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On spaces with locally countable weak-bases

Zhaowen Li1 and Qingguo Li2

Abstract. In this paper, we discuss the relationships between spaces with locally

countable weak-bases and spaces with various locally countable networks, estab-
lish the relationships between spaces with locally countable weak-bases and locally

separable metric spaces, and show that spaces have locally countable weak-bases if

and only if they are locally Lindelöf, g-metrizable spaces. These are improvement
of the results in [5,6].

1. Introduction

Weak-bases were introduced by A.V.Arhangel’skii [1]. Spaces with locally count-
able weak-bases were introduced and discussed in [5,6], and some results were showed.
For example:

Theorem A [5, 6] The following are equivalent for a space X:
(1) X has a locally countable weak-base.
(2) X is a g-first countable space with a locally countable k-network.
(3) X is a topological sum of g-second countable spaces.
Theorem B [5] A space has a locally countable weak-base if and only if it is a

quotient, π (or compact), ss-image of a metric space.

In this paper, we further discuss spaces with locally countable weak-bases. In
section 2, we discuss the relationships between spaces with locally countable weak-
bases and spaces with various locally countable networks. In section 3, we establish the
relationships between spaces with locally countable weak-bases and locally separable
metric spaces. In section 4, we show that spaces have locally countable weak-bases if
and only if they are locally Lindelöf, g-metrizable spaces.

Throughout this paper, all spaces are regular and T1, all mappings are continuous
and surjective. N denotes the set of all natural numbers. ω denotes N ∪ {0}.
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2. The relationships between spaces with locally countable weak-bases and
spaces with various locally countable networks

Definition 2.1 Let P be a cover of a space X.
(1) P is a network X if, whenever x ∈ V with V open in X, then x ∈ P ⊂ V for

some P ∈ P.
(2) P is a k-network [17] for X if for each compact subset K of X and its open

neighborhood V in X, there exists a finite subfamily P ′ of P such that K ⊂ ∪P ′ ⊂ V .
(3) P is a cs-network [18] for X if for each x ∈ X, its open neighborhood

V in X and a sequence {xn} converging to x in X, there exists P ∈ P such that
{xn : n > m} ∪ {x} ⊂ P ⊂ V for some m ∈ N .

(4) P is a cs∗-network [19] for X if for each x ∈ X, its open neighborhood V in
X and a sequence {xn} converging to x in X, there exists a subsequence {xni

} such
that {xni

: i ∈ N} ∪ {x} ⊂ P ⊂ V for some P ∈ P.
A space X is an ℵ-space[5] if X has a σ-locally finite k-network.

Definition 2.2 [12] For a space X and x ∈ P ⊂ X, P is a sequential neighbor-
hood of x in X if, whenever {xn} is a sequence converging to x in X, then xn ∈ P for
all but finitely many n ∈ N . P is a sequential open set of X if for each x ∈ P , P is a
sequential neighborhood of x in X.

A space X is a sequential space if each sequential open set of X is open in X.

Definition 2.3 Let P = ∪{Px : x ∈ X} be a family of subsets of a space X
satisfying that for each x ∈ X,

(1) Px is a network of x in X.
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
P is a weak-base [1] for X if G ⊂ X such that for each x ∈ G, there exists P ∈ Px

satisfying P ⊂ G, then G is open in X. P is an sn-network [10] (i.e., an sequential
neighborhood network) for X if each element of Px is a sequential neighborhood of x
in X, here Px is an sn-network of x in X.

A space X is g-first countable [1] (resp. sn-first countable [7]) if X has a weak-base
(resp. an sn-network) P such that each Px is countable.

A space X is g-second countable [1] if X has a countable weak-base.
A space X is g-metrizable [4] (resp. sn-metrizable [23])if X has a σ-locally finite

weak-base (resp. sn-network) .

For a space, weak-base ⇒ sn-network ⇒ cs-network ⇒ cs∗-network. An sn-
network for a sequential space is a weak-base [10].

Definition 2.4 Call a subspace of a space a fan (at a point x) if it consists of
a point x, and a countably infinite family of disjoint sequences converging to x. Call
a subset of a fan a diagonal if it is a convergent sequence meeting infinitely many of
the sequences converging to x and converges to some point in the fan.

(1) A space X is an α1-space [2, 3] if T = {x} ∪ (∪{Tn : n ∈ N}) is a fan at x of
X, where each sequence Tn converges to x, then there exists a sequence S converging
to x such that Tn r S is finite for each n ∈ N .
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(2) A space X is an α4-space [2, 3] if every fan at x of X has a diagonal converging
to x.

