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An Epic Drama: The Development of the Prime Number
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Abstract. The prime number theorem, describing the aymptotic density of the
prime numbers, has often been touted as the most surprising result in math-

ematics. The statement and development of the theorem by Legendre, Gauss

and others and its eventual proof by Hadamard and de al Vallée-Poussin span
the whole nineteenth century and encompass the growth of a brand new field

in analytic number theory. As an outgrowth of the techniques of the proof is
the Riemann hypothesis which today is perhaps the outstanding open problem

in mathematics. These ideas and occurences certainly constitute an epic drama

within the history of mathematics and one that is not as well known among the
general mathematical community as it should be. In the present paper we trace

out the paper, the development of the proof and a raft of other ideas, results and

concepts that come from the prime number theorem.
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1. Introduction

From the time human beings first learned to count we have been fascinated by numbers
and their almost magical properties. While the mathematical world was thrilled with
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the final proof of Fermat’s Big Theorem this result is only one of a vast array of amazing
results in number theory. We will concentrate on one of these, the prime number
theorem, that describes the density of the set of prime numbers, among all the natural
numbers, in terms of the natural logarithm function ln. It has been suggested that
This theorem, and the techniques surrounding its proof, is the most surprising result
in all of mathematics (see the article by Apostol [Apo]). Why should a result about
the natural numbers - the counting numbers - involve the natural logarithm function?
Why should the proof of a result about natural numbers involve the location of the
zeros of a complex function defined in terms of a complex power series? Why should
an elementary proof be more complicated and involved than a nonelementary proof?
These are mysteries that still astound even workers in the field and mysteries that we
will try to explain in this article.

What we propose to do in this paper is retell an epic drama in the history of math-
ematics that is still continuing. As with all goood drama it should be retold to each
new generation of mathematicians. Further as with all great epics, it has great heros.
Here the heros are many of history’s greatest mathematicians; Euler, Gauss, Legendre,
Riemann, Hadamard, de la Vallée-Poussin, Hardy, Selberg, Erdos and others.

The saga begins with two conjectures about the density of primes, one by Gauss
and one by Legendre, after some earlier suggestions by Euler. It continues until a
formal proof of these conjectures is found almost a hundred years later. Along the
way, the search for a proof initiates a whole new branch of mathematics, analytic
number theory and introduces the use of complex analysis into the study of number
theory. Out of the search for a proof comes a conjecture, the Riemann hypothesis
that is now perhaps the outstanding open problem in mathematics. Fifty years after
the initial proof an elementary proof not using complex analysis was discovered by
Selberg and Erdos. This elementary proof is in many ways much more involved than
the nonelementary proof. After all of these discoveries the fascination with primes
continues. Most recently, Ben Green and Terence Tao (see [GT]), proved another
astounding result concerning arbitarily long sequences of primes. Terence Tao was
awarded the Fields Medal in part for this result.

This paper was prepared in part while the first author (B. Fine) was a Gambrinus
Fellow in Mathematics at the University of Dortmund in Germany. This was supported
by a Gambrinus Grant. The material in this paper was the basis for the Gambrinus
lecture in 2006. We would like to thank the Gambrinus Company and Foundation for
their support. We would also like to thank the referee for many important suggestions
and corrections.

2. The Prime Number Theorem: Development and Formulation

Most of modern mathematics traces back, in one way or another, to the real number
system. Going further backward, the real numbers depend on the integers, and hence
on number theory. The atoms or building blocks of the integers, via the Fundamental
Theorem of Arithmetic, are the set of primes. Hence in quite a strong sense the study
of the sequence of primes is truly fundamental in mathematics.
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The first important fact one observes about the primes is that there are infinitely many
of them. A proof of this fact appears in Euclid’s Elements and today there is a vast
number of other proofs of this basic result. In [FR] over thirty different independent
proofs from distinct areas of number theory were presented. These proofs illuminated
mnay aspects of the general theory of numbers. In distinction to the infinitude of
primes, an inspection of the positive integers clearly indicates that the primes ”thin
out”. This is perhaps most strikingly quantified by the result that there are arbitrarily
large gaps in the sequence of primes. More specifically, given any positive integer k,
no matter how large, one can find a set of k consecutive integers all of which are
composite. Hence the natural question arises as to the distribution or density of the
primes. Here interest centers on the prime number function π(x) defined for all
real numbers x by

π(x) = number of {primes 6 x}.
The basic question is whether there exists some easily defined function that either
computes π(x) or approximates π(x). Clearly π(x) →∞ as x →∞ so the appropriate
question on the distribution of primes is what is the growth rate of this function.
The Prime Number Theorem asserts that asymptotically π(x) is given by x

ln x .
Asymptotically means as x goes to ∞. It has been put forward as one of the
most surprising results in mathematics given that it ties together the primes and the
natural logarithm function in a simple way that is most unexpected. Formally stated
this result is:

Theorem 2.1. (Prime Number Theorem) If π(x) is the prime number function then

lim
x→∞

π(x)
x/ lnx− a

= 1.

Whether or not it actually is the most surprising result is of course open to debate.
However as pointed out by Apostol it certainly is surprising that the natural log func-
tion ln appears so prominently in a result about natural numbers. Further the original
and most commonly presented proofs of this result depend on complex analysis. This
is again surprising in that a result concerning a subset of the natural numbers would
depend upon the theory of analytic functions. What is certainly true is that the Prime
Number Theorem is a result whose statement is known to most mathematicians yet
very few go through its proof or know much about its development. The purpose of
this article is to trace the development of the formulation and eventual proofs of this
important theorem.

Some ideas on π(x) were hinted at by Euler however the first real conjecture concerning
the asymtotic equivalence of the prime number function was given by Legendre in
1808. Shortly thereafter Gauss presented a different but asymptotically equivalent
formulation.

Legendre, by looking at the list of primes up to 1,000,000, conjectured the following
concerning the asymptotic equivalence of the prime number function.

