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On Centres Of h-Purity in QTAG-Modules

M. Zubair Khan∗ Gargi Varshney∗∗

Abstract. Different concepts and decomposition theorems have been done for
QTAG-modules by a number of authors. The purpose of this paper is essentially

to study centers of h-purity and their characterizations. We have further studied

subsocles and their interesting properties about range and heights establishing
various facts about the same.

1. Introduction and Preliminaries

Following [8], a unital module MR is called QTAG-module if it satisfies the fol-
lowing condition:
(1) Any finitely generated submodule of any homomorphic image of M is a direct sum
of uniserial modules.

The structure theory of such modules has been developed by various authors.
Analogous to centres of purity we have defined centres of n-h-purity and obtain a
characterization (Theorem 4.4). For any uniform element x ∈ M , heights of x denoted
as HM (x) is defined as sup{d(yR/xR)/x ∈ yR and y is a uniform element in M}. For
any non-negative integer n > 0,Hn(M) = {x ∈ M/HM (x) > n}. A submodule
N of M is called h-pure in M if Hn(N) = N ∩ Hn(M) for all n > 0, and N is
called h-neat if H1(N) = N ∩ H1(M). For any submodule N of M , the submodule
Hn(N) = {x ∈ M/d(xR/(xR ∩ N)) 6 n} has been introduced in [1] and various
related properties have been studied. For any submodule N of M , we denote Hn

N (0)
by socn(N). For other basic concepts of QTAG-modules one may see [2,3,4,5,7,8].

2. Centre of h-Purity

Definition: Let M be a QTAG-module and N be a submodule of M then N is called
centre of h-purity in M if every complement of N in M is h-pure submodule of M .
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Theorem 7 in [4] shows that every submodule of M1 is centre of h-purity. Also
Corollary 10 in [4] shows that for any k > 1,Hk(M) is centre of h-purity in M .

Firstly we restate the following:

Proposition 2.1 [2, Lemma 1]:
(i) For any uniform elements x and y ∈ M with x ∈ yR, d(yR/xR) = m if and

only if Hm(yR) = xR.
(ii) If x and y are predecessors of a uniform element z, then there is an isomor-

phism σ : xR → yR such that σ is identity on zR.
(iii) For any uniform elements x and y ∈ M , x − y ∈ soc(M) if and only if

H1(xR) = H1(yR).

Now using the similar technique we can easily prove the following:

Proposition 2.2: If M is a QTAG-module and x, y are uniform elements in M then
following hold.

(i) x− y ∈ socn(M) if and only if Hn(xR) = Hn(yR).
(ii) For every element t ∈ soc(M),H1((x + t)R) = H1(xR).

Now we prove the following theorem which generalizes [6, Theorem 2.1]

Theorem 2.3 : If M is a QTAG-module and N is a submodule of M . Then there
exists a submodule K of M such that K is maximal with respect to K ∩N = 0 and
K is not h-pure in M if and only if the following condition is satisfied.

(?) there exists uniform element u ∈ N and v ∈ M such that u+ v is uniform and
(i) e(v) > e(u) = 1
(ii) H(v) = H(u) < H(u + v)
(iii) vR ∩N = 0

Proof : Let K be a submodule of M maximal with respect to K ∩N = 0 and K be
not h-pure in M . Let n be the least positive integer such that K ∩Hn(M) 6= Hn(K)
then appealing to [4, Proposition 4] we have n > 2. Let x be a uniform element in
K ∩Hn(M), then there exists a uniform element y ∈ M such that y /∈ K, x ∈ yR and
d(yR/xR) = n. Let zR/xR be a submodule of yR/xR such that d(zR/xR) = 1, then
d(yR/zR) = n−1. By h-neatness of K, there exists a uniform element t ∈ K such that
x ∈ tR and d(tR/xR) = 1. Hence, there exists an isomorphism σ : zR → tR which is
the identity on xR. Trivially e(z−σ(z)) 6 1, so z−σ(z) = u+w where u ∈ soc(N) and
w ∈ soc(K). It is easy to see that u and w are uniform. Let H(u) > n−1 then we can
find a uniform element s ∈ M such that d(sR/uR) = n−1. Now z−u = w+σ(z) ∈ K
and z − u ∈ Hn−1(M), so z − u = w + σ(z) ∈ K ∩ Hn−1(M) = Hn−1(K). Since
(w+σ(z))R is homomorphic image of zR,w+σ(z) is an uniform element. Now we can
find a uniform element w′ ∈ K such that w + σ(z) ∈ w′R and d(w′R/(w + σ(z))R) =
n − 1 Trivially d(w + σ(z))R > 1, so we can find a submodule gR ⊆ (w + σ(z))R
such that d((w + σ(z))R/gR) = 1. Now appealing to proposition (1.1) and (1.2) we
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get H1(zR) = xR, H1((w + σ(z))R) = gR = H1(σ(z)R) = H1(zR) = xR, which in
turn gives x ∈ Hn(K), a contradiction. Hence H(u) < n− 1. Let v = w + σ(z) then
e(v) > e(u) = 1 and H(u) = H(v) < H(z) = H(u + v), since v ∈ K, vR ∩ N = 0.
Therefore the conditions of the theorem are satisfied.

