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On the blow-up semidiscretizations in time of some non-local

parabolic problems with Neumann boundary conditions

Théodore K. Bonia and Thibaut K. Kouakoub

Abstract. In this paper, we address the following initial value problem

ut =
R

Ω
J(x − y)(u(y, t) − u(x, t))dy + f(u) in Ω × (0, T ),

u(x, 0) = ϕ(x) > 0 in Ω,

where f : [0,∞) → [0,∞) is a C1 nondecreasing function,
R

∞ dσ
f(σ)

< ∞, Ω is

a bounded domain in R
N with smooth boundary ∂Ω, J : R

N
→ R is a kernel

which is nonnegative and bounded in R
N . Under some conditions, we show that

the solution of a semidiscrete form of the above problem blows up in a finite time

and estimate its semidiscrete blow-up time. We also prove that the semidiscrete

blow-up time converges to the real one when the mesh size goes to zero. Finally,

we give some numerical results to illustrate our analysis.

1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider the

following initial value problem

ut(x, t) =

∫

Ω

J(x − y)(u(y, t) − u(x, t))dy + f(u) in Ω × (0, T ),(1.1)

u(x, 0) = ϕ(x) > 0 in Ω,(1.2)

where f : [0,∞) → [0,∞) is a C1 nondecreasing function,
∫ ∞ dσ

f(σ) < ∞, J : R
N → R

is a kernel which is nonnegative and bounded in R
N . In addition, J is symmetric

(J(z) = J(−z)) and
∫

RN J(z)dz = 1. The initial datum ϕ(x) is nonnegative and

continuous in Ω.
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Here, (0, T ) is the maximal time interval on which the solution u exists. The time T

may be finite or infinite. When T is infinite, then we say that the solution u exists

globally. When T is finite, then the solution u develops a singularity in a finite time,

namely,

lim
t→T

‖u(·, t)‖∞ = ∞,

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution u

blows up in a finite time, and the time T is called the blow-up time of the solution u.

Recently, nonlocal diffusion has been the subject of investigation of many authors (see,

[1]-[7], [10]-[12], [14]-[18], [20], and the references cited therein). Nonlocal evolution

equations of the form

ut =

∫

RN

J(x − y)(u(y, t) − u(x, t))dy,

and variations of it have been used by several authors to model diffusion processes (see,

[3], [4], [17], [18]). The solution u(x, t) can be interpreted as the density of a single

population at the point x, at the time t, and J(x − y) as the probability distribution

of jumping from location y to location x. Then, the convolution (J ∗ u)(x, t) =∫
RN J(x − y)u(y, t)dy is the rate at which individuals are arriving to position x from

all other places, and −u(x, t) = −
∫

RN J(x − y)u(y, t)dy is the rate at which they are

leaving location x to travel to any other site (see, [17]). Let us notice that the reaction

term f(u) in equation (1.1) can be rewritten as follows

f(u(x, t)) =

∫

RN

J(x − y)f(u(x, t))dy.

Therefore, in view of the above equality, the reaction term f(u) can be interpreted as

a force that increases the rate at which individuals are arriving to location x from all

other places. Due to the presence of the term f(u(x, t)), we shall see later the blow-up

of the density u(x, t). On the other hand, the integral in (1.1) is taken over Ω. Thus

there is no individuals that enter or leave the domain Ω. It is the reason why in the

title of the paper, we have added Neumann boundary condition. For the problem

described in (1.1)-(1.2), the local in time existence and uniqueness of solutions have

been proved by Perez-LLanos and Rossi in [27], where one may also find some results

about blow-up solutions. In the current paper, we are interested in the numerical

study of the phenomenon of blow-up using a semidiscrete form of (1.1)-(1.2). We

start by the construction of an explicit adaptive scheme as follows. Approximate the

solution u of (1.1)-(1.2) by the solution Un of the following semidiscrete equations

δtUn(x) =

∫

Ω

J(x − y)(Un(y) − Un(x))dy + f(Un(x)) in Ω,(1.3)
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U0(0) = ϕh(x) > 0 in Ω,(1.4)

where n > 0, ϕh is nonnegative and continuous in Ω, limh→0 ϕh = ϕ

δtUn(x) =
Un+1(x) − Un(x)

∆tn
.