π(x) u
x

lnx− 1.08366
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for large values of x. Legendre gave no indication of how he arrived at the constant
1.08366. It must have arisen from some sort of experimentation with approximations
of the form

π(x) u
x

lnx− a
where a is a real constant. Notice that for all such real constants a

lim
x→∞

lnx

(lnx− a)
= 1.

It follows that the prime number theorem is equivalent to

lim
x→∞

π(x)
x/(lnx− a)

= 1

for any constant a. The question arises as to whether there is an optimal value for
a. Empirical evidence is that a = 1 is an optimal choice and generally better for very
large x than Legendre’s 1.08366.

Legendre did however attempt a proof of his conjecture. He did this by trying to
quantify the Sieve of Eratosthenes. Before we describe Legendre’s technique we recall
some notation which makes the presentation of some of the statments much easier.
Suppose that f(x), g(x) are positive real valued functions. Then

(1) f(x) = O(g(x)) (read f(x) is big O of g(x)) if there exists a constant A
independent of x and an x0 such that

f(x) 6 Ag(x) for all x > x0

(2) f(x) = o(g(x)) ( read f(x) is little o of g(x)) if
f(x)
g(x)

→ 0 as x →∞

In other words g(x) is of a higher order of magnitude than f(x).

(3) If f(x) = O(g(x)) and g(x) = O(f(x)), that is there exist constants A1, A2

independent of x and an x0 such that

A1g(x) 6 f(x) 6 A2g(x) for all x > x0,

then we say that f(x) and g(x) are of the same order of magnitude and write

f(x) � g(x)

(4) If
f(x)
g(x)

→ 1 as x →∞

then we say that f(x) and g(x) are asymptotically equal and we write

f(x) ∼ g(x)

In general we write O(g) or o(g) to signify an unspecified function f such that f = O(g)
or f = o(g). Hence for example writing f = g + o(x) means that f−g

x → 0 and saying
that f is o(1) means that f(x) → 0 as x →∞.
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It is clear that being o(g) implies being O(g) but not necessarily the other way around.
Further it is easy to see that

f ∼ g is equivalent to f = g + o(g) = g(1 + o(1)).

In terms of this notation the prime number theorem can be expressed by

π(x) ∼ x

lnx

or equivalently

π(x) =
x

lnx
(1 + o(1)).

Now we return to Legendre’s attempted proof. Recall that the Sieve of Eratosthenes
is a straightforward method to obtain all the primes less than or equal to a fixed bound
x. It is ascribed (as the name suggests) to Eratosthenes ( 276-194 B.C.) who was the
chief librarian of the great ancient library in Alexandria. Besides the sieve method he
was an influential scientist and scholar in the ancient world, developing a chronology of
ancient history (up to that point) and helping to obtain an accurate measure (within
the measurement errors of his time) of the dimensions of the Earth.

The method of the Sieve of Eratosthenes is direct and works as follows. Given x > 0
list all the positive integers less than or equal to x. Starting with 2, which is prime,
cross out all multiples of 2 on the list. The next number on the list, not crossed out,
which is 3, is prime. Now cross out all the multiples of 3 not already eliminated. The
next number left uneliminated, 5, is prime. Continue in this manner. This must only
be done for numbers 6

√
x. Upon completion of this process, any number not crossed

out must be a prime.

Below we exhibit the Sieve of Eratosthenes for numbers 6 100. In beginning each
round of elimination we must only consider numbers 6

√
100 = 10.

1 2 3 6 4 5 6 6 7 6 8 6 9 6 10
11 6 12 13 6 14 6 15 6 16 17 6 18 19 6 20
6 21 6 22 23 6 24 6 25 6 26 6 27 6 28 29 6 30
31 6 32 6 33 6 34 6 35 6 36 37 6 38 6 39 6 40
41 6 42 43 6 44 6 45 6 46 47 6 48 6 49 6 50
6 51 6 52 53 6 54 6 55 6 56 6 57 6 58 59 6 60
61 6 62 6 63 6 64 6 65 6 66 67 6 68 6 69 6 70
71 6 72 73 6 74 6 75 6 76 6 77 6 78 79 6 80
6 81 6 82 83 6 84 6 85 6 86 6 87 6 88 89 6 90
6 91 6 92 6 93 6 94 6 95 6 96 97 6 98 6 99 6 100

After completing the sieving operation we obtain the list

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 61, 67, 71, 73, 79, 83, 89, 97}

which comprises all the primes less than or equal to 100.
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Given positive integers m,x, by a slight modification, the Sieve of Eratosthenes can
be used to determine all the positive integers relatively prime to m and less than or
equal to x.

Here suppose we are given m and x. Let p1, ..., pk be the distinct prime factors of
m arranged in ascending order, that is p1 < p2 < ... < pk. Next list all the positive
integers less than or equal to x as we did for the ordinary sieve. Start with p1 and
eliminate all multiples of p1 on the list. Then successively do the same for p2 through
pk. The numbers remaining on the list are precisely those relatively prime to m that
are also less than or equal to x. If pi > x ignore this prime and all higher primes.

Legendre in attempting to prove his conjecture derived a computational formula for
the Sieve of Eratosthenes. Given a positive integer m and a positive x let

Nm(x) = number of { integers 6 x and relatively prime to m}.
This is precisely the size of the list obtained in the modified Sieve of Eratosthenes
derived above. Then:

Theorem 2.2. (Legendre’s Formula for the Sieve of Eratosthenes) Let m ∈ N, x > 0
then

Nm(x) =
∑
d|m

µ(d)[
x

d
]

where µ(d) is the Moebius function and [ ] is the greatest integer function.

Now given x > 0 let
m =

∏
p6
√

x

p

where p is prime. Then Nm(x) counts the number of primes in the interval [
√

x, x]. It
follows that

Nm(x) = π(x)− π(
√

x) + 1.