Conversely, suppose that the conditions are satisfied. Let for some natural number
n, H(v) < n 6 H(u + v) and Tn = soc(Hn(M)). Since e(v) > e(u) = 1, e(v) > 2.
Let zR = soc(vR), then d(vR/zR) > 1 and we get zR ⊆ H1(vR). Also
H1((u + v)R) = H1(vR) ⊇ zR, consequently z ∈ Tn. Since vR ∩ N = 0, z /∈ N . Let
Tn = S ⊕ Tn ∩ soc(N), z ∈ S. Also (ii) gives u /∈ Tn ∩ soc(N), so
soc(N) = T⊕(Tn∩soc(N)), u ∈ T . Now Tn+soc(N) = S⊕T⊕(Tn∩soc(N)). Similarly
we get soc(M) = L⊕(Tn+soc(N)) for some subsocle L. Let T0 = L⊕S then soc(M) =
T0⊕soc(N), with z ∈ T0. Let π be the projection of soc(M) onto soc(N) then π(Tn) =
(Tn ∩ soc(N)). Let U = T0 + vR then soc(U) = T0 + soc(vR) = T0 + zR = T0. There-
fore soc(U)∩ soc(N) = 0 and we get U ∩N = 0. Now we embed U into a complement
K of N . Let tR be a submodule of vR such that d(vR/tR) = 1. As H1((v + u)R) =
H1(vR) = tR we get H(t) > n + 1. Now we show that HK(t) 6 n. Let HK(t) > n + 1
then there exists a uniform element y ∈ K such that t ∈ yR and d(yR/tR) = n + 1.
Let wR/tR be a submodule of yR/tR such that d(wR/tR) = 1 and d(yR/wR) = n.
Hence there exists an isomorphism σ : vR → wR which is the identity on tR. The map
η : vR → (v − σ(v))R is an R-epimorphism with tR 6 Kerη. Hence e(v − σ(v)) 6 1
and we get v − σ(v) ∈ soc(M). Since, H(u + v) > n, u + v ∈ Hn(M). There-
fore, u + v − σ(v) ∈ Hn(M), consequently u + v − σ(v) ∈ soc(M) ∩ Hn(M) = Tn.
Also v − σ(v) ∈ K, so v − σ(v) ∈ K ∩ soc(M) = K ∩ (T0 + soc(N)) = T0. Therefore,
u = π(u+v−σ(v)) ∈ π(Tn) = Tn∩soc(N) and we get H(u) > n but H(u) = H(v) < n.
Therefore, we reach at a contradiction. This shows that HK(t) 6 n. Therefore, K is
not h-pure in M .

Using the above theorem we prove the following, a generalization of [5, Theorem
1]. It may be noticed that the proof given below has similarity with the corresponding
proof in [5, Theorem 1].

Theorem 2.4: Let M be a QTAG-module and Tn = soc(Hn(M)), T∞ = soc(M1)
and T∞+1 = T∞+2 = 0. Let N be a submodule of M then N is center of h-purity in
M , if and only if there exists k with 0 6 k 6 ∞ such that Tk ⊇ soc(N) ⊇ Tk+2.

