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Universidad Técnica Federico Santa Maŕıa
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Maximum Principles for problems of general Parabolic Partial
Differential Equations

M. Almahameed

Abstract. In this paper we show that a maximum principle cannot hold for the
standard spatially semidiscrete problem for general parabolic equations. We also

study conditions for the solution operator acting on the discrete initial data,

with homogeneous lateral boundary conditions, to be a contraction or a positive
operator.

1. Introduction

Let Ω be a bounded polyhedral domain in Rd and consider the problem

(1.1) ut + Au = 0 in Ω, for t > 0,

with u = g on ∂Ω, for t > 0, u(0) = v in Ω.

Here

Au = −
d∑

k,l=1

∂

∂xk
(akl

∂u

∂xl
) +

d∑
k=1

bk
∂u

∂xk,
,

where the coefficients akl, bk ∈ Cd(Ω ), and (akl(x)) is a symmetric and uniformly
positive definite matrix on Ω .

The maximum principle for (1.1) asserts that, if QT = Ω × (0, T ), with T > 0,
the maximum and the minumum of a solution u ∈ C2(QT ) ∩ C(Q T ) over Q T

occur on the parabolic boundary, (∂Ω × [0, T ] ) ∪ (Ω× {t = 0}).
As a consequence of this we find at once a bound for |u| in QT , namely

(1.2) ‖u‖QT
= max (‖g‖∂Ω×[0,T ] , ‖v‖Ω), where ‖u‖V = max

V
|u| .

Here V denotes a set in Rd or Rd+1 ; when V = Ω we normally omit this subscript.
Since constant functions satisfy the differential equation in (1.1), it is well
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known and easy to prove that (1.2) is equivalent to the positivity condition

(1.3) u > 0 in QT , if v > 0 in Ω and g > 0 on ∂Ω × [0, T ].

In the case of homogeneous Dirichlet boundary conditions, i.e., when g = 0, it
follows from (1.2) that for the solution operator E(t), the semigroup defined by
u(t) = E(t)v on the continuous functions which vanish on ∂Ω, is a contraction, or

(1.4) ‖E(t)v‖ 6 ‖v‖ , for t > 0.

We shall be concerned with spatially semidiscrete approximations of (1.1)
based on continuous, piecewise linear finite elements, defined on a family of triangula-
tions Υh= {τ} of Ω into closed simplices τ , such that any face of any τ is either a sub-
set of the boundary ∂Ω or a face of another τ ∈ Υh. We set h=maxτ∈Υh

diam(τ).
We associate with Υhthe finite dimensional spaces

Sh = {χ ∈ C( Ω ) : χ |τ linear for τ ∈ Υh} and S0
h = {χ ∈ Sh : χ = 0 on ∂Ω}.

For each t, let gh(t) be the restriction to ∂Ω of a function in Sh and let vh ∈ Sh

with vh= gh(0) on ∂Ω. The semidiscrete standard Galerkin finite element problem
associated with (1.1) is then to find uh(t) ∈ Sh for t > 0 such that

(1.5) (uh,t, χ) + A(uh, χ) = 0, ∀χ ∈ S0
h, t > 0,

with uh(t) = gh(t) on ∂Ω, for t > 0, and uh(0) = vh,

where (f, g) =
∫
Ω

f(x) g(x) dx, b = (b1, ..., bd)T , and

A(f, g) =
∫
Ω

(
d∑

k,l=1

akl
∂f

∂xl

∂g

∂xk
+

d∑
k=1

bk
∂f

∂xk
g )dx = A0(f, g) + (b.∇f, g).

It is natural to ask whether an analogue of the maximum principle (1.2) holds
for the discrete problem (1.5), or equivalently

(1.6) ‖uh‖QT
= max( ‖gh‖∂Ω×[0,T ] , ‖vh‖Ω ) .

We shall demonstrate below that, in general, this is not the case. In [2] it was
shown, for special families of triangulations Υhwith all angles acute, that the back-
ward Euler method may satisfy a maximum principle. His result requires a cer-
tain lower bound for the time step and therefore does not imply the same for the
semidiscrete method by letting the time step tend to 0.