Substituting Legendre’s formula into this expression we obtain as a corollary

Corollary 2.1. For x > 2,

π(x) = −1 + π(
√

x) +
∑

ν(d)6
√

x

µ(d)[
x

d
]

where ν(d) is the greatest prime factor of d.

Although this gives a formula for π(x), it is essentially useless in truly computing π(x)
for large x, or in shedding any light on the prime number theorem. First of all if we
estimate [x

d ] by x
d + O(1) and substitute in the formula we have

π(x)− π(
√

x) + 1 =
∑

ν(d)6
√

x

µ(d)(x
d + O(1))

= x
∏

p6
√

x

(1− 1
p ) + O(2π(

√
x))
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Hence the error term is exponentially larger than the main term.

Meisel in 1870 gave an improvement to Legendre’s formula and was able to use this
technique to compute π(x) correctly up to x = 108.

Theorem 2.3. (Meisel’s Formula) Let p1 < p2 < ... < pn < ... be the listing of the
primes in increasing order so that pj is the jth prime. Let x > 4, n = π(

√
x) and

mn = p1...pn. Then

π(x) = Nmn(x) + m(1 + s) +
1
2
s(s− 1)− 1−

s∑
j=1

π(
x

pm+j
)

where m = π(x
1
3 ) and s = n−m.

Gauss a bit after Legendre presented a different conjecture concerning the prime num-
ber function. By examining the list of primes less than 3,000,000 Gauss conjectured
that the prime number function is given asymptotically by the logarithmic integral
function Li(x) defined as

Li(x) =
∫ x

2

1
ln t

dt.

Gauss’ observation was then that asymtotically

π(x) u Li(x).

If integration by parts is used on the integral defining Li(x), and we take the limit as
x →∞, it is clear that this integral is asymptotically x

ln x . Hence Gauss’s observation
is then that

lim
x→∞

π(x)
x/ lnx

= 1

and therefore equivalent to Legendre’s conjecture and the Prime Number Theorem.

Essentially Gauss’ conjecture is that the function 1
ln x is a density function for the

set of prime numbers. Along these lines a very interesting interpretation of the prime
number theorem is the following. The ratio π(x)

x represents the probability of randomly
choosing a prime less than or equal to x. The prime number theorem says that
asymptotically this probability is given by 1

ln x , Gauss’ density function.

What is of further interest here is that even for very large x the value 1
ln x is not that

small. Hence probabilistically it is not that hard to randomly choose a very large
prime. This has applications in cryptography, especially in the implementation of the
RSA algorithm. The book [FR] has a discussion and explanation of this.

The table below compares various approximations to π(x).
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x π(x) x
ln x Li(x) x

ln x−1.08366
x

ln x−1

103 168 145 178 172 169
104 1229 1086 1246 1231 1218
105 9592 8686 9630 9588 9512
106 78498 72382 78628 78534 78030
107 664579 620420 664918 665138 661459
108 5761455 5428681 5762209 5769341 5740304

Observing the table above one notices that Li(x) > π(x). The question arose as to
whether this is always true. Littlewood in 1914 [Li] proved that π(x)−Li(x) assumes
both positive and negative values infinitely often. Te Riele in 1986 [Re] showed that
there are greater than 10180 consecutive integers for which π(x) > Li(x) in the range
6.62× 10370 < x < 6.69× 10370.

The prime number function π(x) and the prime number theorem answer the basic
questions concerning the density of primes. A related question concerns the the func-
tion

p(n) = pn

where pn is the nth prime. That is the question of whether there is a closed form
function which estimates the nth prime. The answer to this is yes and turns out to be
equivalent to the prime number theorem. We state it below.

Theorem 2.4. The nth prime pn is given asymptotically by

pn u n lnn.

3. The Use of Analysis in Number Theory

The proof of the prime number theorem was finally accomplished in 1896 indepen-
dently by Hadamard and de la Vallée-Poussin. Both proofs built on a brilliant method
introduced by Riemann in 1860. Riemann’s method introduced the use of complex
analysis into number theory and led ultimately to the development of that branch
of mathematics now called analytic number theory. As with most brilliant ideas,
Riemann’s idea had precursors and the use of analysis in studying number theoretical
problems predates Riemann. The first use of analysis seems to have been done by
Euler who was examining the density of primes. In particular he proved the following
theorem.

Theorem 3.1. The sum over the set or primes∑
p prime

1
p

diverges. In particular as a consequence the set of primes must be infinite.
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To interpret this result notice that it says for example that the set of primes, although
they thin out, is still more numerous that the set of perfect squares

{1, 4, 9, 16, ..., n2, ...}.
To see why this is true, recall that by the p-series test, the infinite series

∞∑
n=1

1
n2

converges.

To prove Theorem 2.1 Euler introduced the zeta function

ζ(s) =
∞∑

n=1

1
ns

where for Euler s was a real variable. From the p-series test this will converge if s > 1
and hence will define a function over the interval (1,∞)

By using the fundamental theorem of arithmetic that each n can be expressed as a
product of primes Euler showed that the zeta function can be written as the following
product

ζ(s) =
∏

p, prime

(
1

1− p−s
).

This product is known as that Euler product expansion. Then, by examining
ln(ζ(s)) he was able to prove the divergence result.

Euler’s ideas were extended by Dirichlet who used them to prove that there are infin-
itely many primes in any arithmetic progression an + b with a and b relatively prime.
This result is now known as Dirichlet’s Theorem.

Theorem 3.2. (Dirichlet’s Theorem) Let a,b be natural numbers with (a, b) = 1.
Then there are infinitely many primes of the form an + b.

Dirichlet’s proof is a beautiful amalgam of number theory and analysis. The proof
rests on two concepts; Dirichlet characters and Dirichlet series. The basic idea
is to build for each integer a, a series, which would converge if there were only finitely
many primes congruent to b mod a and then show that this series actually diverges.

