 = b3 = c3 = (abβ̄1abβ̄2)2 = (acβ̄1acβ̄2)2 = 1〉,
(β̄1, β̄2) = (1, 2), (1, 1) or (2, 1). H̄ has a free subgroup of rank 2 by Theorem
3.3, and hence also G.

(9) l = 2, m = 6, n = 2 and G = 〈x, y, z | x2 = y6 = z2 = (xy2xy4)2 = (yz)2 =
(xz)2 = 1〉. Let H be the subgroup of G generated by x and y. H has index
2 and a presentation H = 〈x, y | x2 = y6 = (xy2xy4)2 = 1〉. H has a free
subgroup of rank 2 [R] and hence also G.

(10) l = 2, m ≥ 7, n = 2 and G = 〈x, y, z | x2 = ym = z2 = (xyβ1xyβ2)2 =
(yγz)2 = (xz)2 = 1〉. G has the factor group Ḡ = 〈x, y, z | x2 = ym = z2 =
(xyβ1xyβ2)2 = (yz)2 = (xz)2 = 1〉 because (yγz)2 = 1 is a consequence of
z2 = (yz)2 = 1. Let H be the subgroup of Ḡ generated by x and y. H has
index 2 in Ḡ and a presentation H = 〈x, y, | x2 = ym = (xyβ1xyβ2)2 = 1〉.
H has a free subgroup of rank 2 [R], and hence also G.



12 B. FINE, A. HULPKE, V. GROSSE REBEL, G. ROSENBERGER AND S. SCHAUERTE

(11) l = m = 3, n = 5 and G = 〈x, y, z | x3 = y3 = z5 = (xyx2y2)2 = (yz3)2 =
(xz)2 = 1〉. The subgroup H generated by a1 = x, a2 = z, a3 = yxy−1,
a4 = yzy−1zy−1 and a5 = y−1xyz3yxy−1 has index 6 in G and a presentation

H = 〈a1, a2, a3, a4, a5 | a3
1 = a5

2 = a3
3 = a2

4 = (a1a2)2 =
(a5a4a3a

−1
2 )2 = (a3a

−2
2 a3a

−1
5 )2 = (a5a

−1
3 a2

2a
−1
1 )2 =

a5a
−1
3 a2

2a5a
−1
3 a−1

5 a−2
2 a−1

3 a2
2 =

a4a
−1
2 a5a

−1
3 a4a

−1
3 a4a

−1
2 a5a

−1
3 a4a

−1
3 =

a5a
−1
2 a5a

−1
3 a4a

−1
2 a5a

−1
2 a5a

−1
3 a4a

−1
2 = 1〉.

H can be written as a non-trivial free product H1 ∗A H2 with amalga-
mation with H1 = 〈a1, a2, a3, a5〉, H2 = 〈a2, a3, a4, a5〉 and A = 〈a2, a3, a5〉.
H, and hence G, has a free subgroup of rank two because | H1 : A |≥ 3 for
the index of A in H1.

(12) l = 3, m = 5, n = 3 and G = 〈x, y, z | x3 = y5 = z3 = (xyx2y2)2 = (y2z)2 =
(xz)2 = 1〉. This case can be handled in a similar, computationally more
complicated manner as case (11). We found a subgroup of index 21 with 9
generators and 27 relations which can be written as a non-trivial free product
with amalgamation and contains a free group of rank two.

(13) l = m = 3, n = 5 and G = 〈x, y, z | x3 = y3 = z5 = (xyxy2)2 = (yz)2 =
(xz)2 = 1〉. We choose X,Y ∈ PSL(2,C) with trX = trY = 1, tr(XY ) =
λ = 2 cos π

5 . Now using Theorem 2.10 we construct Z ∈ PSL(2,C) with
trZ = −λ, tr(XZ) = tr(Y Z) = 0. Then x 7→ X, y 7→ Y , z 7→ Z defines an
essential representation ρ : G → PSL(2,C) with non-real tr(XY Z). Hence
G has a free subgroup of rank 2.

(14) l = m = 3, n = 5 and G = 〈x, y, z | x3 = y3 = z5 = (xyxy2)2 = (yz2)2 =
(xz)2 = 1〉. We choose X,Y ∈ PSL(2,C) with trX = trY = 1, tr(XY ) =
λ = 2 cos π

5 . Now using Theorem 2.10 we construct Z ∈ PSL(2,C) with
trZ = λ, tr(XZ) = 0 and tr(Y Z) = λ − 1. Then Y Z2 has order 2, and
x 7→ X, y 7→ Y , z 7→ Z defines an essential representation ρ : G → PSL(2,C)
with non-real tr(XY Z). Hence G has a free subgroup of rank 2.