In order to permit the semidiscrete solution to reproduce the properties of the contin-

uous one when the time t approaches the blow-up time T , we need to adapt the size

of the step so that we take

∆tn = min

{
∆t,

τ‖Un‖∞
f(‖Un‖∞)

}
,

where ‖Un‖∞ = supx∈Ω |Un(x)|, τ ∈ (0, 1) and ∆t ∈ (0, 1) is a parameter. Let us

notice that the restriction on the time step ensures the nonnegativity of the discrete

solution.

To facilitate our discussion, let us define the notion of semidiscrete blow-up time.

Definition 1.1. We say that the semidiscrete solution Un of (1.3)-(1.4) blows

up in a finite time if limn→∞ ‖Un‖∞ = ∞, and the series
∑∞

n=0 ∆tn converges. The

quantity
∑∞

n=0 ∆tn is called the semidiscrete blow-up time of the semidiscrete solution

Un.

In the present paper, under some conditions, we show that the semidiscrete so-

lution blows up in a finite time and estimate its semidiscrete blow-up time. We also

show that the semidiscrete blow-up time converges to the real one when the mesh size

goes to zero. A similar result has been obtained by Le Roux in [21]-[22], and the same

author and Mainge in [23] within the framework of local parabolic problems. One

may also consult the papers [24] and [25] for numerical studies of the phenomenon

of blow-up where semidiscretizations in space have been utilized. The remainder of

the paper is organized as follows. In the next section, we give some results about

the semidiscrete maximum principle for nonlocal problems. In the third and fourth

sections, we prove our main results, and finally, in the last section, we show some

numerical experiments to illustrate our analysis.

2. Properties of the semidiscrete scheme

In this section, we gather some results about the semidiscrete maximum principle

of nonlocal problems for our subsequent use.

The following result is a version of the maximum principle for semidiscrete nonlocal

problems.
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Lemma 2.1. For n > 0, let Un, an ∈ C0(Ω) be such that

δtUn(x) >

∫

Ω

J(x − y)(Un(y) − Un(x))dy + an(x)Un(x) in Ω, n > 0,

U0(x) > 0 in Ω.

Then, we have Un(x) > 0 in Ω, n > 0 when ∆tn 6 1
1+‖an‖∞

.

Proof. If Un(x) > 0 in Ω, then a straightforward computation reveals that

Un+1(x) > Un(x)(1 − ∆tn − ‖an‖∞∆tn) in Ω, n > 0.(2.1)

To obtain the above inequality, we have used the fact that
∫

Ω

J(x − y)Un(y)dy > 0 in Ω, and

∫

Ω

J(x − y)dy 6

∫

RN

J(x − y)dy = 1.

Making use of (2.1) and an argument of recursion, we easily check that Un+1(x) > 0

in Ω, n > 0. This finishes the proof. 2

An immediate consequence of the above result is the following comparison lemma. Its

proof is straightforward.

Lemma 2.2. For n > 0, let Un, Vn and an ∈ C0(Ω) be such that

δtUn(x) −

∫

Ω

J(x − y)(Un(y) − Un(x))dy + an(x)Un(x)

> δtVn(x) −

∫

Ω

J(x − y)(Vn(y) − Vn(x))dy + an(x)Vn(x) in Ω, n > 0,

U0(x) > V0(x) in Ω.

Then, we have Un(x) > Vn(x) in Ω, n > 0 when ∆tn 6 1
1+‖an‖∞

.

3. The semidiscrete blow-up time

In this section, under some assumptions, we show that the semidiscrete solution

blows up in a finite time and estimate its semidiscrete blow-up time.

We need the following lemma.

Lemma 3.1. Let a and b be two positive numbers such that, b > 1, f(0) = 0, and

f(s) is convex for positive values of s. Then, the following estimate holds

∞∑

n=0

abn

f(abn)
6

a

f(a)
+

1

ln(b)

∫ ∞

a

dσ

f(σ)
.



ON THE BLOW-UP SEMIDISCRETIZATIONS IN TIME OF SOME NON-LOCAL 5

Proof. We observe that
∫ ∞

0

abσdσ

f(abσ)
=

∞∑

n=0

∫ n+1

n

abσdσ

f(abσ)
>

∞∑

n=0

abn+1

f(abn+1)
,

because f(s)
s

is nondecreasing for nonnegative values of s. We infer that

∫ ∞

0

abσdσ

f(abσ)
> −

a

f(a)
+

∞∑

n=0

abn

f(abn)
.(3.1)

On the other hand, by a change of variables, we see that
∫ ∞

0

abσdσ

f(abσ)
=

1

ln(b)

∫ a

0

dσ

f(σ)
.(3.2)

Use (3.1) and (3.2) to complete the rest of the proof. 2

Now, let us give our result about the semidiscrete blow-up time which is stated in the

following theorem.