For each natural number k, Dirichlet introduces a complex-valued function

χk : Z → C
called a Dirichlet character. Specifically, for any integer k, a Dirichlet character
modulo k, is a complex valued function on the integers χ : Z → C satisfying

(1) χ(a) = 0 if (a, k) > 1

(2) χ(1) 6= 0

(3) χ(a1a2) = χ(a1)χ(a2) for all a1, a2 ∈ Z

(4) χ(a1) = χ(a2) whenever a1 ≡ a2 mod k.
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From (3) and (4) it is clear that a Dirichlet character can be considered as a multi-
plicative complex function on the set of residue classes modulo k. We will shorten the
notation and use the word character to mean a Dirichlet character modulo k.

From a group theoretical point of view a Dirichlet character is just a character of a
finite complex representation of the unit group U(Zk) of the modular ring Zk.

Dirichlet then introduces what is now known as a Dirichlet L-series. This is defined
in the following manner.

If χ is a character mod k then the Dirichlet L-series is defined for complex values s
by

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

This is clearly an extension of the zeta function of Euler. From this he shows an analog
of the Euler product expansion

L(s, χ) =
∏

p prime

(1− χ(p)
ps

)−1.

This is valid for s > 1.

Then to prove the main result Dirichlet shows that if (a, b) = 1 and there were only
finitely many primes of the form an+b then a series related to the L-series for a would
converge. He then shows that this series must diverge. It follows then that there must
be infinitely many primes of the form an+b. (A complete proof of Dirichlet’s Theorem
can be found in [FR].)

4. Chebyshev’s Estimate

The first significant progress in developing a proof of the prime number theorem was
obtained by Chebyshev in 1848. He proved that the functions π(x) and x

ln x are of the
same order of magnitude and that if

lim
x→∞

π(x)
x/ lnx

existed then the limit would have to be 1. At first glance it appeared that he was
quite close to a proof of the prime number theorem. However it would take another
fifty years and the development of some completely new ideas from complex analysis
to actually accomplish this. A proof, along the lines of Chebyshev’s methods, without
recourse to complex analysis, would not be done until the work of Selberg and Erdos
in the late 1940’s.

Chebyshev proved the following result, now known as Chebyshev’s estimate.

Theorem 4.1. There exist positive constants A1 and A2 such that

A1
x

lnx
< π(x) < A2

x

lnx
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for all x > 2. In the notation introduced in section 1 this says that

π(x) � x

lnx
.

In Chebyshev’s original proof he obtained the values A1 = .922 and A2 = 1.105. His
proof actually involved a careful analysis of a form of Stirling’s approximation. The
values of these constants in Chebyshev’s inequality have been improved upon many
times. Sylvester in 1882 improved the values to A1 = .95695 and A2 = 1.04423 for
sufficiently large x. It can now be shown that for all x > 17, A1 = 1 can be used (see
[Du 1,2],[Bu]).

This following is an immediate corollary of the estimate, independent of the values of
A1 and A2.

Corollary 4.1. π(x)
x → 0 as x →∞.

Chebyshev further proved that if

lim
x→∞

π(x)
x/ lnx

existed then the limit would have to be one. Hence showing that the above limit
existed would prove the prime number theorem. Chebyshev however could not prove
that the limit existed.

It was mentioned at the end of section 1 that the prime number theorem is equivalent
to pn ∼ n lnn where pn denotes the nth prime. Chebyshev’s estimate immediately
shows that pn and n lnn are of the same order of magnitude.

Theorem 4.2. There exist positive constants B1, B2 such that

B1n lnn 6 pn 6 B2n lnn.

Equivalently
pn � n lnn.

Using essentially the same techniques Chebyshev proved what is called Bertrand’s
Postulate. This result says that given any natural number n there is always a prime
between n and 2n. The proof actually shows that given any real number x > 1 there
exists a prime between x and 2x. Bertrand verified this empirically for a large number
of natural numbers and conjectured the result. The first proof was Chebyshev’s.

Theorem 4.3. (Bertrand’s Postulate) For every natural number n > 1 there is a
prime p such that n 6 p < 2n.

5. Riemann’s Method

From Chebyshev’s estimate and its consequences it seemed that a proof of the prime
number theorem was close at hand. In 1860 B.G. Riemann attempted to prove this
main result. Riemann eventually wrote only one paper in number theory, and although
he failed in his primary goal of proving the prime number theorem, this paper had
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a profound effect on both number theory in particular and mathematics in general.
Riemann’s basic new idea was to extend the zeta function ζ(s) of Euler by allowing s
to be a complex number. This idea of Riemann initiated the use of complex analysis,
specifically the theory of analytic functions and complex integration, into number
theory and laid the ground work for a new discipline in mathematics called analytic
number theory. Although the use of analysis begins with the Euler zeta function
and continues through the work of Dirichlet it is in this paper of Riemann and the
introduction of complex analytic methods that really is the beginning of analytic
number theory. In modern parlance an elementary method in number theory is
any technique that does not involve analysis.

Riemann, in allowing a complex argument s, showed that the resulting function ζ(s)
is an analytic function for Re (s) > 1 and further can be continued analytically to a
function, also denoted ζ(s), that is analytic in all of C except s = 1. Further s = 1 is
a simple pole with residue 1, that is

ζ(s) =
1

s− 1
+ H(s)

where H(s) is an entire function. Riemann then showed that knowledge of the location
of the complex zeroes of ζ(s) describes the density of primes. In particular, if there
are no zeroes along the line Re (s) = 1, this would then imply the prime number
theorem. This was precisely the main step in the proofs of Hadamard and de la
Vallée-Poussin (given independently) of the prime number theorem given thirty-six
years after Riemann’s paper.

The Riemann zeta function is then

ζ(s) =
∞∑

n=1

1
ns

where s = σ + it and σ, t ∈ R

This series converges absolutely for Re (s) > 1 and hence defines ζ(s) as an analytic
function in this region. Thus we have

ζ(s) =
∏

p prime

(
1

1− p−s
), s ∈ C,Re s > 1.

It follows that ζ(s) has no zeros for Re s > 1.

