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On the fractional calculus of generalized Mittag-Leffler
function

V.B.L. Chaurasia a and S.C. Pandey b

Abstract. The paper is devoted to the study of generalized fractional calculus

of the generalized Mittag-Leffler function Eδ
ν,ρ(z) which is an entire function of

the form

Eδ
ν,ρ(z) =

∞X
s=0

(δ)szs

Γ(νn + ρ)s!
,

where ν > 0 and ρ > 0. For δ =1, it reduces to Mittag-Leffler function

Eν,ρ(z). We have shown that the generalized functional calculus operators trans-
form such functions with power multipliers in to generalized Wright function.

Some elegant results obtained by Kilbas and Saigo [11], Saxena and Saigo [24] are

the special cases of the results derived in this paper.

1. Introduction and Preliminaries

The function Eν(z) defined by the series representation

(1.1) Eν(z) =
∞∑

s=0

zs

Γ(νs + 1)
, (ν > 0, z ∈ C).

Mittag-Leffler [19, 20], Wiman [26, 27], Agarwal [1], Humbert and Agarwal [11],
investigated the generalizations of the above function Eν(z) in the following manner;
see [4, Section 18.1]

(1.2) Eν,ρ(z) =
∞∑

s=0

zs

Γ(νs + ρ)
, (ν > 0, ρ > 0, z ∈ C),

where C be the setof complex numbers. For a detailed study of various properties,
generalizations and applications of this function we can refer to papers of Dzherashyan
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[2], Kilbas and Saigo [9, 10, 11, and 12], Kilbas, Saigo and Saxena [15], Gorenflo and
Mainardi [7] Gorenflo, Kilbas and Rogosin [5] and Gorenflo, Luchko and Rogosin [6].

A more generalized form of (1.2) is introduced by Prabhaker [21] as:

(1.3) Eδ
ν,ρ(z) =

∞∑
s=0

(δ)sz
s

Γ(νs + ρ)s!
,

where ν, ρ, δ ∈ C (R(ν) > 0) and Eδ
ν,ρ(z) is an entire function of order [Re(ν)],−1 [21, p.7].

For various properties and other details of (1.3), see [14].

The generalized Wright function pΨq(z) defined for z ∈ C, ai, bj ∈ C and αi, βj ∈
R(αi, βj 6= 0; i = 1, 2, ..., p; j = 1, 2, ..., q) is given by the series

(1.4) pΨq(z) = pΨq

 (ai, αi)(1,p)

z
(bj , βj)(1,q)

 =
∞∑

s=0

∏p
i=1 Γ(ai + αis)zs∏q
j=1 Γ(bj + βjs)s!

,

where C is the set of complex numbers and Γ(z) is the Euler gamma function
[3, section1.1] and the function (1.4) was introduced by Wright [29] and known as
generalized Wright function. Conditions for the existence of the generalized Wright
function (1.4) together with its representation in terms of Melline-Barnes integral and
in terms of the H-function were established in [13].
Some particular cases of generalized Wright function (1.4) were presented in [13, Sec-
tion 6]. Wright in [28], [31] investigated, by “steepest descent”method, the asymp-
totic expansions of the function φ(α, β; z) for large values of z in the cases α > 0 and
−1 < α < 0, respectively. In [28] Wright indicated the application of the obtained
results to the asymptotic theory of partitions. In [29], [30], [32] Wright extended the
last result to the generalized Wright function (1.4) and proved several theorems on
the asymptotic expansion of generalized Wright function pΨq(z) for all values of the
argument z under the condition.

(1.5)
q∑

j=1

βj −
p∑

i=1

αi > −1.

For a detailed study of various properties, generalizations and applications of
Wright function and generalized Wright function, we refer to papers of Wright [28, 29,
30, 31, and 32], Luchko [16, 17] and Kilbas [13].