Theorem 3.1. Suppose that f(0) = 0, f(s) is convex for positive values of s and

ϕmin = minx∈Ω ϕ(x) > 0. Let A = ϕmin

f(ϕmin). If A < 1, then the solution Un of (1.3)-

(1.4) blows up in a finite time, and its semidiscrete blow-up time T ∆t
h is estimated as

follows

T ∆t
h 6

τ‖ϕ‖∞
f(‖ϕ‖∞)

+
τ

ln(1 + τ ′)

∫ ∞

‖ϕ‖∞

dσ

f(σ)
,

where τ ′ = (1 − A)min{∆tf(‖ϕ‖∞)
‖ϕ‖∞

, τ}.

Proof. Due to the fact that Un(x) is nonnegative in Ω, and
∫
Ω

J(x − y)dy 6∫
RN J(x − y)dy = 1, a straightforward computation reveals that

δtUn(x) > −Un(x) + f(Un(x)) in Ω, n > 0,

which implies that

δtUn(x) > f(Un(x))

(
1 −

Un(x)

f(Un(x))

)
in Ω, n > 0.

Since f(0) = 0, then s
f(s) is nonincreasing for positive values of s. We have δtU0(x) > 0

in Ω, and we claim that δtUn(x) > 0 in Ω, n > 0. To prove the claim, we argue by

contradiction. Let N be the first integer such that δtUN (x0) 6 0 for a certain x0 ∈ Ω.

Since δtU0(x) > 0 in Ω, we know that N > 1. Due to the fact that δtUN−1(x) > 0 in

Ω, we get UN (x) > UN−1(x) > U0(x) > ϕmin in Ω. Consequently,

0 > δtUN(x) > f(ϕmin)

(
1 −

ϕmin

f(ϕmin)

)
> 0 in Ω,
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which is a contradiction, and the claim is proved. According to the fact that δtUn(x) >

0 in Ω for n > 0, we note that Un(x) > U0(x) > ϕmin in Ω, n > 0, which implies that

δtUn(x) > f(Un(x))

(
1 −

ϕmin

f(ϕmin)

)
in Ω, n > 0.(3.3)

This entails that

δtUn(x) > (1 − A)f(Un(x)) in Ω, n > 0.(3.4)

Consequently we know that the estimate (3.4) may be rewritten as follows

Un+1(x) > Un(x) + (1 − A)∆tnf(Un(x)) in Ω, n > 0.(3.5)

Let x0 ∈ Ω be such that Un(x0) = ‖Un‖∞. Replacing x by x0 in (3.5), we find that

Un+1(x0) > ‖Un‖∞ + (1 − A)∆tnf(‖Un‖∞) in Ω, n > 0.

Use the fact that ‖Un+1‖∞ > Un+1(x0) to arrive at

‖Un+1‖∞ > ‖Un‖∞ + (1 − A)∆tnf(‖Un‖∞), n > 0.(3.6)

It is not hard to see that

(1 − A)∆tnf(‖Un‖∞) = (1 − A)min{∆t
f(‖Un‖∞)

‖Un‖∞
, τ}, n > 0.(3.7)

In view of (3.6), we note that ‖Un+1‖∞ > ‖Un‖∞, n > 0, and by induction, we

discover that ‖Un‖∞ > ‖U0‖∞ = ‖ϕ‖∞, n > 0. It follows from (3.7) that

(1 − A)∆tn
f(‖Un‖∞)

‖Un‖∞
> (1 − A)min{∆t

f(‖ϕ‖∞)

‖ϕ‖∞
, τ} = τ ′, n > 0,

and making use of (3.6), we find that

‖Un+1‖∞ > ‖Un‖∞(1 + τ ′), n > 0.(3.8)

Using an argument of recursion, we get

‖Un‖∞ > ‖U0‖∞(1 + τ ′)n = ‖ϕ‖∞(1 + τ ′)n, n > 0.(3.9)

Consequently, according (3.9), we discover that ‖Un‖∞ goes to infinity as n approaches

infinity. Now, let us estimate the semidiscrete blow-up time. The restriction on the

time step and (3.9) render

∞∑

n=0

∆tn 6

∞∑

n=0

τ‖ϕ‖∞(1 + τ ′)n

f(‖ϕ‖∞(1 + τ ′)n)
.