A crucial concept in studying the zeta function is that of analytic continuation.
The basic idea is the following: suppose a complex analytic function f(z) is given by
an analytic expression which holds in a region S in C. Suppose that this is equivalent
within S or within a subset of S to another analytic expression which holds in a larger
region S1. Then the second expression can be used to analytically extend or continue
f(z) to the larger region S1.

Riemann first proves by using complex integration that ζ(s) can be continued analyti-
cally to a function analytic for Re (s) > 0. He then establishes the following functional
relation concerning the zeta function:
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π−s/2Γ(
s

2
)ζ(s) = π−(1−s)/2Γ(

1− s

2
)ζ(1− s)

or equivalently

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(s− 1), s 6= 0, 1.

In this relation Γ(s) is the complex gamma function which is analytic except at s =
0,−1,−2, .....

The functional relation then has the form

ζ(s) = K(s)ζ(s− 1)

where
K(s) = 2sπs−1 sin(

πs

2
)Γ(1− s).

The transformation s → 1 − s has s = 1
2 as its center of symmetry. Therefore since

ζ(s) is defined for Re s > 1
2 the functional equation can be used to continue ζ(s)

to a function defined for Re s 6 1
2 and hence defined over the whole complex plane.

Therefore Riemann establishes the following theorem.

Theorem 5.1. The Riemann zeta function ζ(s) can be analytically continued to a
function, also denoted ζ(s), which is meromorphic in the whole plane. The only
singularity of ζ(s) is a simple pole at s = 1 with residue 1, that is

ζ(s) =
1

s− 1
+ H(s)

where H(s) is an entire function.

From the singularities of the complex Gamma function it follows that the function K(s)
has singularities, that is becomes infinite at the positive odd integers 2n + 1, n > 1.
However ζ(2n + 1) is finite for all n > 1. Hence from the functional relation this is
possible only if ζ(1 − s) = 0 if s = 2n + 1. Therefore ζ(s) = 0 at all the negative
even integers −2,−4, .... These are called the trivial zeros of ζ(s). What becomes
crucial in applying the zeta function to the proof of the prime number theorem is the
location of its nontrivial zeros. Riemann showed that any nontrivial zeros must fall in
the critical strip 0 6 Re s 6 1. Further he conjectured that all the nontrivial zeros
lie along the line Re s = 1

2 which is called the critical line. This conjecture is called
the Riemann hypothesis and is still an open question. It has resisted solution for
almost a hundred and fifty years and has had tremendous impact on both Number
Theory and other branches of mathematics. We will say more later about the Riemann
hypothesis. What was most important for the proof of the prime number theorem was
the following.

Theorem 5.2. If the Riemann zeta function ζ(s) has no zeros on the line Re s = 1
then the prime number theorem holds.
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In order to prove the above result Riemann introduced and analyzed several other re-
lated functions, called the Chebyshev functions. The first, denoted θ(x), is defined
for a real variable x by

θ(x) =
∑
p6x

ln p with p prime

while the second, denoted Ψ(x), is defined, again for a real variable x, by

Ψ(x) =
∑

pk6x;k>1

ln p with p prime

These functions count respectively the number of primes p 6 x and the number of
prime powers pk 6 x weighted by ln p. The van Mangoldt function Λ(n) is defined
for positive integers by

Λ(n) = ln p, if n = pc, c > 1; and(5.1)

Λ(n) = 0, for all other n > 0.(5.2)

Hence the Chebyshev function Ψ(x) is actually the summation function of Λ(n). That
is

Ψ(x) =
∑
n6x

Λ(n).

Riemann showed that the prime number theorem is equivalent to certain limit results
involving the Chebyshev functions. Specifically:

Theorem 5.3. The following are all equivalent formulations of the prime number
theorem

(a) π(x) ∼ x
ln x

(b) θ(x) ∼ x

(c) Ψ(x) ∼ x.

What Riemann actually showed is that the absence of zeros on the line Re s = 1 implies
part (b) of the theorem above which in turn implies the prime number theorem.

6. The Proof and Some Consequences

In 1896, some 36 years after Riemann’s paper, Hadamard, and independently de la
Vallée-Poussin, proved the prime number theorem by finally establishing that ζ(s) has
no zeros on the line Re s = 1.

Theorem 6.1. The Riemann zeta function ζ(s) has no zeros on the line Re s = 1.
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The original proofs given by Hadamard and de la Vallée-Poussin of the Prime Number
Theorem were quite complicated. The proof was somewhat simplified by Wiener using
what are known as Tauberian theorems, but still remained quite difficult. Wiener also
pointed out that the converse of Theorem 4.2 is also true - that is the prime number
theorem is actually equivalent to the fact that there are no zeros of ζ(s) on the line
Re s = 1.

Theorem 6.2. The prime number theorem is equivalent to the fact that there are no
zeros of ζ(s) on the line Re s = 1.

In 1980 D.J. Newman found a way to give a proof using only fairly straightforward facts
about complex integration and which allowed a relatively short proof to be presented.

Gauss’ original approximation to π(x) was the logarithmic integral function Li(x).
Riemann attempted to improve on this in the following manner. His work suggested
that π(x)

x would be closer to 1
ln x , that is the probability of choosing a prime randomly

less than x, would be closer to 1
ln x if one counted not only the primes but also the

”weighted powers” of the primes. That is counting a p2 as half a prime, p3 as a third
of a prime and so on. This would lead to an approximation for Li(x) given by

Li(x) u π(x) +
1
2
π(x

1
2 ) +

1
3
π(x

1
3 ) + ..

Upon inverting this

π(x) u Li(x)− 1
2
Li(x

1
2 )− 1

3
Li(x

1
3 )...