2. Fractional Calculus Operators and Generalized Fractional Calculus
Operators

The left and right-sided Riemann-Liouville fractional calculus operators are de-
fined by Samko, Kilbas and Marichev [23, Section 5.1]. For α ∈ C (Re(α) > 0)
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(2.1) (Iα
0+f)(x) =

1
Γα

∫ x

0

f(t)
(x− t)1−α

dt; (x > 0),

(2.2) (Iα
−f)(x) =

1
Γα

∫ ∞
x

f(t)
(t− x)1−α

dt; (x > 0),

(2.3) (Dα
0+f)(x) =

( d

dx

)[Re(α)]+1[
I
1−α+[Re(α)]
0+ f

]
(x)

=
( d

dx

)[Re(α)]+1 1
Γ1− α + [Re(α)]

∫ x

0

f(t)
(x− t)α−[Re(α)]

dt; (x > 0),

(2.4) (Dα
−f)(x) =

(
− d

dx

)[Re(α)]+1[
I
1−α+[Re(α)]
− f

]
(x)

=
(
− d

dx

)[Re(α)]+1 1
Γ1− α + [Re(α)]

∫ ∞
x

f(t)
(t− x)α−[Re(α)]

dt; (x > 0),

where [Re(α)] is the integral of Re(α).

An interesting and useful generalization of the Riemann-Liouville and Erdlyi-
Kober fractional integral operators has been introduced by Saigo [22] in terms of
Gauss hypergeometric function as given below. Let α, β, γ ∈ C and x ∈ R+, then the
generalized fractional integration and fractional differentiation operators associated
with Gauss hypergeometric function are defined as follows:

(2.5) (Iα,β,γ
0+ f)(x) =

x−α−β

Γα

∫ x

0

(x− t)α−1
2F1

(
α + β,−γ;α; 1− t

x

)
f(t)dt;

(Re(α) > 0),

(2.6) (Iα,β,γ
− f)(x) =

1
Γα

∫ ∞
x

(t− x)α−1t−α−β
2F1

(
α + β,−γ;α; 1− x

t

)
f(t)dt;

(Re(α) > 0),

(2.7) (Dα,β,γ
0+ f)(x) =

(
I−α−β,α+γ
0+ f

)
(x) =

( d

dx

)k(
I−α+k,−β−k,α+γ−k
0+ f

)
(x);

(Re(α) > 0); k = [Re(α)] + 1,

(2.8) (Dα,β,γ
− f)(x) =

(
I−α−β,α+γ
− f

)
(x) =

(
− d

dx

)k(
I−α+k,−β−k,α+γ
− f

)
(x);

(Re(α) > 0); k = [Re(α)] + 1.
Operators (2.5) - (2.8) reduce to that in (2.1) - (2.4) as the follows:

(2.9) (Iα,−α,γ
0+ f)(x) = (Iα

0+f)(x),
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(2.10) (Iα,−α,γ
− f)(x) = (Iα

−f)(x),

(2.11) (Dα,−α,γ
0+ f)(x) = (Dα

0+f)(x),

(2.12) (Dα,−α,γ
− f)(x) = (Dα

−f)(x).

lemma 1. Let α, β, γ ∈ C (Re(α) > 0) and ρ ∈ C
(a) If Re(ρ) > max[0, Re(β − γ)], then

(2.13)
(
Iα,β,γ
0+ tρ−1

)
(x) =

Γ(ρ)Γ(ρ− β + γ)
Γ(ρ− β)Γ(ρ + α + γ)

xρ−β−1,

(b) If Re(ρ) > max[Re(−β), Re(−γ)], then

(2.14)
(
Iα,β,γ
− t−ρ

)
(x) =

Γ(ρ + β)Γ(ρ + γ)
Γ(ρ)Γ(ρ + α + β + γ)

x−ρ−β .

3. Left-Sided Generalized Fractional Integration of the Generalized
Mittag-Leffler Function

In this section we consider the left-sided generalized fractional integration formula
of the generalized Mittage-Leffler function.