(15) l = 3, m = 4, n = 2 and G = 〈x, y, z | x3 = y4 = z2 = W 2
1 (x, y) =

(yz)2 = (xz)2 = 1〉 with W1(x, y) = xyx2y2, xyxy3 or xy2x2y2. Let H
be the subgroup of G generated by x and y. H has index 2 in G and a
presentation H = 〈x, y, z | x3 = y4 = W 2

1 (x, y) = W 2
1 (x−1, y−1) = 1〉. If

W1(x, y) = xyx2y2 or W1(x, y) = xy2x2y2 we introduce the relation y2 = 1
and get the factor group Z2∗Z3

∼= PSL(2,Z), a free product of a cyclic group
of order 2 and a cyclic group of order 3, and hence G has a free subgroup
of rank 2. If W1(x, y) = xyxy3 then y(W1(x−1, y−1))−1y−1 = W1(x, y) and
H = G1 = 〈x, y | x3 = y4 = (xyxy3)2 = 1〉, and hence H, and also G, has a
free subgroup of rank 2 [R].

(16) l = 3, m = 4, n = 3 and G = 〈x, y, z | x3 = y4 = z3 = (xyxy3)2 =
(yz)2 = (xz)2 = 1〉. Consider the subgroup H of G generated by a1 = yx,
a2 = zx−1yx−1, a3 = xyx−1yz−1 and a4 = y−1x−1zy−1zx−1. If we use
GAP [GAP] then we get that H has index 48 in G and a presentation
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H = 〈a1, a2, a3, a4 | a−1
4 a2

2a4a
−2
2 = a4a

2
1a
−1
4 a−2

1 =
a−1
1 a−1

4 a1a3a
−1
2 a4a2a

−1
3 = a−1

3 a1a4a
−1
1 a3a2a

−1
4 a−1

2 =
a−1
2 a−1

1 a2a
−1
3 a1a

−1
2 a3a1a2a

−1
1 = a−1

2 a1a2a3a2a1a
−1
2 a−1

1 a−1
3 a−1

1 =
a3a1a4a

−1
1 a−1

4 a−1
3 a1a

−1
2 a4a1a

−1
4 a−1

1 a2a
−1
1 =

a−1
4 a−1

2 a4a2a
−1
1 a2a

−1
3 a−1

2 a−1
4 a2a4a3a

−1
2 a1 =

a−1
1 a−1

2 a−1
3 a−1

4 a−1
2 a4a

−1
1 a−1

4 a2a1a3a4a1a
−1
4 a2a4 =

a−1
2 a1a

−1
4 a−1

2 a4a2a
−1
3 a−1

4 a−1
2 a4a

−1
1 a−1

4 a2a4a1a
−1
4 a2a4a

−1
1 a3 = 1〉

If we introduce the relations a1 = a2 and a4 = 1 then the factor group is
free of rank 2. Hence H, and also G has a free subgroup of rank 2. Especially,
the group G is SQ-universal, that is, every countable group can be embedded
isomorphically as a subgroup of a quotient of G.

¤

Theorems 3.4, 3.5 and 3.6 together with the results in Section 2 and 3 provide a
proof of Theorem 1.1.

Additional Remark 3.7. Unfortunately there is a technical error in one of the
arguments in [FHHgRRS] which probably is a consequence of a typo in the computer
calculations. Let X, Y ∈ PSL(2,C) with tr(X) = tr(Y ) = tr(XY ) = λ = 2 cos π

5 . We
may construct Z ∈ PSL(2,C) with tr(Z) = tr(XZ) = tr(Y Z) = λ. We claimed that
tr(XY Z) is non-real. This is not the case. In fact, we have tr(XY Z) = 2 or λ. This
has consequences only for the two groups

G1 = 〈x, y, z | x3 = y5 = z2 = (x−1yxyx−1y2xy−1)2 = (yz)2 = (xz)2 = 1〉
and G2 = 〈x, y, z | x3 = y5 = z2 = (x−1yx−1y2xyxy−1)2 = (yz)2 = (xz)2 = 1〉.
Here we now give a correct proof that G1 and G2 are infinite, as stated in

[FHHgRRS]. For both groups we use GAP [GAP]. We first consider G1. The
subgroup H generated by y, xy−1x and xyx−1yxy−1x−1 has index 60 in G1. If we
abelianize H, then we get Z as an epimorphic image of H (we remark that y is in
the derived subgroup of H). Hence, G1 is infinite. We now consider G2. G2 has
as an epimorphic image the direct product A5 × A5, given by x 7→ (2, 3, 4)(7, 10, 8),
y 7→ (1, 5, 2, 3, 4)(6, 10, 7, 8, 9) and z 7→ (1, 5)(2, 4)(6, 9)(8, 10). Let U be the preim-
age in G of the diagonal subgroup of A5 × A5 generated by (2, 3, 4)(7, 8, 10) and
(1, 4)(3, 5)(6, 7)(8, 9). Let U ′ be the derived subgroup of U . Then U

/
U ′ is elemen-

tary abelian of order 8, and U ′ has abelianization of type [0, 3, 5]. Hence, U ′ also has
Z as an epimorphic image, and therefore G2 also is infinite.

This corrects the technical error in [FHHgRRS] and leaves the result there as
stated.

The technical error may have consequences for some of the few groups
in [FHHgRRS] where we used Theorem 2.10 (Theorem 2.7 in [FHHgRRS]). Never-
theless, in each of the remaining cases, not covered by our paper, using GAP [GAP],
we found analogously as above a subgroup H of finite index with infinite abelianization.
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