As a preparation for our analysis, we express the semidiscrete problem (1.5) in
matrix form: Let {Pi}n

i=1 denote the nodes of Υh in the interior of Ω, and
{Pn+i}m

i=1 those on ∂Ω, and let {Φi}n+m
i=1 ⊂ Sh be the standard basis of pyramid func-

tions defined by Φi(Pj) = δij . The mass and stiffness matrices are then



MAXIMUM PRINCIPLES FOR PROBLEMS OF GENERAL PARABOLIC PARTIAL ... 63

M = (mij) and S = (sij), where mij = (Φi,Φj) and sij = A(Φi,Φj), i, j =
1 : n.To include the boundary terms, we also set B = (bij) and Z = (zij) with bij =
A(Φi,Φn+j), zij = (Φi,Φn+j), i = 1 : n, j = 1 : m. We now also introduce the vec-
tor α(t) = (α1(t), ..., αn(t))T of nodal values of uh(t) and correspondingly
g̃(t) = (g̃n+1(t), ..., g̃n+m(t))T , where g̃j(t) = gh(Pj , t) and ṽ = (vh(P1), ..., vh(Pn))T .

Thus uh(t) =
n∑

i=1

αi(t)Φi +
m∑

j=1

g̃n+j(t)Φn+j , and we may

hence write (1.5) as

(1.7) Mdα

dt
+ Sα = −Bg̃ −Z dg̃

dt
, for t > 0 with α(0) = ṽ.

Since the last term in (1.7) cannot be bounded by ‖gh‖
∂Ω×[0,T ]

, it is already now
clear that the full discrete maximum principle (1.6) cannot hold.

We now introduce the discrete semigroup Eh(t) on S0
h by setting Eh(t)vh =

uh(t), where uh(t) is the solution of (1.5) with boundary data gh(t) = 0.
It has been shown by specific counterexamples in [6] that Eh(t) does not generally

satisfy the analogue of (1.4),

(1.8) ‖Eh(t)vh‖ 6 ‖vh‖ , for t > 0.

Our first goal in this paper is to show that, in fact, (1.8) cannot hold for any trian-
gulation Υh which is “fine” enough. We continue to show that Eh(t) cannot be posi-
tive in the sense that Eh(t)vh > 0 if vh > 0. Thus in neither case (1.6) can be valid.
These results will be shown in Section 2 below. For weaker maximum-norm stabili-
ty estimates than (1.8), see [6].

We now turn to the lumped mass method, which results from replacing the
mass matrix M in (1.7) by a diagonal matrix D with diagonal elements

dii =
n∑

i=1

mij and also setting Z = 0, or

(1.9) Ddα

dt
+ Sα = −Bg̃, for t > 0, with α(0) = ṽ.

This may also be written in variational form, replacing the inner product in (1.5) by a
quadrature approximation, or

(1.10) (uh,t, χ)h + A(uh, χ) = 0, ∀χ ∈ S0
h, t > 0,

with uh(t) = gh(t) on ∂Ω, for t > 0, and uh(0) = vh,

where (Ψ, χ)h =
∑

τ∈Υh

Qτ,h(Ψχ), Qτ,h(f) = meas(τ)
d+1

∑
Pj∈eτf(Pj) ≈

∫
τ

fdx.

In this lumped mass case, to be discussed in Section 2 below, we shall show
that the discrete maximum principle (1.6) holds if and only if the off-diagonal ele-
ments of the stiffness matrix S are nonpositive and if B 6 0, elementwise.
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In one space dimension, this is always the case. In two space dimensions, with A =
−∆, this is equivalent to the condition that each edge of Υh , not entirely on ∂Ω, is
of Delauney type, in the sense that the sums of the opposing angles in the two tri-
angles containing it are at most π. In fact, if Pi and Pj are neighbors, i.e., if PiPj

is an edge of Υh, and if α and β are the angles opposite PiPj , then (∇Φi,∇Φj) =
−sin(α + β)/(4 sin αsin β) < 0, = 0, or > 0 when α + β<π, = π,or >π, respec-
tively, see [1], [5], [6], and [7]. In [2] the condition used was that each of these an-
gles is 6 π/2, and, for higher space dimensions, similar conditions of “acute” type
are used. In [7] sharp conditions of Delauney type were given for S−1 to be nonposi-
tive in any number of space dimensions.