It follows from Lemma 3.1 that
∞∑

n=0

∆tn 6
τ‖ϕ‖∞

f(‖ϕ‖∞)
+

τ

ln(1 + τ ′)

∫ ∞

‖ϕ‖∞

dσ

f(σ)
.
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Use the fact that the quantity on the right hand side of the above inequality is finite

to complete the rest of the proof. 2

Remark 3.1. Using (3.8) and an argument of recursion, we discover that

‖Un‖∞ > ‖Uq‖∞(1 + τ ′)n−q, n > q.

The restriction on the time step leads us to

∞∑

n=q

∆tn 6

∞∑

n=q

τ‖Uq‖∞(1 + τ ′)n−q

f(‖Uq‖∞(1 + τ ′)n−q)
.

An application of Lemma 3.1 gives

∞∑

n=q

∆tn 6
τ‖Uq‖∞

f(‖Uq‖∞)
+

τ

ln(1 + τ ′)

∫ ∞

‖Uq‖∞

dσ

f(σ)
,

or equivalently

T ∆t − tq 6
τ‖Uq‖∞

f(‖Uq‖∞)
+

τ

ln(1 + τ ′)

∫ ∞

‖Uq‖∞

dσ

f(σ)
.

If we take τ = ∆t, then we note that

τ ′

τ
= (1 − A)min{

f(‖ϕ‖∞)

‖ϕ‖∞
, 1}.

Consequently, applying Taylor’s expansion we see that τ
ln(1+τ ′) = O(1) with the choice

τ = ∆t.

In the sequel, we pick τ = ∆t.

4. Convergence of the semidiscrete blow-up time

In this section, under some hypotheses, we show that the semidiscrete solution

blows up in a finite time, and its semidiscrete blow-up time converges to the real one

when the mesh size goes to zero. To do this, we firstly show that the semidiscrete

solution approaches the real one in any interval Ω × [0, T − τ ] with τ ∈ (0, T ). This

result is stated in the following theorem.

Theorem 4.1. Assume that the problem (1.1)-(1.2) admits a solution u ∈ C0,2(Ω×

[0, T − τ ]) with τ ∈ (0, T ). Then, the problem (1.3)-(1.4) admits a unique solution

Un ∈ C0(Ω) for ∆t and h small enough, n 6 J , and the following relation holds

sup
06n6J

‖Un − u(·, tn)‖∞ = O(∆t + ‖ϕh − ϕ‖∞) as (∆t, h) → (0, 0),(4.1)

where J is a positive integer such that
∑J−1

j=0 ∆tj 6 T − τ , and tn =
∑n−1

j=0 ∆tj .
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Proof. The problem (1.3)-(1.4) admits for each n > 0, a unique solution Un ∈

C0(Ω). Let N 6 J be the greatest integer such that

‖Un − u(·, tn)‖∞ < 1 for n < N.(4.2)

Making use of the fact that (4.2) holds when n = 0, we note that N > 1. Since

u ∈ C0,2, then there exists a positive constant M such that ‖u(·, tn)‖∞ 6 M for

n < N . An application of the triangle inequality gives

‖Un‖∞ 6 ‖u(·, tn)‖∞ + ‖Un − u(·, tn)‖∞ 6 1 + M for n < N.(4.3)

Apply Taylor’s expansion to obtain

δtu(x, tn) = ut(x, tn) +
∆tn
2

utt(x, t̃n) in Ω, n < N,

which implies that

δtu(x, tn) =

∫

Ω

J(x − y)(u(y, tn) − u(x, tn))dy + f(u(x, tn))

+
∆tn
2

utt(x, t̃n) in Ω, n < N.

Introduce the error en defined as follows

en(x) = Un(x) − u(x, tn) in Ω, n < N.

