SCIENTIA
Series A: Mathematical Sciences, Vol. 19 (2010), 77–81
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2010

On Almost Locally *h*-Pure QTAG-Modules

Gargi Varshney^{*} M.Z. Khan^{**}

ABSTRACT. Following [5], A module M_R is called a QTAG-module if every finitely generated submodule of every homomorphic image of M_R is a direct sum of uniserial modules. This is a very fascinating structure and many mathematicians worked to generalize the results for abelian groups for these modules. Many interesting results have been surfaced, but there is a lot to explore.

The purpose of this paper is to introduce and investigate the concept of almost locally h-pure QTAG-modules. A QTAG-module M is almost locally h-pure if every finitely generated submodule of M may be embedded in a finitely generated h-pure submodule of M. It was found that a QTAG-module is almost locally h-pure if and only if it is h-reduced, a direct sum of almost locally h-pure submodules is almost locally h-pure and every submodule of an almost locally h-pure QTAG-module is almost locally h-pure.

1. Introduction

All the rings considered here are associative with identity $1 \neq 0$ and modules are unital QTAG-modules. An element $x \in M$ is uniform if xR is a uniform module and d(xR) is the decomposition length of xR. For a uniform element $x \in M$, height of xin M i.e., $H_M(x)$ or simply $H(x) = \sup\{d(U/xR)\}$, where U runs through all the uniserial submodules of M containing x. $H_k(M)$ denotes the submodule of M generated by the elements of height at least k, and M is h-divisible if $H_1(M) = M$. A module Mis bounded if there exists an integer n such that $H(x) \leq n$, for every uniform $x \in M$. A submodule N of a QTAG-module M is called h-pure in M if $N \cap H_k(M) = H_k(N)$ for all $k \geq 0$. A submodule B of M is a basic submodule of M if $B = \bigoplus_{i=1}^{\infty} B_i$, where each B_i is a direct sum of uniserial modules of length i, B is h-pure in M and M/B is h-divisible. The submodule $M^1 \subset M$ is generated by the elements of infinite height, equivalently, $M^1 = \bigcap_{k=0}^{\infty} H_k(M) = H_{\omega}(M)$. A module M is called h-reduced if it is free from the elements of infinite height, equivalently, it does not contain any h-divisible

77

²⁰⁰⁰ Mathematics Subject Classification. Primary 16D70 Secondary 20K10.

Key words and phrases. QTAG-module, Height, h-pure submodule, Almost Locally h-pure QTAG-module .

submodule. A module M is uniserial if it has a unique composition series. For the other basic definitions and results we refer to [3,4].

We start with the following:

Definition 1.1: A QTAG-module M is almost locally h-pure if every finitely generated submodule $\sum x_i R$ of M can be embedded in a finitely generated h-pure submodule N of M. Equivalently, for every finite set of elements x_1, \dots, x_n of M there exists a finitely generated h-pure submodule N of M containing $x_i's$.

Remark: Direct sums of uniserial modules are almost locally *h*-pure.

2. Main Results

In this section we prove the main results of the paper.

Theorem 2.1: A direct sum of almost locally *h*-pure QTAG-modules is almost locally *h*-pure.

Proof: Let $M = \sum_{\alpha} \bigoplus N_{\alpha}$, where N_{α} is almost locally *h*-pure for all α . Now consider $x_1, \dots, x_n \in M$. Since every $x \in M$ is a finite sum of uniform elements, each x_i may be expressed as $x_i = x_{i_1} + x_{i_2} + \dots + x_{i_n}$. Let N_{β} be a summand having $x_{\beta_i} \neq 0$ for some *i*. Now consider the components $x_{\beta_1}, \dots, x_{\beta_n}$ of x_1, \dots, x_n in N_{β} . Since each such N_{β} is almost locally *h*-pure, there exists a finitely generated *h*-pure submodule K_{β} containing $x_{\beta_1}, \dots, x_{\beta_n}$. Then $\sum_{\beta} \bigoplus K_{\beta}$ is a finitely generated *h*-pure submodule containing $x_1, \dots, x_n \in M$. Hence, *M* is almost locally *h*-pure.

Theorem 2.2:

- (i) Let M be an almost locally h-pure QTAG-module and N a submodule of M, and if for every finite set of elements x₁, ..., x_n of M, there exists a h-pure submodule K of M such that the module generated by N and x₁, ..., x_n is a submodule of K and K/N is finitely generated, then M/N is almost locally h-pure.
- (ii) If M and M/N are almost locally h-pure, where N is h-pure in M, then for every finite set of elements x₁, ..., x_n of M, there exists a h-pure submodule K of M such that the module generated by N and x₁, ..., x_n is a submodule of K and K/N is finitely generated.

Proof: (i) Let us assume that there exists such a *h*-pure submodule K of M for every finite set of elements x_1, \dots, x_n of M. Then if $x_1 + N, \dots, x_n + N$ are elements of M/N, there exists a *h*-pure submodule K of M such that the module generated by N and x_1, \dots, x_n is a submodule of K and K/N is finitely generated. Now K/N is *h*-pure in M/N, then M/N is almost locally *h*-pure.

(ii) Suppose that M/N is almost locally *h*-pure and $x_1, \dots, x_n \in M$, then there exists a finitely generated *h*-pure submodule K/N of M/N which contains

 $x_1 + N, \dots, x_n + N$. Since we have a natural homomorphism from K to K/N, so the inverse image K of K/N has the desired properties.

An immediate consequence of the above theorem is stated below:

Corollary 2.3: If M is almost locally h-pure and N is finitely generated submodule, then M/N is almost locally h-pure.