The stationary discrete elliptic problem corresponding to (1.5) and (1.10) is

(1.11) A(wh, χ) = 0, ∀χ ∈ S0
h, with wh = gh on ∂Ω,

If A(χ, χ) is positive definite on S0
h, (1.11) has a unique solution and may be

written in matrix form, with α and g̃ the vectors of nodal values of wh and gh,

(1.12) Sα = −Bg̃, or α = −S−1Bg̃.

The maximum principle for (1.11), or

(1.13) ‖wh‖Ω 6 ‖gh‖∂Ω ,

is now equivalent to the positivity condition α > 0 for g̃ > 0, and hence, by
(1.12), S−1B 6 0 is necessary and sufficient for (1.13). Consider now the discrete par-
abolic problem(1.10) with vh = 0 at interior nodes
and gh(t) = gh = constant in time, and assume that A(χ, χ) is positive definite on S0

h

and the maximum principle holds for (1.10). The solution of (1.10) then converges to the
solution of (1.11) as t →∞, and (1.13) thus also holds for the discrete stationary
problem. Hence S−1B 6 0 is a necessary condition for (1.6) in this case. In two di-
mensions and with A = −∆, by the results already mentioned, under Delauney con-
ditions on Υh, we have S−1 > 0 and B 6 0 and hence (1.13) holds. In [4] exam-
ples were given of triangulations of non-Delauney type, for which the elliptic maxi-
mum principle still holds. In R3, [3] showed an elliptic maximum principle for tetra-
hedral decompositions of nonacute type. (For certain convection dominated ellip-
tic cases, [7] ). Thus the parabolic maximum principle demands more stringent con-
ditions than (1.13). In Section 2 we also discuss conditions for contractivity and posi-
tivity of the solution operator Ẽh(t) on S0

h .

2. The Results and Their Proofs

We shall first show that, in general, a maximum principle cannot hold for the
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semidiscrete standard Galerkin method (1.5). We shall show that, in fact, the dis-
crete solution operator Eh(t) on S0

h , with gh(t) = 0, is, in general, neither con-
tractive nor positive. For our analysis, we define a node Pi of Υh to be strictly inte-
rior if all its neighbors are interior, and a near-boundary node if it is interior but not
strictly interior. We set σi = supp (Φi).
Theorem 2.1.Assume that div b = 0 and that Υh is such that each near-boundary
node has a strictly interior neighbor.Then Eh(t) cannot be a contraction.

The condition div b = 0 is superfluous if for each near-boundary node Pj and
an associated strictly interior neighbor Pi, we have meas(σj ∩ σi) > c meas(σi) with
c > 0 and if h is sufficiently small.
Proof. Setting t = 0 in (1.7), with g̃ = 0 and α(0) = 1=(1,1,...,1)T ,we have

(2.1) Mβ = −γ = −S1, where β = α′(0).

If Eh(t) were a contraction, then we would have β 6 0 elementwise, and hence
γ > 0. and we shall show that this is not possible under the assumptions of the theo-

rem. Let wh =
n∑

j=1

Φj ∈ Sh correspond to the vector 1 above.

We assume first that div b = 0. In this case we have for the element γi of γ,
corresponding to a strictly interior node Pi, using integration by parts,

(2.2) γi =
n∑

j=1

sij = A(Φi, wh) = (b.∇Φi, wh) = −(div bΦi, wh) = 0,

since wh = 1 on σi. Hence
n∑

j=1

mijβj = 0 for β as in (2.1) .

Here mij > 0 if and only if j = i or if Pj is a neighbor of Pi, and if β 6 0, then βj =
0 for the corresponding j. Thus by the assumption on Υh we have β = 0 and hence
γ = 0. But γ cannot be zero since

(2.3) γ.1 = S1 .1 = A(wh, wh) = A0(wh, wh) − 1
2
( div bwh, wh) > 0.