Based on this approach Riemann developed an explicit formula for π(x). If we let

f(x) = π(x) +
1
2
π(x

1
2 ) +

1
3
π(x

1
3 ) + ...

then the number of primes can be recovered from this by

π(x) =
∞∑

n=1

µ(n)
n

f(x
1
n )

where µ(n) is the Moebius function defined for natural numbers n by

µ(n) = 1, if n = 1(6.1)

µ(n) = (−1)r, if n = p1p2...pr(6.2)

with p1, ..., pr distinct primes(6.3)

µ(n) = 0, otherwise.(6.4)

From this Riemann gives the explicit formula

f(x) = Li(x)−
∑

ρ

Li(xρ)− ln(2) +
∫ ∞

x

dt

t(t2 − 1) ln(t)

where the sum is taken over the nontrivial zeros of the Riemann zeta function.
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Replacing f(x) by its approximate value Li(x) Riemann conjectured that

π(x) =
∞∑

n=1

µ(n)
n

Li(x
1
n ).

The series on the right side above converges for x > 2 and is called the Riemann
function R(x), that is

R(x) =
∞∑

n=1

µ(n)
n

Li(x
1
n ), x > 2.

Riemann’s conjecture was then that π(x) = R(x). It turns out that this is asymptot-
ically correct. In particular:

Theorem 6.3. We have π(x) ∼ R(x) where R(x) is the Riemann function.

In fact this approximation is remarkably close for large x. For x = 400, 000, 000 we
have

π(400, 000, 000) = 21, 336, 326 and R(400, 000, 000) = 21, 355, 517
while for x = 1, 000, 000, 000

π(1, 000, 000, 000) = 50, 847, 534 and R(1, 000, 000, 000) = 50, 847, 455.

Bertrand’s Postulate showed that for any natural number n there is always a prime
in the interval [n, 2n]. Further the proof used the same methods as the proof of
Chebyshev’s estimate. As an immediate consequence of the prime number theorem
the following result is obtained.

Theorem 6.4. For any ε > 0 there exists an x0 = x0(ε) such that there is always a
prime in the interval [x, (1 + ε)x] for x > x0. Equivalently π(x + y) > π(x) for y = εx.

The above theorem and its proof has the following interesting interpretation. For large
x

π(2x)− π(x) ∼ π(x).
Hence for large x there are as many primes asymptotically between x and 2x as there
are less than x, despite the fact that by the Prime Number Theorem the density of
primes tends to thin out. However it can be shown that

2π(x)− π(2x) →∞
as x →∞.

The result given in Theorem 6.4 has been improved upon in various ways. Huxley in
1972 continuing a long line of research in this direction showed that there is always
a prime in the interval [x, x + xc] if c > 7

12 for large enough x. The value of c has
subsequently been improved, the most recent being done by Baker and Harman who
reduced c to .535 again for large enough x. Further Baker and Harman show that

π(x + x.535)− π(x) >
x.535

20 ln x
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for large enough x.

Erdos, using a formula due to Selberg, extended Theorem 6.4 and proved that for each
ε > 0 there exists a constant c(ε) such that in the interval [x, (1 + ε)x] there are at
least c(ε)x

ln x primes.

Finally we mention the following remarkable result which is a consequence of Bertrand’s
Postulate (see [NZ] exercises).

Theorem 6.5. Given any positive integer n the set of integers {1, 2, ..., 2n} can be
partitioned into n disjoint pairs so that the sum of each pair is a prime.

For example
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

can be partitioned into

{1, 10}, {2, 9}, {3, 4}, {5, 8}, {6, 7}.
The result is in the same spirit as the Goldbach conjecture which states that any
even integer is the sum of two primes.

7. The Riemann Hypothesis

As we have described, the functional relation

ζ(s) = K(s)ζ(s− 1)

where
K(s) = 2sπs−1 sin(

πs

2
)Γ(1− s)

established that ζ(s) = 0 at all the negative even integers −2,−4, .... These are called
the trivial zeros of ζ(s). Riemann in his original paper showed that any nontrivial
zeros must fall in the critical strip 0 6 Re s 6 1. He further showed that if ζ(s) has
no zeros on the line Re s = 1 this was sufficent to prove the prime number theorem
which was the method of proof for both Hadamard and de la Vallée-Poussin. In the
course of this investigation Riemann conjectured that all the nontrivial zeros lie along
the line Re s = 1

2 which is called the critical line. This statement is the common
form of the Riemann hypothesis.

Riemann Hypothesis: All the nontrivial zeros of the Riemann zeta function lie
along the line Re(s) = 1

2 .

The Riemann hypothesis has resisted solution for almost a hundred and fifty years
and has had tremendous impact on both Number Theory and other branches of math-
ematics. Now that Fermat’s Last Theorem and the Poincaré Conjecture have been
settled the Riemann hypothesis can be considered the outstanding open problem in
mathematics. It is included among the five millenium problems.

There are various further results concerning the Riemann hypothesis and the zeros of
the zeta function. Hardy in 1914 proved that ζ(s) has infinitely many zeros along the
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critical line Re s = 1
2 . As of 2006 it is known that at least the first billion and a half

nontrivial zeros of ζ(s) lie along the critical line.

Selberg in 1942 showed that a positive proportion of the nontrivial zeros lie along the
critical line. Levinson in 1974 improved this to show that at least 1

3 of the nontrivial
zeros are on the critical line. This has subsequently been improved by Conrey [Co] to
at least 40% of the nontrivial zeros are on the critical line.

There are several quantitative statements that are equivalent to the Riemann hypoth-
esis. Koch in 1901 showed that the Riemann hypothesis was equivalent to

π(x) = Li(x) + O(
√

x lnx)

where Li(x) is the logarithmic integral function of Gauss

Li(x) =
∫ x

2

1
ln t

dt.

In a similar manner the Riemann hypothesis can be shown to be equivalent to

π(x) = Li(x) + O(x
1
2+ε) ∀ε > 0.

The equality (6.1) was also conjectured by Riemann in his original paper and is often
called the prime number theorem form of the Riemann Hypothesis.

There are many other computational variations of both the prime number theorem
and the Riemann hypothesis. Several of these involve the Moebius function µ(n) and
Merten’s function defined by

M(x) =
∑
n6x

µ(x).