Theorem 1. Let α, β, γ, ρ, δ,∈ C be complex numbers such that Re(α) >

0, Re(ρ + γ − β) > 0, ν > 0 and a ∈ R. If the condition (1.5) is satisfied and Iα,β,γ
0+ be

the left-sided operator of the generalized fractional integration associated with Gauss
hypergeometric function, then there holds the following relationship

(3.1)
(
Iα,β,γ
0+ (tρ−1Eδ

ν,ρ[atν ])
)
(x) =

xρ−β−1

Γδ
2Ψ2

 (ρ + γ − β, ν), (δ, 1)
axν

(ρ− β, ν), (ρ + α + γ, ν)

 ,

provided each member of the equation (3.1) exists.
proof. By using the definition of generalized Mittag-Leffler function (1.3) and frac-
tional integral formula (2.5), we have

Ω =
(
Iα,β,γ
0+ (tρ−1Eδ

ν,ρ[atν ])
)
(x)

=
x−α−β

Γα

∫ x

0

(x− t)α−1
2F1

(
α + β,−γ;α; 1− t

x

)
(tρ−1Eδ

ν,ρ[atν ])dt.

By the use of Gaussian hypergeometric series [25,p.18,equation 17], series form of
generalized Mittag-Leffler function (1.3), interchanging the order of integration and
summations and evaluating the inner integral by the use of the known formula of Beta
integral. Finally by the virtue of Gauss summation theorem, we have



ON THE FRACTIONAL CALCULUS OF GENERALIZED MITTAG-LEFFLER 117

Ω =
xρ−β−1

Γδ

∞∑
s=0

Γ(δ + s)Γ(ρ + γ − β + νs)
Γ(ρ− β + νs)Γ(ρ + α + γ + νs)

(axν)s

s!
or

Ω =
xρ−β−1

Γδ
2Ψ2

 (ρ + γ − β, ν), (δ, 1)
axν

(ρ− β, ν), (ρ + α + γ, ν)

 .

Interchanging the order of integration and summations, which is permissible under
the conditions, stated with the theorem due to convergence of the integrals involved
in the process. This completes the proof of the theorem.

Corollary 1. For Re(α) > 0, Re(ρ+γ−β) > 0, ν > 0 and a ∈ R. If the condition
(1.5) is satisfied, then there holds the formula

(3.2)
(
Iα,β,γ
0+ (tρ−1Eν,ρ[atν ])

)
(x) = xρ−β−1

2Ψ2

 (ρ + γ − β, ν), (1, 1)
axν

(ρ− β, ν), (ρ + α + γ, ν)

 ,

provided each member of the equation (3.2) makes sense.

Remark 1. If we put β = −α in our result (3.1), we arrive at the result
[24, p.145, Eq.14] given by Saxena and Saigo.

Remark 2. If we set β = −α in our formula (3.2), it reduces in to the well known
result [23,table 9.1, formula (23)].

4. Right-Sided Generalized Fractional Integration of the Generalized
Mittag-Leffler Function

In this section we have discussed the right-sided generalized fractional integration
formula of the generalized Mittag-Leffler function.

Theorem 2. Let α, β, γ, ρ, δ,∈ C be complex numbers such that Re(α) >
0, Re(α + ρ) > max[−Re(β),−Re(γ)] with the conditions Re(β) 6= Re(γ), ν > 0
and a ∈ R. If the condition (1.5) is satisfied and Iα,β,γ

− be the right-sided operator of
the generalized fractional integration associated with Gauss hypergeometric function,
then there holds the formula

(4.1)
(
Iα,β,γ
− (t−α−ρEδ

ν,ρ[at−ν ])
)
(x)

=
x−ρ−α−β

Γδ
3Ψ3

 (α + β + ρ, ν), (α + γ + ρ, ν), (δ, 1)
ax−ν

(ρ, ν), (α + ρ, ν), (2α + β + γ + ρ, ν)

