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Universidad Técnica Federico Santa Maŕıa
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Abstract. The general theory of Riemann surfaces asserts that a closed Riemann
surface S of genus g > 2 may be seen as (i) the quotient by a Kleinian group G
or (ii) a plane algebraic curve C (possible with singularities) or (iii) a symmetric
complex g× g matrix Z with positive imaginary part (a Riemann period matrix).
Numerical uniformization problem ask for numerical relations between these ob-
jects for suitable choices of G, C and Z. In this note we discuss the case of genus
two for G a classical Schottky group. The algorithm has been implemented into
a mathematica package for the case of M-real curves of genus 2, but it can easily
be rewritten for the general case.
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1. Introduction

A closed Riemann surface S of genus g > 2 may be seen as the quotient by a Schot-
tky group G of rank g or as a plane algebraic curve C (possible with singularities) or
as a symmetric complex g × g matrix Z with positive imaginary part (a Riemann pe-
riod matrix). Numerical uniformization problem ask for numerical relations between
these objects for suitable choices of G, C and Z. In this note we describe an algo-
rithm (due in its basis to W. Burnside), for the case g = 2, which permits to obtain
numerically both an algebraic curve and a Riemann period matrix of the genus two
Riemann surface uniformized by a given classical Schottky group. The algorithm has
been implemented into a mathematica package for the case of M-real curves of genus
2, but it can easily be rewritten for the general case. This algorithm also permits to
find numerical real non-singular finite-gap solutions of Kadomtsev-Petviashvili partial
differential equation [19] and, in particular, of Korteweg-de Vries partial differential
equation in the case of genus two M-real curves of genus two (see Section 7). Next,
we proceed to recall some definitions in order to clarify the above.

A Schottky group of rank 2 G is a group generated by two Möbius transformations,
say A and B, with the property that there are 4 pairwise disjoint circles, say C1, C ′1,
C2 and C ′2, all of them bounding a common domain of connectivity 4, say D, so that
A(C1) = C ′1, B(C2) = C ′2, A(D) ∩ D = ∅ and B(D) ∩ D = ∅. In case we may choose
the above loops as circles, we say that G is a classical Schottky group of genus 2. It
is well known (see for instance [20]) that if G is a Schottky group of rank 2, then the
following properties hold: (i) G is a free group of rank 2, (ii) G is a Kleinian group
with connected region of discontinuity Ω(G) (its complement is a Cantor set), (iii)
S = Ω(G)/G is a closed Riemann surface of genus 2, (iv) E = [A,B] = AB − BA,
EA and EB are elliptic transformation of order two in the normalizer of G, each one
inducing the hyperelliptic involution on S [14]. The reciprocal to (iii) holds and it is
given by Koebe’s uniformization theorem [16].

Let D0, D1, D2 be three pairwise disjoint simple loops, all of them bounding
a domain of connectivity 3, and assume we have three elliptic transformations of
order 2, say E0, E1, E2, so that E0 interchanges both topological discs bounded by
D0, E1 interchanges both topological discs bounded by D1 and E2 interchanges both
topological discs bounded by D2. The group K = 〈E0, E1, E2〉 is called a Whittaker
group of rank 2. If we may choose D0, D1 and D2 as circles, then we say that K is
a classical Whittaker group. If we set A = E0E1 and B = E0E2, then we have that
G = 〈A, B〉 is a Schottky group of rank 2; take C1 = D1, C2 = D2, C ′1 = E0(D1)
and C ′2 = E0(D2). Clearly, if K is classical, then G is to. The Schottky group G can
be characterized as the unique torsion free subgroup of minimal index (such an index
equal to 2). Reciprocally, if we start with a Schottky group G = 〈A,B〉 of rank 2, then
E0 = [A,B] = AB − BA, E1 = E0A and E2 = E0B generate a Whittaker group of
rank 2 [14]. If S = Ω(G)/G, then Ω(G) = Ω(K) and Ω(K)/K uniformizes the quotient
Riemann orbifold S/〈j〉, where j : S → S denotes the hyperelliptic involution.