Proof: Let for some n, Tn ⊇ soc(N) ⊇ Tn+2. Suppose N is not center of h-purity
in M . Now if n = ∞ then there does not exist any uniform element in soc(N)
satisfying condition (ii) of Theorem 2.3. Suppose n is finite. Let u ∈ soc(N), v ∈ M
be uniform elements satisfying conditions of Theorem 2.3. Let H(u) = k then as
u ∈ Tn, n 6 k < H(u + v). Since e(v) > e(u) = 1 we can find a submodule tR of
vR such that d(vR/tR) = 1. Let w = u + v then H1((u + v)R) = H1(vR) = tR.
Let zR = soc(vR) then as vR is totally ordered zR 6 tR. Hence H(z) > n + 2. This
shows that z ∈ Tn+2 ⊇ soc(N) and we get a contradiction to the fact that vR∩N = 0.
Therefore, N is centre of h-purity in M .
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Conversely, suppose Tn ⊇ soc(N) ⊇ Tn+2 is not true for any n. Then soc(N) *
M1, so soc(N) * Tm for some m. Let k be the greatest natural number such that
soc(N) ⊂ Tk. Then the maximality of k and the assumption yield soc(N) * Tk+1

and Tk+2 * soc(N). Hence there exist uniform elements u ∈ soc(N) and s ∈ Tk+2

such that H(u) = k and s /∈ soc(N). Now we can find a uniform element y ∈ M
such that s ∈ yR and d(yR/sR) = k + 2. Let xR/sR be a submodule of yR/sR such
that d(xR/sR) = 1, then d(yR/xR) = k + 1, e(x) = 2 and we get H(x) > k + 1.
Let v = x − u, then H1((x − u)R) = H1(vR) = H1(xR) = sR, consequently
s ∈ (x − u)R. Hence s = (x − u)r for some r ∈ R. If xr = 0 then ur = 0 oth-
erwise s ∈ soc(N). Define η : xR → (x− u)R given as xr → (x− u)r then η is a well
defined onto homomorphism, consequently v = x − u is a uniform element. Trivially
H(v) = k and H(u+v) = H(x) > k+1. Since e(x) = 2 and e(u) = 1, e(v) = 2 > e(u).
Now suppose vR ∩ N 6= 0 then there exists a uniform element x′ ∈ vR ∩ N and
x′ = vr for some r ∈ R. Now x′ = vr = xr − ur. Trivially xr 6= 0, so either
xrR = xR or xrR = sR and in each case we get s ∈ N which is a contradiction.
Therefore, vR ∩N = 0. Hence, by Theorem 2.3, N is not a center of h-purity in M .
This completes the proof of the theorem.

3. Height of Subsocles

Firstly we give the following definitions:

Definition: Let S be a subsocle of a QTAG-module M , then height of S is defined
as a non-negative integer k such that S ⊆ Hk(M) but S * Hk+1(M) and we write
h(S) = k.

If no such k is possible then we write h(S) = ∞, so S ⊆ M1.

Definition: A subsocle S of a QTAG-module M is called open if soc(Hn(M)) ⊆ S
for some non-negative integer n.

Definition: If S is open subsocle of a QTAG-module M with h(S) = k then the
range of S is the least non-negative integer n such that soc(Hk+n(M)) ⊆ S and we
write range(S) = n.

Now from Theorem 2.4, it is evident that a subsocle S of finite height is center of
h-purity if and only if range(S) 6 2.

Proposition 3.1: Let S be a subsocle of a QTAG-module M and n be any non-
negative integer then

(1) S ∩Hn+1(M) = 0 if and only if soc(Hn(M/S)) ⊆ soc(M)/S.
(2) S + soc(Hn(M)) = soc(M) if and only if soc(M)/S ⊆ Hn(M/S).

Proof: (1) Let S∩Hn+1(M) = 0 and x̄ ∈ soc(Hn(M/S)) = soc((Hn(M)+S)/S), then
x ∈ Hn(M) and H1(x̄R) = 0 which in turn implies H1(xR) ⊆ S, so
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H1(xR) ⊆ S ∩ Hn+1(M) = 0. Therefore, x ∈ soc(M) and we get soc(Hn(M/S)) ⊆
soc(M)/S.

Conversely, suppose S ∩ Hn+1(M) 6= 0. Let x be a uniform element in
S ∩Hn+1(M), then there is a uniform element y ∈ M such that d(yR/xR) = n + 1.
Let zR/xR = soc(yR/xR), then d(yR/zR) = n and d(zR/xR) = 1, so z ∈ Hn(M)
and H1(zR) = xR ⊆ S. Now H1(z̄R) = 0̄, so we get z̄ ∈ soc(Hn(M/S)) ⊆ soc(M)/S,
which gives z ∈ soc(M) but this is not possible. Therefore, S ∩Hn+1(M) = 0.