We have the following implications for a space X[4, 7, 20].
g-second countable

⇓
metrizable⇒ g-metrizable ⇐⇒ g-first countable+ℵ-space.

⇓
k-space ⇐ sequential space ⇐ g-first countable ⇒ sn-first countable ⇒ α1-space

⇒ α4-space.

Lemma 2.5 [15] The following are equivalent for a space X:
(1) X has a locally countable k-network.
(2) X has a locally countable cs-network.
(3) X has a locally countable cs∗-network.

Lemma 2.6 The following are equivalent for a space X:
(1) X has a locally countable sn-network.
(2) X is an sn-first countable space with a locally countable cs-network (k-

network, cs∗-network).
(3) X is an α1-space with a locally countable cs-network (k-network, cs∗-

network).
(4) X is an α4-space with a locally countable cs-network (k-network, cs∗-

network).
Proof. (1)⇒(2)⇒(3)⇒(4) are clear.
(4)⇒(2) holds by Theorem 3.13 in [7].
(2)⇒(1). Suppose X is an sn-first countable space with a locally countable cs-

network. Let P be a locally countable cs-network for X which is closed under finite
intersections. For each x ∈ X, let {B(n, x) : n ∈ N} be a decrease sn-network at x in
X. Put

Fx = {P ∈ P : B(n, x) ⊂ P for some n ∈ N}.
F = ∪{Fx : x ∈ X}

Obviously, x ∈ ∩Fx and Fx is closed under finite intersections. Then F satisfies
Definition 2.3 (1),(2). We claim that each element of Fx is a sequential neighborhood
at x in X. Otherwise, there exists P ∈ Fx such that P is not a sequential neighborhood
at x in X. Then there exists a sequence {xn} converging to x such that for each k ∈ N ,
{xn : n > k} 6⊂ P . Take xn1 ∈ {xn : n > 1} r P , then there exists a subsequence
{xnk

} of {xn} such that each xnk+1 ∈ {xn : n > nk}r P . Obviously, xnk
converges to

x. Since P ∈ Fx, then B(m,x) ⊂ P for some m ∈ N . Because B(m,x) is a sequential
neighborhood at x in X, then {x} ∪ {xnk

: k > j} ⊂ B(m,x) for some j ∈ N , and
so {xnk

: k > j} ⊂ P , a contradiction. Hence F is an sn-network for X. Obviously,
F ⊂ P. Therefore F is a locally countable sn-network for X.

Theorem 2.7 The following are equivalent for a regular space X:
(1) X has a locally countable weak-base.
(2) X is a k-space with a locally countable sn-network.
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(3) X is a k-and sn-first countable space with a locally countable cs-network
(k-network, cs∗-network).

(4) X is a k-and α1-space with a locally countable cs-network (k-network, cs∗-
network).

(5) X is a k-and α4-space with a locally countable cs-network (k-network, cs∗-
network).

Proof. (1)⇒(2) is obvious.
(2)⇒(1). Suppose X is a k-space with a locally countable sn-network P, then P

is a locally countable cs-network for X. By Lemma 2.5, X has a locally countable
k-network. Since a k-space with a point countable k-network is sequential (see [14,
Corollary 3.4]), then X is a sequential space. Thus P is a weak-base for X. Hence X
has a locally countable weak-base.

(2) ⇔ (3) ⇔ (4) ⇔ (5) hold by Lemma 2.6.

Corollary 2.8[5, 6] The following are equivalent for a space X:
(1) X has a locally countable weak-base.
(2) X is a g-first countable space with a locally countable k-network.

3. The relationships between spaces with a locally countable weak-base
and locally separable metric spaces

Definition 3.1 Let f : X → Y be a mapping.
(1) f is a compact-covering mapping [16] if each compact subset of Y is the

image of some compact subset of X.
(2) f is a compact mapping if for each y ∈ Y , f−1(y) is compact in X.
(3) f is a π-mapping[13] if (X, d) is a metric space and for each y ∈ Y and its

open neighborhood V in Y, d(f−1(y), X\f−1(V )) > 0.
(4) f is an ss-mapping [5] if for each y ∈ Y , there exists a open neighborhood V

of y in Y such that f−1(V ) is separable in X.

Every compact mapping of a metric space is a π-mapping.