Corollary 2.4: If T is the submodule of an almost locally h-pure QTAG-module M, then M/T is almost locally h-pure.

Proof: For $x_1, \dots, x_n \in M$, let N be a finitely generated h-pure submodule containing x_1, \dots, x_n . The submodule K generated by N and T is h-pure. Clearly, the submodule generated by T and x_1, \dots, x_n is a submodule of K and K/T is finitely generated. Hence, by Theorem 2.2, M/T is almost locally h-pure.

Remark 2.5: Since a QTAG-module M does not contain elements of infinite height if and only if every finitely generated submodule of M is contained in a finitely generated direct summand of M, therefore we may conclude that a QTAG-module M is almost h-pure if and only if it is h-reduced, i.e., every element of M is free from infinite height.

Lemma 2.6: The torsion submodule T of an almost locally h-pure QTAG-module M is almost locally h-pure.

Proof: Let T be a torsion submodule of M and $y_1, \dots, y_n \in T$. Since M is almost locally h-pure, then there exists a finitely generated h-pure submodule K of M which contains y_1, \dots, y_n . Since $K \cap T$ is a finitely generated h-pure submodule of T, hence, T is almost locally h-pure.

Theorem 2.7: Every submodule of an almost locally h-pure QTAG-module M is almost locally h-pure.

Proof: Let M be an almost locally h-pure QTAG-module, K an arbitrary submodule of M and T the torsion submodule of M. By Corollary 2.4, M/T is almost locally h-pure and by Lemma 2.6, $(K \cup T)/T$ is almost locally h-pure. Thus $K/(K \cap T)$ is almost locally h-pure. Now let y_1, \dots, y_n be elements of K. Since $K/(K \cap T)$ is almost locally h-pure, there exists a finitely generated h-pure submodule $N/(K \cap T)$ of $K/(K \cap T)$ such that $y_1 + (K \cap T), \dots, y_n + (K \cap T)$ are elements of $N/(K \cap T)$. Since $N/(K \cap T)$ is finitely generated, so $N = (K \cap T) \oplus L$, where L is finitely generated. Since L is finitely generated, it is almost locally h-pure and it follows from lemma 2.6 and Remark 2.5, $K \cap T$ is almost locally h-pure. Hence by Theorem 2.1, N is almost locally h-pure and $k_1, \dots, k_n \in N$. Thus there exists a finitely generated h-pure submodule P of N containing k_1, \dots, k_n . Since $K \cap T$ is a h-pure submodule of K, N is a h-pure submodule of K. Hence P is h-pure submodule of K and K is almost locally h-pure. **Theorem 2.8:** If K is h-pure in M and if K and M/K are almost locally h-pure, then M is almost locally h- pure.

Proof: Let $x_1, \dots, x_n \in M$. Since M/K is almost locally *h*-pure, there exists a finitely generated *h*-pure submodule L/K of M/K which contains x_1+K, \dots, x_n+K . Since *K* is *h*-pure and L/K is finitely generated, $L = K \oplus N$, where *N* is finitely generated. Now $x_i \in L$ for $i = 1, \dots, n$. Let $x_i = y_i + z_i$ for $y_i \in K$ and $z_i \in N$. Since *K* is almost locally *h*-pure, let *P* be a finitely generated *h*-pure submodule of *K* which contains $y'_i s$. Now $x_i \in P \oplus N$ and $P \oplus N$ is *h*-pure in *L*, which is *h*-pure in *M*. Hence, $P \oplus N$ is a finitely generated *h*-pure submodule of *M*, which contains $x'_i s$. Hence, *M* is almost locally *h*-pure.

Theorem 2.9: Every QTAG-module M has a maximal almost locally h-pure submodule N (which may be 0) and 0 is the only almost locally h-pure submodule of M/N.

Proof: Using Zorn's lemma, we establish the existence of a maximal almost locally h-pure submodule N of M. If K/N were a non-zero almost locally h-pure submodule of M/N, then K would be a h-pure submodule of M and by Theorem 2.8, K would be almost locally h-pure, which contradicts the maximality of N. Hence, 0 is the only almost locally h-pure submodule of M/N.

Corollary 2.10: If M is a QTAG-module and N is a maximal almost locally h-pure submodule of M, then M/N is h-divisible.

Proof: Suppose that M/N is not *h*-divisible, then by Theorem 4 in [3], $M/N = K/N \oplus L/N$, with K/N is *h*-divisible and L/N is *h*-reduced and L/N has a submodule P/N, which is a summand of L/N and bounded uniserial module. Therefore, P/N is a almost locally *h*-pure submodule of M/N, contradicting the maximality of N.

Remark 2.11: From the above discussion, we may infer that for a QTAG-module M and a countably generated maximal almost locally h-pure submodule N, N is a basic submodule of M.

At the end, we would like to state a problem, which is still open.

Let N be a submodule of an almost locally h-pure submodule of M with M/N is countably generated. When N would be the summand of M?

References

- [1] Fuchs, L., Abelian Groups, Pergamon Press, Oxford, 1960.
- [2] Fuchs, L., Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
- [3] Khan, M.Z., h-divisible and basic submodules, Tamkang J. Math., 10(1979), 97-103.

- [4] Khan, M.Z., Modules behaving like torsion abelian group II, Math. Japonica, 23(1979), 509-516.
- [5] Singh, S., Abelian groups like modules, Acta. Math. Hung., 50(1987), 84-95.

Received 30 05 2009, revised 28 09 2009

*Department of Mathematics Aligarh Muslim University Aligarh-202 002 India *E-mail address:* gargi2110@gmail.com

** Department of Mathematics, Aligarh Muslim University Aligarh-202 002 India

E-mail address: mz_alig@yahoo.com