Merten’s function is related to the Riemann zeta function by the following

1
ζ(s)

=
∞∑

n=1

µ(n)
ns

= s

∫ ∞

1

M(x)
xs+1

dx.

Van Mangoldt proved the following.

Theorem 7.1. The prime number theorem is equivalent to the statement
∞∑

n=1

µ(n)
n

= 0.

Further the following is also known.

Theorem 7.2. If M(x) is Merten’s function then:

(1) the prime number theorem is equivalent to

M(x) = o(x).

(2) the Riemann hypothesis is equivalent to

M(x) = O(x
1
2+ε) for any fixed ε > 0.
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In observing computed values up to the bounds that were available to him Riemann
proposed that Li(x) > π(x) for all sufficently large x. This turned out to be incorrect.
In 1914 Littlewood proved the following.

Theorem 7.3. The difference π(x)−Li(x) assumes both positive and negative values
infinitely often.

Littelwood’s proof was interesting in that it used the following technique which has
become extremely useful in analytic number theory. First he assumed that the Rie-
mann hypothesis is true and proved that π(x) − Li(x) changes sign infinitely often.
He then showed that the same is true if the Riemann hypothesis is assumed to be
false. In 1986 Te Riele showed that there are greater than 10180 consecutive integers
for which π(x) > Li(x) in the range 6.62× 10370 < x < 6.69× 10370.

The proof of Dirichlet’s theorem, giving that there are infinitely many primes in any
arithmetic progression an+b with (a, b) = 1, Dirichlet L-series. Such a series is defined
by

L(s, χ) =
∞∑

n=1

χ(n)
ns

where χ is a character mod k, and s is a complex variable. Both the prime num-
ber theorem and the Riemann hypothesis can be extended to primes in arithmetic
progressions.

For (a, b) = 1 normal let

π(x; a, b) = number of {primes congruent to b mod a and 6 x}.

The Prime Number Theorem for Arithmetic Progressions can then be expressed as:

Theorem 7.4. (The Prime Number Theorem for Arithmetic Progressions) For fixed
a, b > 0 with (a, b) = 1 then

π(x; a, b) ∼ 1
φ(a)

π(x) ∼ 1
φ(a)

x

lnx
∼ 1

φ(a)
Li(x).

Here φ(n) is the Euler phi function.

The result can be expressed in probabilistic terms by saying that the primes are
uniformly distributed in the φ(a) residue classes relatively prime to a. In fact much of
the material on the prime number theorem can be rephrased in terms of probability
theory. The prime number theorem itself can be expressed as:

Theorem 7.5. (The Prime Number Theorem) The probability of randomly choosing
a prime less than or equal to x is asymptotically given by 1

ln x .

The extension of the Riemann hypothesis to the case of arithmetic progressions is called
the generalized Riemann hypothesis or the extended Riemann hypothesis.
This says that the zeros of any Dirichlet L-series also lie along the critical line Re s = 1

2 .
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Generalized Riemann Hypothesis: For an integer k and any character χ mod k
then the nontrivial zeros of the L-series

L(s, χ) =
∞∑

n=1

χ(n)
ns

all lie along the critical line Re s = 1
2 .

8. The Elementary Proof

Chebyshev’s estimate (Theorem 4.1) appeared to be quite close to the prime num-
ber theorem. It provided the right bounds and further Chebyshev showed that if
limx→∞

π(x) ln x
x existed then the value of the limit must be one. Chebyshev’s methods

were elementary in the sense that they involved no analysis more complicated than
simple real integration and the properties of the logarithmic function (although the
proofs themselves were complicated). This would seem appropriate for a proof of a
theorem about primes since primes are in the realm of arithmetic and should not re-
quire deep analytic notions. However Chebyshev could not establish that the limit
existed and then Riemann, ten years or so later, tried a different approach using the
theory of complex analytic functions. The proof of the prime number theorem was
reduced to knowing the location of the zeros of the complex analytic Riemann zeta
function. Still, even with Riemann’s ideas, the proof resisted solution for another
thirty-six years and this suggested that the limit limx→∞

π(x) ln x
x might not exist.

Any doubts were put to rest with the proofs of Hadamard and de la Vallée-Poussin.
The Prime Number Theorem, a result seemingly arising in arithmetic, is equivalent
to the result that there are no zeros of the Riemann zeta function ζ(s) along the line
Re(s) = 1, a result really in complex analysis. This raised the question of the actual
relationship between the distribution of primes and complex function theory. This led
to the further question of whether there could exist an elementary proof of the prime
number theorem along the lines of Chebyshev’s methods.

The opinion that came to prevail was that it was doubtful that such a proof existed.
The feeling was that complex analysis was somehow deeper than real analysis and
in view of the equivalence mentioned above it would be unlikely to prove the prime
number theorem using just the methods of real analysis. On the other hand it was
felt that if such a proof existed it would open up all sorts of new avenues in number
theory.

The English mathematician G.H. Hardy, who made major contributions to the study
of the relationship between the prime number function π(x) and Gauss’s logarithmic
integral function Li(x), described the situation this way in a lecture in 1921 (see [N]).

G.H. Hardy No elementary proof of the prime number theorem is known and one may
ask whether it is reasonable to expect one. Now we know that the theorem is roughly
equivalent to a theorem about an analytic function, the theorem that Riemann’s zeta
function has no roots on a certain line. A proof of such a theorem, not fundamentally
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dependent upon the ideas of the theory of functions, seems to me to be extraordinarily
unlikely. It is rash to assert that a mathematical theorem cannot be proved in a par-
ticular way; but one thing seems quite clear. We have certain views about the logic of
the theory; we think that some theorems, as we say ”lie deep” and others nearer to the
surface. If anyone produces an elementary proof of the prime number theorem, he will
show that these views are wrong, that the subject does not hang together in the way we
have supposed, and that it is time for the books to be cast aside and for the theory to
be rewritten.