Theorem 3.2 The following are equivalent for a space X:
(1) X has a locally countable weak-base.
(2) X is a compact-covering, quotient, compact, ss-image of a locally separable

metric space.
(3) X is a quotient, compact, ss-image of a locally separable metric space.
(4) X is a quotient, π, ss-image of a locally separable metric space.
Proof. (1) ⇒ (2). Suppose X has a locally countable weak-base. By Theorem

A, X is a topological sum of g-second countable spaces. Let X =
⊕

α∈
V Xα, where each

Xα is a g-second countable space. By Corollary 4.7 in [8], there are a separable metric
space Mα and a compact-covering, quotient, compact mapping fα from Mα onto Xα.
Put

M =
⊕
α∈

V Mα and f =
⊕
α∈

V fα : M → X.
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Then M is a locally separable metric space and f is a quotient, compact, ss-mapping.
It suffices to show that f is compact-covering.

For each compact subset K of X, K ⊂
n⋃

i=1

Xαi
for some finitely many αi ∈

∧
.

Since every Xαi
is both open and closed in X, K ∩ Xαi

is compact in Xαi
, and so

fαi
(Li) = K ∩Xαi

for some compact subset Li of Mαi
for each i 6 n. Let L =

n⊕
i=1

Li.

Then L is compact in M with f(L) = K. Hence f is compact-covering.
(2) ⇒ (3) ⇒ (4) are obvious.
(4) ⇒ (1) holds by Theorem B.

Remark 3.3 Let Z be the topological sum of the unite interval [0,1], and the
family {S(x) : x ∈ [0, 1]} of 2ω convergent sequence S(x). Let X be the space obtained
from Z by identifying the limit point of S(x) with x ∈ [0, 1], for each x ∈ [0, 1]. Then,
from example 2.9.27 in [11] or see example 9.8 in [14], we have the following facts:

(1) X is a compact-covering, quotient, compact image of a locally compact metric
space.

(2) X has no point-countable cs-network.
(3) X has no locally countable weak-base.
From the facts above, we have that the condition “ss-” in Theorem 3.2 cannot be

omitted.

4. The relationships between spaces with locally countable weak-bases and
g-metrizable spaces

Theorem 4.1. Spaces have locally countable weak-bases if and only if they are
locally Lindelöf, g-metrizable spaces.

Proof ”if” part is obvious, because every σ-locally finite cover in any locally
Lindelöf space is locally countable. The ”only if” part: Suppose a space X has a locally
countable weak-base. Then X is a g-first countable space with a locally countable k-
network by Theorem A, and so X is a k-space with a locally countable k-network. By
Theorem 1 in [9], X is an ℵ -space. Thus X is g-metrizable by Theorem 2.4 in [20].
By Theorem A, X is a topological sum of g-second countable spaces. Since g-second
countable spaces is Lindelöf, then X is locally Lindelöf.

Remark 4.2 Let X be the space in [11, Example 2.8.17], then X is not an
ℵ-space, which has a locally countable k-network. From Lemma 2.5, X has a locally
countable cs-network (or cs∗-network). Note that a space is an ℵ-space if and only
if it has a σ-locally finite cs-network (or cs∗-network)(see [21, Theorem 4]). Thus, X
has a locally countable cs-network (k-network, cs∗-network) 6⇒ X has a σ-locally finite
cs-network (k-network, cs∗-network).

From Theorem 4.1 and Theorem 1.13 in [4], we have
Corollary 4.3 Let X be a space with a locally countable weak-base. If (1) or

(2) below holds, then X is metrizable.
(1) X is a Fréchet space.
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(2) X is a q-space.

Corollary 4.4 For a separable space X, the following are equivalent.
(1) X is a g-second countable space.
(2) X has a locally countable weak-base.
(3) X is a g-metrizable space.
Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3) holds by Theorem 4.1.
(3) ⇒ (1). Suppose X is a separable space with a locally countable weak-base

P, then X is a sequential space with a locally countable k-network by Theorem A.
Since a sequential space with a σ-locally countable k-network is meta-Lindelöf (see
[9, Proposition 1]), and since a separable, meta-Lindelöf space is Lindelöf, then X is
Lindelöf. Note that a locally countable family of a Lindelöf space is countable, P is a
countable weak-base for X. This implies that X is g-second countable.

Remark 4.5. It is well-known that a separable, metrizable space is Lindelöf.
From the proof of Corollary 4.4, we get that a separable, g-metrizable space is Lindelöf.
But, X is a separable, sn-metrizable space 6⇒ X is Lindelöf. In fact, let X be the
space in [22, Example 2.3]. Then X is a separable, sn-metrizable space, which has
not any countable sn-network. Since a σ-locally finite family of a Lindelöf space is
countable, then X is not Lindelöf.
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