We now turn to the case of a general b and assume again that β 6 0. For Pi

a strictly interior node we now have, by (2.1) and (2.2), that mii|βi| 6 γi 6 C
meas(σi). Since mii 6 c meas(σi), with c > 0, it follows that |βi| 6 C for a
positive constant C. If Pj is a near-boundary node, let Pi be a strictly interior neigh-

boring node. Then mij |βj | 6
n∑

i=1

mil |βl| = γi 6 Cmeas(σi) and since, by assumption,

mij = (Φi,Φj) > c meas(σj ∩ σi) > c meas(σi),
we conclude also now that |βi| 6 C. Thus, for all interior nodes Pi,

γi 6 C
n∑

j=1

mij 6 Cmeas(σi), and hence γ.1 6 C.
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But, by the first part of (2.3),

γ.1 = S1 .1 > c ‖∇wh‖2L2
− C.

Here ∇wh = 0 on all interior simplices τ ∈ Υh, so that only boundary simplices con-
tribute to the first term on the right. For a boundary simplex τ , which
has a full (d− 1)-dimensional face Fτ on ∂Ω, we have, with dτ the distance from the
interior vertex of τ to the hyperplane containing Fτ , and with |Fτ | the (d − 1)-
dimensional measure of Fτ ,

‖∇wh‖2L2(τ) > d−2
τ meas(τ) > cd−1

τ |Fτ | > ch−1 |Fτ | , with c > 0.

Hence after summation over these τ , since ∪τFτ = ∂Ω, we conclude that
γ.1 > ch−1−C. For small h this contradicts the boundedness of γ.1. �

We note that, in one space dimension, the first assumption about Υh holds if
there are at least three interior nodes, and when d = 2 the second assumption is sat-
isfied when the triangulation is fine enough, and the angles in the triangles of ∪iσi

are bounded below where the union is taken over all i such that Pi is a strictly inte-
rior neighbor of a near-boundary node. To see that some condition on Υh is needed, we
consider the case when there is only one interior node P1 and div b = 0. The sys-
tem (1.7) then reduces to the scalar equation

‖Φ1‖2L2
α
′

1 + A0(Φ1,Φ1)α1 = 0, for t > 0, α1(0) = ṽ = (vh,Φ1).

The solution is then the exponentially decreasing function
uh(t) =exp(−tλ)ṽ, with λ = A0(Φ1,Φ1)/ ‖Φ1‖2L2

> 0, and the solution opera-
tor is a contraction.

Theorem 2.2.Assume that div b 6 0 and that Υh is such that there exists a
strictly interior node, P1say, such that any neighbor of P1 has an interior neighbor
which is not a neighbor of P1.Then Eh(t) cannot be a positive operator. The condition
div b 6 0 is not needed if h is sufficiently small.
Proof. If Eh(t) is a positive operator, then, by (1.7) with g̃ = 0, we have that
ε(t)= e−Kt > 0, elementwise, where K = (kij) = M−1S.
Since ε(t) = I −Kt + O(t2) as t → 0, we see that then all off-diagonal elements of K
are nonpositive. We shall show that this is impossible.

Let Pi be any interior node 6= P1 which is not a neighbor of P1. Since MK = S

and since mi1 = si1 = 0, we have
n∑

j 6=1

mijkj1 = 0. Hence kj1 = 0 when mij >

0, i.e., when j = i and when j is such that Pj is a neighbor of Pi. By our assump-
tion about Υh this shows that actually kj1 = 0 for all j 6= 1; this is also true when Pj

and P1 are neighbors. Thus the first column of K only contains one possible nonzero
element, namely k11.

For the stiffness matrix S we have
n∑

j=1

sj1 = A(1,Φ1) = 0 while, if div b 6 0,



MAXIMUM PRINCIPLES FOR PROBLEMS OF GENERAL PARABOLIC PARTIAL ... 67

s11 = A0(Φ1,Φ1) −
1
2
(div bΦ1,Φ1) > 0.

In the case of a general b, we have s11 > (ch−2 −C)meas(σ1), with c > 0, and hence
s11 > 0 for h small. Thus, in either case, the first column of S has elements of different
signs whereas this is not the case for M, in contradiction to MK = S. �

At this point we remark that our assumption about Υh is satisfied in one di-
mension if there are five or more interior nodes. For the example following Theo-
rem 2.1 above, with only one interior node, Eh(t) is also a positive operator, which shows
that some condition on Υh is needed in Theorem 2.2.