Invoking the mean value theorem, it is easy to see that

δten(x) =

∫

Ω

J(x − y)(en(y) − en(x))dy + f ′(ξn(x))en(x)

−
∆tn
2

utt(x, t̃n) in Ω, n < N,

where ξn(x) is an intermediate value between u(x, tn) and Un(x). We infer that there

exists a positive constant K such that

δten(x) 6

∫

Ω

J(x − y)(en(y) − en(x))dy + f ′(ξn(x))en(x)

+K∆t in Ω, n < N,(4.4)

because u ∈ C0,2 and ∆tn = O(∆t). Introduce the function Zn defined as follows

Zn(x) = (‖ϕh − ϕ‖∞ + K∆t)e(L+1)tn in Ω, n < N,

where L = f ′(M + 1). A straightforward computation reveals that

δtZn >

∫

Ω

J(x − y)(Zn(y) − Zn(x))dy + f ′(ξn(x))Zn(x)

+K∆t in Ω, n < N,
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Z0(x) > e0(x) in Ω.

We deduce from Lemma 2.2 that

Zn(x) > en(x) in Ω, n < N.

In the same way, we also show that

Zn(x) > −en(x) in Ω, n < N,

which implies that

|en(x)| 6 Zn(x) in Ω, n < N,

or equivalently

‖Un − u(·, tn)‖∞ 6 (‖ϕh − ϕ‖∞ + K∆t)e(L+1)tn , n < N.(4.5)

Now, let us reveal that N = J . To prove this result, we argue by contradiction.

Assume that N < J . Replacing n by N in (4.5), and using (4.2), we discover that

1 6 ‖UN − u(·, tN )‖∞ 6 (‖ϕh − ϕ‖∞ + K∆t)e(L+1)T .

Since the term on the right hand side of the second inequality goes to zero as ∆t and

h tend to zero, we deduce that 1 6 0, which is impossible. Consequently, N = J , and

the proof is complete. �

Now, we are in a position to prove the main result of this section

Theorem 4.2. Assume that the problem (1.1)–(1.2) has a solution u which blows

up in a finite time T such that u ∈ C0,2(Ω×[0, T )). Then, the solution Un of (1.3)-(1.4)

blows up in a finite time, and its semidiscrete blow-up time T ∆t
h obeys the following

relation

lim
(∆t,h)→(0,0)

T ∆t
h = T.

Proof: Let 0 < ε < T/2. In view of Remark 3.1, we know that τ

ln(1+τ
′)

is bounded.

Thus, there exists a positive constant R such that

τR

f(R)
+

τ

ln(1 + τ ′)

∫ ∞

R

dσ

f(σ)
<

ε

2
.(4.6)

Since u blows up at the time T , there exists a time T0 ∈ (T − ε/2, T ) such that

‖u(·, t)‖∞ > 2R for t ∈ [T0, T ).

Let q be a positive integer such that

tq =

q−1∑

n=0

∆tn ∈ [T0, T ).
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Invoking Theorem 4.1, we know that the problem (1.3)-(1.4) admits a unique solution

Un ∈ C0(Ω) such that ‖Uq − u(·, tq)‖∞ 6 R. An application of the triangle inequality

gives ‖Uq‖∞ > ‖u(·, tq)‖∞−‖Uq−u(·, tq)‖∞, which implies that ‖Uq‖∞ > 2R−R = R.

It follows from Remark 3.1 and (4.6) that

|T ∆t
h − T | 6 |T ∆t − tq| + |tq − T | 6

ε

2
+

ε

2
= ε.

This finishes the proof. �

5. Numerical results

In this section, we give some computational experiments to illustrate the theory

given in the previous section. We consider the problem (1.1)-(1.2) in the case where

Ω = (−1, 1),

J(x) =

{
3
2x2 if |x| < 1,

0 if |x| > 1,

u0(x) = 2+ε cos(πx)
4 with ε ∈ [0, 1]. We start by the construction of some adaptive

schemes as follows. Let I be a positive integer and let h = 2/I. Define the grid

xi = −1 + ih, 0 6 i 6 I, and approximate the solution u of (1.1)-(1.2) by the solution

U
(n)
h = (U

(n)
0 , · · · , U

(n)
I )T of the following explicit scheme

U
(n+1)
i − U

(n)
i

∆tn
=

I−1∑

j=0

hJ(xi − xj)(U
(n)
j − U

(n)
i ) + f(U

(n)
i ), 0 6 i 6 I,

U
(0)
i = ϕi, 0 6 i 6 I,

where ϕi = 2+ε cos(πxi)
4 . In order to permit the discrete solution to reproduce the

properties of the continuous one when the time t approaches the blow-up time T , we

need to adapt the size of the time step so that we take

∆tn = min

{
h2,

h2‖U
(n)
h ‖∞

f(‖U
(n)
h ‖∞)