A real curve of genus 2 is a pair (S, τ), where S is a closed Riemann surface S
of genus 2 and τ : S → S is a reflection, that is, an anticonformal involution with
fixed points. The reflection τ is also called a real structure on S. The connected



CLASSICAL SCHOTTKY UNIFORMIZATIONS 69

components of fixed points of the reflection τ are called ovals (or mirrors) and their
are given by simple closed geodesics on the surface. As a consequence of Harnak’s
theorem [2], [15], the number nτ of ovals of a reflection τ satisfies 1 6 nτ 6 3. In
case that nτ = 3, we say that τ is called a M-reflection and that (S, τ) called a M-real
curve of genus 2.

A real Schottky group of rank 2 is by definition a Schottky group of rank 2 that
keeps invariant the unit circle. In particular, a real Schottky group of rank 2 has
its limit set a Cantor subset of the unit circle. Let us denote by σ the reflection on
the unit circle. Let G be a real Schottky group, with region of discontinuity Ω, and
S = Ω/G the closed Riemann surface uniformized by G. We have, in this case, that
σ induces a reflection on S, say τ , and we have that the pair (S, τ) is a real curve.
Reciprocally, Koebe’s uniformization theorem [17] asserts that every real curve can
be obtained in this way.

If we have a Whittaker group K defined by three circles D0, D1 and D2, and
generators E0, E1 and E2 (as above), then there is a circle D3 which is orthogonal
to each Dj , for j = 0, 1, 2. Let us denote by τ0 the reflection on the boundary circle
of D3. In order to ensure that τ0 normalizes K we only need to have that both fixed
points of Ej are preserved by τ0: they may be fixed or permuted. In this way, we have
exactly 4 possible configurations. In the case τ0 normalizes K, we say that K is a real
Whittaker group of rank 2. The Schottky group G defined by a real Whittaker group
is a real Schottky group. The genus two Riemann surface S = Ω(G)/G has in this
case a reflection τ which is induced by τ0, that is, (S, τ) is a real curve of genus 2.

Given any collection of 3 different points on the complex plane, say a1, a2, a3 ∈
C−{0, 1}, we may consider the algebraic projective plane curve C ⊂ P2 (the complex
projective plane) defined by the affine plane curve

y2 = x(x− 1)(x− a1)(x− a2)(x− a3).

After desingularization at ∞, the above curve defines a closed Riemann surface of
genus 2 and reciprocally, every closed Riemann surface of genus 2 can be so obtained.
In case that the set of points {0, 1,∞, a1, a2, a3} is invariant under a reflection of the
Riemann sphere, we have that it defines naturally a real curve of genus 2.

Numerical Schottky uniformization problem ask for concrete relations (or numer-
ical ones) between the coefficients a1, a2, a3 and a Schottky group uniformizing the
same (class of) Riemann surface.

In the literature there are works in the direction of numerical Fuchsian uniformiza-
tions, see for instance [1, 5, 8, 21, 24], which describe algebraic curves and Riemann
period matrices from co-compact Fuchsian groups. In general, these Fuchsian groups
are normal subgroups of NEC group groups generated by the reflections on certain
compact hyperbolic polygons. In [22] there is an algorithm which permits to compute
numerically a Schottky group uniformizing a given plane hyperelliptic algebraic curve
that admits the reflection η(z) = z as a symmetry (see [12] for the general case). In
[10] is explained the theoretical part of an algorithm (based on original ideas of W.
Burnside) which permits to compute both an algebraic curve and a Riemann period
matrix of the uniformized real Riemann surface in terms of a given real Schottky
group. This has been used for some particular families with many automorphisms; for
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instance [11] is considered a class of real Riemann surfaces of genus two with many
automorphisms commuting with a real structure. In this note we describe the values
of a1, a2, a3 in terms of a classical Schottky group of rank two in order to use of the
above algorithm. The implemented program in mathematica [25] for the M-real
curves can be obtained from http://docencia.mat.utfsm.cl/∼rhidalgo/files/.