 ,

provided both the sides of (4.1) exist.
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proof. By using the definition of generalized Mittag-Leffler function (1.3), gener-
alized fractional integral formula (2.6) and proceeding similarly to the proof of theorem
1, we obtain

Λ =
(
Iα,β,γ
− (t−α−ρEδ

ν,ρ[at−ν ])
)
(x)

=
1

Γα

∫ ∞
x

(t− x)α−1t−α−β
2F1

(
α + β,−γ;α; 1− x

t

)
(t−α−ρEδ

ν,ρ[at−ν ])dt

=
x−ρ−α−β

Γδ

∞∑
s=0

Γ(α + β + ρ + νs)Γ(α + γ + ρ + νs)Γ(δ + s)
Γ(ρ + νs)Γ(α + ρ + νs)Γ(2α + β + γ + ρ + νs)

(ax−ν)s

s!

or

Λ =
x−ρ−α−β

Γδ
3Ψ3

 (α + β + ρ, ν), (α + γ + ρ, ν), (δ, 1)
ax−ν

(ρ, ν), (α + ρ, ν), (2α + β + γ + ρ, ν)

 .

Corollary 2. For Re(α) > 0, Re(α + ρ) > max[−Re(β),−Re(γ)] with the condi-
tions Re(β) 6= Re(γ), ν > 0 and a ∈ R. If the condition (1.5) is satisfied, then there
holds the following formula

(4.2)
(
Iα,β,γ
− (t−α−ρEν,ρ[at−ν ])

)
(x)

= x−ρ−α−β
3Ψ3

 (α + β + ρ, ν), (α + γ + ρ, ν), (1, 1)
axν

(ρ, ν), (α + ρ, ν), (2α + β + γ + ρ, ν)

 ,

provided each member of the equation(4.2) makes sense.

Remark 3. If we set β = −α in (4.1), we get the result [24, p.147, Eq.(23)] given
by Saxena and Saigo.

Remark 4. If we set β = −α in (4.2), we arrive at the known formula [24, p.148, Eq.(24)].

5. Left-Sided Generalized Fractional Differentiation of the Generalized
Mittag-Leffler Function

In this section we study the left-sided generalized fractional differentiation formula
of the generalized Mittag-Leffler function.

Theorem 3. Let α, β, γ, ρ, δ,∈ C be complex numbers such that Re(α) >

0, Re(ρ + β + γ) > 0, ν > 0 and a ∈ R. If the condition (1.5) is satisfied and Dα,β,γ
0+

be the left-sided operator of the generalized fractional differentiation associated with
Gauss hypergeometric function, then there holds the following elegant relationship
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(5.1)
(
Dα,β,γ

0+ (tρ−1Eδ
ν,ρ[atν ])

)
(x) =

xρ+β−1

Γδ
2Ψ2

 (α + β + γ + ρ, ν), (δ, 1)
axν

(ρ + γ, ν), (ρ + β, ν)

 ,

provided each member of the equation (5.1) exists.
proof. By using the definition of generalization Mittag-Leffler function (1.3) and

fractional derivative formula (2.7), we have

Θ =
(
Dα,β,γ

0+ (tρ−1Eδ
ν,ρ[atν ])

)
(x)

=
( d

dx

)k(
I−α+k,−β−k,α+γ−k
0+ (tρ−1Eδ

ν,ρ[atν ])
)
(x)

=
( d

dx

)k

xα+β

∫ x

0

(x− t)−α+k−1
2F1(−α− β,−γ − α + k;−α + k; 1− t

x
)(tρ−1Eδ

ν,ρ[atν ])dt

=
∞∑

s=0

(δ)s

Γ(ρ + γ + νs)
Γ(α + β + γ + ρ + νs)

Γ(ρ + β + νs)
asxρ+β+νs−1

s!
or

Θ =
xρ+β−1

Γδ
2Ψ2

 (α + β + γ + ρ, ν), (δ, 1)
axν

(ρ + γ, ν), (ρ + β, ν)

 .