However what actually occurred was even more surprising. Selberg and then Erdos
in 1948 developed elementary proofs of the prime number theorem along the lines of
Chebyshev’s methods. All of these proofs depended on asymptotic estimates for an
extension of the von Mangoldt function. These asymptotic estimates are now called
Selberg formulae. The discovery of this elementary proof put to rest the discus-
sion of the relative profoundness of complex analysis versus real analysis. However,
despite the brilliance of the Selberg-Erdos approach, it did not produce the startling
consequences in understanding both the distribution of primes and the zeros of the
Riemann zeta function that were predicted. There are now many so-called elementary
proofs and the techniques involved have become standard in analytic number theory.
It may be that in time these methods will lead to a deeper understanding of the basic
questions.

The Selberg formula, from which the elementary proof, can be derived is the following.

Theorem 8.1. (Selberg Formula) For x > 1,∑
p6x

(ln p)2 +
∑

p,q6x

ln p ln q = 2x lnx + O(x)

where p, q run over all the primes 6 x.

Several alternative formulations of this result are used in the elementary proof. First,
the formula can be expressed in terms of the von Mangoldt function.

Theorem 8.2. (Selberg Formula) For x > 1,∑
n6x

Λ(n) ln n +
∑

n,m6x

Λ(n)Λ(n) = 2x lnx + O(x)

where Λ(n) is the von Mangoldt function.

The elementary proof requires two more equivalent formulations which tie the Selberg
formula to the Chebyshev functions θ(x) and Ψ(x).

Theorem 8.3. (Selberg Formula) For x > 1

(1) θ(x) lnx +
∑
p6x

ln pθ(
x

p
) = 2x lnx + O(x)

(2) Ψ(x) lnx +
∑
n6x

Λ(n)Ψ(
x

n
) = 2x lnx + O(x)



22 B. FINE AND G. ROSENBERGER

The prime number theorem is equivalent to θ(x) ∼ x and to Ψ(x) ∼ x. The Selberg
proof shows θ(x) ∼ x. This is proved via a series of estimates whose proofs all work
with, or start with, the Selberg formula (in one of its formulations), and then use
tricky and difficult manipulation of series.

It is an easy consequence of the prime number theorem that if pn is the nth prime
then

lim
n→∞

pn+1

pn
= 1. (8.1)

This fact however played a role in the history of the elementary proof. When Selberg
first gave his formula, Erdos used it to give an elementary proof of (8.1). Selberg
then used his formula along with the methods of Erdos’ proof to develop the first
elementary proof of the prime number theorem. Erdos then gave a second elementary
proof.

9. Some Extensions

Related to Riemann’s explicit formula it can be shown that the distribution of the
number of zeros of the Riemann zeta function along the critical line can be given
asymptotically by

N(t) =
t

2π
ln(

t

2π
)− t

2π

where N(t) is the number of zeros z with z = 1
2 + is along the critical line with

0 < s < t.

There are also some surprising relationships between some physical phenomena and
the location of the zeros of the Riemann zeta function. This is further related to the
distribution of eigenvalues of certain operators.

An entirely elementary formulation of the Riemann hypothesis is the following (see
[P]). Define a positive squarefree integer n to be red if it is the product of an even
number of distinct primes and blue if it is the product of an odd number of distinct
primes. Let R(n) be the number of red integers not exceeding n and B(n) the num-
ber of blue integers not exceeding n. The Riemann hypothesis is equivalent to the
statement that for any ε > 0 there exists an N such that for all n > N

|R(n)−B(n)| < n
1
2+ε.

As noted in the last section if pn denotes the nth prime then

lim
n→∞

pn+1

pn
= 1

even though there are arbitrarily large gaps in the primes. There is a well-known
conjecture known as Cramer’s conjecture concerning the difference pn+1 − pn of
consecutive primes.

Cramer’s Conjecture: pn+1 − pn 6 (1 + o(1))(lnn)2
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It follows from Koch’s equivalence to the Riemann hypotheis that if the Riemann
hypothesis is true then

pn+1 − pn = O(p
1
2+ε
n ) for any fixed ε > 0.

It can be shown also that the Riemann hypothesis implies the following conjecture.

Conjecture
∑

pn6x(pn+1 − pn)2 6 x1+o(1).

10. Literature

Below we give the references for most of the material in this article. It is by no
means meant to be exhaustive. The book by Narkiewicz [Na] has over a hundred
pages of references and is an comprehensive guide to the literature. It also contains
a version of Riemann’s original paper and the original proofs of Hadamard and de
la Vallée-Poussin. Complete versions of Selberg’s original proof can be found in the
book of Nathanson [N] while a self-contained exposition of another elementary proof
is in the book of Tenenbaum and Mendes-France [TMF]. A slightly different approach
based on Selberg’s methods can also be found in Hardy and Wright [HW]. The article
by Diamond [Di] is a nice survey on the use of elementary methods in the study of
primes. Nathanson’s book is also an excellent source of historical comments. The
book by Apostol [A] is an outstanding source on analytic number theory in general. A
complete proof of Dirichlet’s theorem appears in the books of Fine and Rosenberger
[FR] and Landau [L], while a clear discussion and outline of the proof is in the book
by Tenenbaum and Mendes-France [TMF]. A wealth of material on computational
aspects of number theory can be found in the excellent and comprehensive book by
Crandall and Pomerance [CP]. This book also contains many suggestions for research
projects. The books by Eliot [E] and [E1] present probabilistic number theory while
[HR] by H. Halberstam and H.E. Richert is a source for the use sieving methods in
number theory. The nice article by Goldstein [Go] covers some of the aspects of the
same material as this paper while the paper by Bateman and Diamond [BT], written
on the hundredth anniversary of the proof of the prime number theorem looks at
the development of analytic number theory in general. There is an understandable
description of the Riemann hypothesis in Conrey [Co 1].

We would like to thank the referee for many helpful suggestions. These greatly im-
proved the exposition of this paper.
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