(2) Let soc(M) = S+soc(Hn(M)) and x̄ ∈ soc(M)/S, then x̄ = y+S, y ∈ soc(Hn(M)),
consequently x̄ ∈ Hn(M/S).

Conversely if we take x ∈ soc(M) then x + S = z + S where z ∈ Hn(M). Hence,
x = z + s, s ∈ S and we get soc(M) = S + soc(Hn(M)).

Proposition 3.2: Let S be a subsocle of a QTAG-module M such that h(S) = k
and soc(Hk+n+1(M)) * S for some integer n > 0. Then there exists a complementary
subsocle T of S in soc(M) such that h(soc(M)/T ) = k and soc(Hk+n(M/T )) *
soc(M)/T .

Proof: Trivially S ∩ soc(Hk+n+1(M)) ⊂
6=

soc(Hk+n+1(M)). Since soc(Hk+n+1(M))

is bounded, we shall have soc(Hk+n+1(M)) = T0 ⊕ S ∩ soc(Hk+n+1(M)). It is easy
to see that T0 ∩ S = 0 and T0 ⊆ Hk+1(M). As S ∩Hk+1(M)⊕ T0 ⊆ soc(Hk+1(M)),
we can find a subsocle T1 such that soc(Hk+1(M)) = S ∩ Hk+1(M) ⊕ T0 ⊕ T1.
Now using the definition of height of S, we will have S ∩ Hk+1(M) ⊂

6=
S.

Hence, S = S ∩ Hk+1(M) ⊕ S′ for some subsocle S′. Trivially S′ ⊆ Hk(M) and
S′ ∩ Hk+1(M) = 0, since soc(Hk+1(M)) ⊕ S′ ⊆ soc(Hk(M)), we get a subsocle T2

such that soc(Hk(M)) = soc(Hk+1(M)) ⊕ S′ ⊕ T2. Trivially S ∩ (T0 ⊕ T1 ⊕ T2) = 0.
Let soc(M) = soc(Hk(M)) ⊕ T3 and T = T0 ⊕ T1 ⊕ T2 ⊕ T3 then
soc(M) = soc(Hk(M))⊕ T3 = soc(Hk+1(M)) + S′ + T2 + T3 = S ∩ soc(Hk+1(M))⊕
T0 ⊕ T1 ⊕ S′ ⊕ T2 ⊕ T3 = S ⊕ T . Hence, (S + T )/T = soc(M)/T ⊆ Hk(M)/T .
Now, since T0 6= 0, T ∩ Hk+n+1(M) 6= 0 and consequently by Proposition 3.1,
soc(Hk+n(M/T )) * soc(M)/T . Also as soc(M) 6= T + soc(Hk+1(M)), appealing
to Proposition 3.1, we get soc(M)/T * Hk+1(M/T ). Hence h(soc(M)/T ) = k.

Theorem 3.3: Let S be a open subsocle of a QTAG-module M such that h(S) = k
and n be a non-negative integer. Then range(S) 6 n + 1 if and only if
range(soc(M)/T ) 6 n, for every subsocle T of M such that soc(M) = T ⊕ S.

Proof: Let range(S) 6 n + 1 then soc(Hk+n+1(M)) ⊆ S ⊆ (Hk(M)). Trivially
T ∩ Hk+n+1(M) = 0. Hence, by Proposition 3.1, soc(Hk+n(M/T )) ⊆ soc(M)/T .
It is trivial to see that soc(M) = soc(Hk(M)) + T , so by Proposition 3.1, we get
soc(M)/T ⊆ Hk(M/T ). Therefore, range(soc(M)/T ) 6 n.

Conversely, let range(soc(M)/T ) 6 n. Now we show that soc(Hk+n+1(M)) ⊆ S.
Let soc(Hk+n+1(M)) * S, then by Proposition 3.2, we find a subsocle T such that
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soc(M) = T ⊕ S such that h(soc(M)/T ) = k and soc(Hk+n(M/T )) * soc(M)/T and
hence range(soc(M)/T ) � n. Which is a contradiction. Therefore, soc(Hk+n+1(M)) ⊆
S and we get range (S) 6 n + 1.