This completes the proof.

Corollary 3. ForRe(α) > 0, Re(ρ+β + γ) > 0, ν > 0 and a ∈ R. If the condition
(1.5) is satisfied, then there holds the formula

(5.2)
(
Dα,β,γ

0+ (tρ−1Eν,ρ[atν ])
)
(x) = xρ+β−1

2Ψ2

 (α + β + γ + ρ, ν), (1, 1)
axν

(ρ + γ, ν), (ρ + β, ν)

 ,

provided both the sides of (5.2) make sense.

Remark 5. If we put β = −α in result (5.1), we arrive at the known result
[24, p.149, Eq.(29)].

Remark 6. If we set β = −α in result (5.2), it reduces to the known relation
[24, p.149, Eq.(30)].

6. Right-Sided Generalized Fractional Differentiation of the Generalized
Mittag-Leffler Function

In this section we discuss the right-sided generalized fractional derivative of gen-
eralized Mittag-Leffler functions .

Theorem 4. Let α, β, γ, ρ, δ,∈ C be complex numbers such that Re(α) >
0, Re(ρ) > max[Re(α + β) + k,−Re(γ)], ν > 0 and a ∈ R with Re(α + β + γ) + k 6= 0
(where k = [Re(α)]+1). If the condition (1.5) is satisfied and Dα,β,γ

− be the right-sided
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operator of the generalized fractional differentiation associated with Gauss hypergeo-
metric function, then there holds the following elegant relationship

(6.1)
(
Dα,β,γ
− (tα−ρEδ

ν,ρ[at−ν ])
)
(x)

=
xα+β−ρ

Γδ
3Ψ3

 (ρ + γ, ν), (ρ− α− β, ν), (δ, 1)
ax−ν

(ρ, ν), (ρ− α, ν), (ρ + γ − α− β, ν)

 ,

provided each member of (6.1) is in existence.
proof. By virtue of (1.3) and (2.8), we have

∆ =
(
Dα,β,γ
− (tα−ρEδ

ν,ρ[at−ν ])
)
(x)

=
(
− d

dx

)k(
I−α+k,−β−k,α+γ
− (tα−ρEδ

ν,ρ[at−ν ])
)
(x)

=
(
− d

dx

)k 1
Γ(−α + k)

∫ ∞
x

(t− x)−α+k−1tα+β
2F1(−α− β,−α− γ;−α + k; 1− x

t
)

.(tα−ρEδ
ν,ρ[at−ν ])dt

=
xα+β−ρ

Γδ
3Ψ3

 (ρ + γ, ν), (ρ− α− β, ν), (δ, 1)
ax−ν

(ρ, ν), (ρ− α, ν), (ρ + γ − α− β, ν)

 .

This completes the proof.

Corollary 4. ForRe(α) > 0, Re(ρ) > max[Re(α + β) + k,−Re(γ)], ν > 0 and
a ∈ R with Re(α + β + γ) + k 6= 0 (where k = [Re(α)] + 1). If the condition (1.5) is
satisfied, then there holds the formula

(6.2)
(
Dα,β,γ
− (tα−ρEν,ρ[at−ν ])

)
(x)

= xα+β−ρ
3Ψ3

 (ρ + γ, ν), (ρ− α− β, ν), (1, 1)
ax−ν

(ρ, ν), (ρ− α, ν)(ρ + γ − α− β, ν)

 ,

provided each member of (6.2) exists.

Remark 7. On setting β = −α in the result (6.1) we can produce the known
result [24, p.150, Eq.(35)].

Remark 8. On taking β = −α in the result (6.2) we can obtained the known
relation [24, p.151, Eq.(36)].
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