Now we consider the lumped mass method and give necessary and sufficient con-
ditions for the maximum principle to hold and also for the contractivity and positivity
of the operator Ẽh(t) on S0

h .
Theorem 2.3.The maximum principle (1.6) holds for the semidiscrete parabolic

lumped mass problem (1.10) if and only if the off-diagonal elements of S and all
elements of B are nonpositive.
Proof. With the notation in the introduction we have, from (1.9),

(2.4) α(t) = ε̃(t)α(0) −
t∫

0

ε̃(t− s)D−1Bg̃(t) ds, with ε̃(t) = e−Ht, H = D−1S.

As in (1.3) for the continuous case, the maximum principle (1.6) is equivalent to

α(t) > 0 for t > 0 if α(0) > 0 and g̃(t) > 0 for t > 0.

Thus, if (1.6) holds, it follows from (2.4), with g̃(t) = 0, that ε̃(t) > 0. Since

(2.5) ε̃(t) = I − tH+ O(t2), as t → 0,

all off-diagonal elements of H must then be nonpositive, and since D is diago-
nal with positive elements, the off-diagonal elements of S = DH are also nonposi-
tive. Setting α(0) = 0 and g̃(t) > 0 in (2.4), we now find that it is also neces-
sary that B 6 0.

Conversely, if the off-diagonal elements of S are nonpositive, this holds also for
H.Writing H = P −Q where P is diagonal and Q > 0, and setting
J = I + kP, we have, for k small,

(I + kH)−1 = (J − kQ)−1 = (I − kJ−1Q)−1J−1 =
∞∑

l=0

kl(J−1Q)lJ−1 > 0

Since

(2.6) ε̃(t) = lim
n→∞

( I +
t

n
H)−n,
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this shows ε̃(t) >0. If also B 6 0, it follows that ε̃(t− s)D−1B 6 0. Hence, if α(0) > 0
and g̃(t) > 0 for t > 0, we obtain by (2.4) that α(0) > 0 for t > 0, which shows
our claim. �

We note that the condition of the theorem may also be expressed as

(2.7) A(Φi,Φj) 6 0 for i = 1 : n, j = 1 : n + m, i 6= j.

We shall now give necessary and sufficient conditions for the solution opera-
tor Ẽh(t) with homogeneous boundary conditions to be contractive. In view of the
above discussion, in the case div b = 0, these conditions are essentially concerned with the
properties of the rows corresponding to near-boundary nodes.
Theorem 2.4.The semigroup Ẽh(t) on S0

h is a contraction if and only if S is diago-
nally dominant.
Proof. If Ẽh(t) is a contraction, so is the matrix ε̃(t) in (2.4) with respect to the
vector maximum-norm | ·|∞ . Since ε̃(t) = I −Ht + O(t2) as t → 0, we have

|ε̃(t)|∞ = max(1− thii + t
∞∑

j 6=i

|hij |) + O(t2).

For this norm to be bounded by 1, we find at once by taking t small that it is
necessary that

∑
j 6=i

|hij | 6 hii for i = 1 : n, so that H is diagonally dominant. Since D

is a positive diagonal matrix, S = DH is then also diagonally dominant.
Conversely, if we know that S ,and hence also H = D−1S, is diagonally domi-

nant,it is easy to see that

(2.8) |(I + kH)−1|∞ 6 1, for k > 0.

In fact, set w = (I + kH)−1v and let |wj | = |w|∞.

Then (1 + khjj)|wj | = |vj − k
∑
l 6=j

hjlwl| 6 |v|∞ + khjj |w|∞, from which

|w|∞ 6 |v|∞,which shows (2.8).
By (2.6) this implies |ε̃(t)|∞ 6 1, for t > 0, so that Ẽh(t) is a contraction. �

Theorem 2.5. The semigroup Ẽh(t) is positive if and only if sij 6 0 for j 6= i.
Proof. In this case the positivity of ε̃(t), together with (2.5), shows at once

that the off-diagonal elements of H are nonpositive. Since S = DH, this shows the
only if part of the theorem.

Conversely, if the off-diagonal elements of H are nonpositive, one finds as in the
last part of the proof of Theorem 2.3 that ε̃(t) > 0.�
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