4. Centre of n-h-Purity

In this section we define a new concept of n-h-purity which generalizes the concept
of h-purity and obtain a characterization of center of n-h-purity.

Definition: A submodule N of a QTAG-module M is called n-h-pure in M if
N/socn(N) is h-pure in M/socn(N), where n is a non-negative integer.
It is evident that if n = 0 then n-h-purity is simply h-purity.

Definition: A subsocle S of a QTAG-module M is centre of n-h-purity if all comple-
ments of S in M are n-h-pure submodules of M .

Firstly we prove the following:

Theorem 4.1: If N is a submodule of a QTAG-module M , then there is a complement
of N which is h-pure in M .

Proof: It is sufficient to consider soc(N) 6= soc(M). Suppose every uniform element
of soc(M) is of infinite height then trivially N ⊆ M1. Now appealing to [3, Corollary
8] we get a complement K of N , which is h-pure in M . Now on the other hand if
there is a uniform element x ∈ soc(M) such that x /∈ soc(N) and H(x) < ∞. As if
y ∈ soc(M) such that y /∈ soc(N) and H(y) = ∞, then H(x+y) = H(x) < ∞. Hence,
appealing to [7, Lemma 1] we shall get a summand K such that soc(K) = (x + y)R
and K ∩N = 0. Hence, K is h-pure in M .

Theorem 4.2: S ⊆ soc(M) then there exists a h-neat submodule K of M which is
1-h-pure with soc(K) = S.

Proof: Applying Theorem 4.1 for M/S, we get a h-pure submodule K/S in M/S,
which is a complement of soc(M)/S. Since (K/S)∩(soc(M)/S) = 0, for every uniform
element x ∈ soc(K), x + S = S, so x ∈ S and hence, soc(K) = S. Therefore, K is
1-h-pure in M . Now we show that K is h-neat. Let x be a uniform element in
K ∩H1(M), then we get a uniform element y ∈ M such that d(yR/xR) = 1. Now if
y ∈ K we get K to be h-neat submodule. Let y /∈ K then ((K+yR)/S) ∩ (soc(M)/S)
6= 0 implies k + y + S = z + S for some z ∈ soc(M), k ∈ K. Hence, 0 = H1(zR) =
H1((k + y)R = 0, so k + y ∈ soc(M). Therefore, H1(kR) = H1(yR) = xR and
x ∈ H1(K). Hence, K is h-neat.

Proposition 4.3: Let S be a subsocle of a QTAG-module M such that S is centre of
n-h-purity for n > 1. Then soc(M)/T is centre of (n− 1)-h-purity in M/T for every
complementary subsocle T of S in soc(M).
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Proof: Let K/T be a complement of soc(M)/T in M/T . Then trivially K ∩ S = 0.
Now we show that N ∩ S 6= 0 for K ⊂

6=
N . Let N ∩ S = 0 then we show that

N/T ∩ (S ⊕ T )/T = 0. Let on contrary N/T ∩ (S ⊕ T )/T 6= 0, then x + T = s + T
where x ∈ N, s ∈ S and we get x− s ∈ T ⊆ K ⊆ N , consequently s ∈ N ∩ S = 0 and
x + T = T , which is a contradiction. Therefore, K is a complement of S. Hence,
K/socn(K) is h-pure in M/socn(K). Now we show that K/T/soc(n−1)(K/T ) is
h-pure in M/T/soc(n−1)(K/T ). It is easy to see that soc(K) = T and soc(n−1)(K/T ) ⊆
socn(K)/T . Now for any uniform element x ∈ socn(K), let yR = soc(xR) then
Hn−1(xR) = yR. Hence,

Hn−1(x̄R) = Hn−1((xR + T )/T ) = (Hn−1(xR) + T )/T = 0̄.

Therefore, soc(n−1)(K/T ) = socn(K)/T . Further, under the canonical isomorphism
M/T/soc(n−1)(K/T ) = M/T/socn(K)/T ∼= M/socn(K), K/T/soc(n−1)(K/T )
is mapped onto K/socn(K). Hence K/T is (n − 1)-h-pure in M/T and we get the
result.

Now we prove the main result of this section:

Theorem 4.4: A subsocle S of a QTAG-module M is centre of n-h-purity for
some n > 0 if and only if either h(S) = ∞, or S is open subsocle of M such that
range(S) 6 n + 2.