}

with ‖U
(n)
h ‖∞ = max06i6I |U

(n)
i |. Let us notice that the restriction on the time step

ensures the nonnegativity of the discrete solution. We also approximate the solution

u of (1.1)-(1.2) by the solution U
(n)
h of the implicit scheme below

U
(n+1)
i − U

(n)
i

∆tn
=

I−1∑

j=0

hJ(xi − xj)(U
(n+1)
j − U

(n+1)
i ) + f(U

(n)
i ), 0 6 i 6 I,

U
(0)
i = ϕi, 0 6 i 6 I.
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As in the case of the explicit scheme, here, we also choose

∆tn =
h2‖U

(n)
h ‖∞

f(‖U
(n)
h ‖∞)

.

Let us again remark that for the above implicit scheme, existence and nonnegativity

of the discrete solution are also guaranteed using standard methods (see, for instance

[9]).

We need the following definition.

Definition 5.1. We say that the discrete solution U
(n)
h of the explicit scheme or

the implicit scheme blows up in a finite time if limn→∞ ‖U
(n)
h ‖∞ = ∞, and the series∑∞

n=0 ∆tn converges. The quantity
∑∞

n=0 ∆tn is called the numerical blow-up time

of the discrete solution U
(n)
h .

In the following tables, in rows, we present the numerical blow-up times, the num-

bers of iterations, the CPU times and the orders of the approximations corresponding

to meshes of 16, 32, 64, 128. We take for the numerical blow-up time tn =
∑n−1

j=0 ∆tj

which is computed at the first time when

∆tn = |tn+1 − tn| 6 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for f(s) = s2

First case: ε = 0

Table 1.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the explicit Euler

method

I tn n CPU time s

16 2.025369 2101 1 -

32 2.007079 8001 8 -

64 2.001851 30536 58 1.81

128 2.000477 116419 631 1.91
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Table 2.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the implicit Euler

method

I tn n CPU time s

16 2.025276 2101 2 -

32 2.007076 8001 12 -

64 2.001186 30536 113 1.63

128 2.000477 116419 2760 3.05

Second case: ε = 1/10

Table 3.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the explicit Euler

method

I tn n CPU time s

16 1.929188 2143 0.8 -

32 1.911537 8166 8 -

64 1.906539 31196 58 1.82

128 1.905216 119059 734 1.92

Table 4.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the implicit Euler

method

I tn n CPU time s

16 1.934435 1822 1.2 -

32 1.908374 7507 12 -

64 1.903592 29886 118 2.45

128 1.903413 116501 2700 4.74

Third case:

ε = 1/100
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Table 5.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the explicit Euler

method

I tn n CPU time s

16 2.015320 2101 1 -

32 1.997097 8177 8 -

64 1.991902 31241 54 1.81

128 1.995052 119238 869 0.72

Table 6.: Numerical blow-up times, numbers of iterations, CPU times (sec-

onds) and orders of the approximations obtained with the implicit Euler

method

I tn n CPU time s

16 2.030313 1905 2 -

32 2.001710 7411 11 -

64 1.992897 29977 120 1.70

128 1.990658 116702 2805 1.87

Remark 5.1. If we consider the problem (1.1)-(1.2) in the case where u0(x) = 1/2,

then using standard methods, one may easily check that the blow-up time of the

solution u is T = 2. We note from Tables 1 to 2 that the numerical blow-up time of

the discrete solution is approximately equal 2. We observe in passing the continuity

of the numerical blow-up time (see, Tables 3-6).

In what follows, we also gives some plots to illustrate our analysis. In Figures 1-6,

we can appreciate that the discrete solution blows up in a finite time. Let us notice

that when the initial datum is constant, then the discrete solution blows up globally

(see, Figures 1-2).
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Fig. 1 Explicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 0, f(s) = s2

Fig. 2 Implicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 0, f(s) = s2

Fig. 3 Explicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 1/10, f(s) = s2

Fig. 4 Implicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 1/10, f(s) = s2
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Fig. 5 Explicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 1/100, f(s) = s2

Fig. 6 Implicit scheme

Evolution of the discrete

solution

l = 16, ǫ = 1/100, f(s) = s2
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