Proof: Let S be a centre of n-h-purity and h(S) < ∞. Suppose h(S) = k, then we
show that soc(Hk+n+2(M)) ⊆ S, which in turn will imply range(S) 6 n + 2. Let
soc(Hk+n+2(M)) * S, then appealing to Proposition 3.2, we will find a subsocle T
such that soc(M) = S ⊕ T, h(soc(M)/T ) = k and soc(Hk+n+1(M/T ) * soc(M)/T .
As remarked in section 3, for n = 0, range(S) 6 2, so we use induction. How-
ever, appealing to Proposition 4.3, we get soc(M)/T as centre of (n − 1)-h-purity.
Therefore, range(soc(M)/T ) 6 n− 1 + 2 = n + 1, consequently, soc(Hk+n+1(M/T ) ⊆
soc(M)/T , which is a contradiction. Hence range(S) 6 n + 2.

Conversely, if h(S) = ∞, then by [3, Corollary 8], S is centre of h-purity and hence
for n = 0, S is centre of n-h-purity. Suppose range(S) 6 n+2 and soc(Hk+n+2(M)) ⊆
S ⊆ Hk(M). Let K be a complement of S in M . Now we prove that

soc(Hk+2(M/socn(K)) ⊆ (soc(M) + socn(K))/socn(K) ⊆ Hk(M/socn(K)).

For any uniform element x ∈ Hk+2(M), Let x̄ ∈ soc(Hk+2(M/socn(K)).
Then H1(x̄R) = 0, hence, H1(xR) ⊆ K, but due to [4, Proposition 4], K is h-neat
and so there is a uniform element t ∈ K such that H1(xR) = H1(tR) = zR. Now as
x ∈ Hk+2(M), there is a uniform element y ∈ M such that d(yR/xR) = k + 2, conse-
quently Hk+3(yR) = H1(tR) = zR and we get Hk+3+n−1(yR) = Hn(tR) = Hn−1(zR),
but Hk+n+2(yR) = Hn(tR) ⊆ K ∩Hk+n+2(M) = 0. Hence, t ∈ socn(K). Further, as
H1(xR) = H1(tR), we get x− t ∈ soc(M). Therefore,

x− t + socn(K) = x + socn(K) = x̄ ∈ (soc(M) + socn(K))/socn(K)
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and we get the first inclusion. Trivially Hk(M/socn(K)) = (Hk(M)+socn(K))/socn(K)
and as K is complement of S, soc(M) = S + soc(K). Therefore, the second in-
clusion also follows. Hence, range((soc(M) + socn(K))/socn(K)) 6 2 and we get
(soc(M) + socn(K))/socn(K) as centre of h-purity in M/socn(K). Further it is easy
to see that K/socn(K) is complement of (soc(M)+ socn(K))/socn(K) in M/socn(K)
and hence K/socn(K) is h-pure submodule of M/socn(K). Therefore, S is centre of
n-h-purity.

References

[1] Khan, M.Z., Some generalizations in abelian groups, Tamkang J. Math.,19
(1988), 7-11.

[2] Khan, M.Z., On h-purity in QTAG-modules, Communications in Algebra, 16
(1988), 2649-2660.

[3] Khan, M.Z., On h-purity in QTAG-modules II, Communications in Algebra,
17 (1989), 1387-1394.

[4] Khan, M.Z., Modules behaving like torsion abelian groups, Canad. Math.
Bull., 22 (1979), 449-457.

[5] Pierce, R.S., Centers of purity in abelian group, Pacific J. Math., 13 (1963),
215-219.

[6] Ried, J.D., On Subgroups of an abelian group maximal disjoint from a given
subgroup, Pacific J. Math., 13 (1963), 657-664.

[7] Singh, S., Some decomposition theorems in abelian groups and their general-
izations, Proc. Ohio. Univ. Conf. Marcel Dekker N. Y., (1976), 183-189.

[8] Singh, S., Abelian groups like modules, Act. Math. Hung., 50 (1987), 85-95.

Received 31 08 2009, revised 10 10 2010
∗Current address: Department of Mathematics
Aligarh Muslim University,

Aligarh-202 002

India
E-mail address: mz−alig@yahoo.com

∗∗Current address: Department of Mathematics,
Aligarh Muslim University,
Aligarh-202 002

India
E-mail address: gargi2110@gmail.com