The organization of this paper is as follows. In section 2 we recall some basic facts
on collection of three pairwise disjoint circles. In Section 3 we construct a family F of
classical Whittaker groups of rank 2

{K(θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2)},
whose index two Schottky subgroups

{G(θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2)}
provides uniformization of Riemann surfaces of genus 2 which can be uniformized by
a classical Schottky group. In Section 4 we make particular choices of the angles ηi,j

in order to obtain real Whittaker groups. For instance, for η1,1 = π/2 + θ1, η1,2 =
3π/2−θ1, η2,1 = 7π/6+θ2, η2,2 = 13π/6−θ2, η3,1 = 5π/6−θ3 and η3,2 = θ3−π/6, we
obtain real Whittaker groups whose Schottky subgroups uniformize all M-real curves of
genus 2. In section 5 we describe explicitly an algebraic curve for the Riemann surface
uniformized by the index two Schottky subgroup of a classical Whittaker group in
the family F. In section 6 we show how to implement the results of previous sections
to obtain numerical approximations of the algebraic curve, a Riemann period matrix
(we only describe it for the M-real case, but it may be suitable modified in order
to consider the general situation) and the accessory parameters of the uniformized
Riemann surface. In section 6.4 we discuss two different families of symmetrical M-
real curves. In section 6.5 we write down, for a concrete example, the values we obtain
with our algorithm. In section 6.6 we discuss the situation for higher genus M-real
curves. In section 7 we relate to the theory of finite-gap integration developed by
Novikov, Dubrovin, Matveev, It·s and others to obtain explicit solutions to certain
class of partial differential equations appearing in evolution problems.

2. Triples of Circles

A circle on the Riemann sphere Ĉ = C ∪ {∞} is either an Euclidian circle on
the complex plane C or the union of ∞ with an Euclidian line on C. A disc is an
open domain bounded by a circle. A triple of circles C1, C2 and C3 is said to be non-
separating if there are pairwise disjoint discs D1, D2 and D3, so that the boundary
of Dj is Cj , for each j = 1, 2, 3. Let us note that in a triple of non-separating circles
we may have that some of them may be tangent, but they cannot cross. We have the
following well known fact.

Proposition 2.1. Given any triple of non-separating circles, say C1, C2 and C3,
there is a (unique) circle C0 which is orthogonal to each of them.

Proof. As we may send the three circles to Euclidian circles by a suitable Möbius
transformation, we may assume we are in that situation. Let L the Euclidian line
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determined by the centers of C1 and C3. We have that L is orthogonal to both C1

and C3. If T is a Möbius transformation that sends the center of C1 to 0 and the
center of C3 to ∞, then, as T is conformal, it sends C1 and C2 to concentric Euclidian
circles at the origin and it sends C2 to an Euclidian circle contained in the interior of
the annulus bounded by the above two concentric circles T (C1) and T (C3). Up to a
rotation, we may assume T (C2) to be orthogonal to the real line. ¤

Let us now consider a triple non-separating circles, say C1, C2 and C3. By the
previous fact, we have a unique common orthogonal circle C0. Let us denote by D
any of the two discs bounded by C0. Given any point p ∈ D, we may draw three (two
of them non-necessarily different) circles, say L1, L2, L3, so that:

(i) p ∈ Lj , for each j = 1, 2, 3; and
(ii) Lj is orthogonal to both C0 and Cj , for each j = 1, 2, 3.

Let us denote by L∗j the arc of Lj contained in D with one end point at p and the
other at Cj .

The circles L1, L2 and L3 divide the Riemann sphere into 6 disjoint sectors (two
of the sectors can be empty; for instance, in the case that L1 = L2). These sectors
determine 3 angles, say α > 0, β > 0 and γ > 0, so that α + β + γ = π. In the case
that α = β = γ = π/3, we say that p ∈ D is a geometric center of the non-separating
triple of circles.

The arcs L∗1, L∗2 and L∗3 determine 3 sectors about p. If the the three sectors have
equal angle equal to 2π/3, then we say that p is a main geometric center. Clearly
a main geometric center is a geometric center, but a geometric center may not be a
main geometric center.

Theorem 2.1. Under the above notation, there is a unique main geometric center.
Moreover,

(i) if there is no tangency between the circles, then we have exactly 4 geometric
centers in D;

(ii) if we have exactly one tangency, then we have exactly 3 geometric center in
D;

(iii) if we have two tangencies, we have exactly 2 geometric center in D;
(iv) if we have exactly three tangencies, then we have exactly 1 geometric center

in D.

Proof. Let us assume that the three circles are all tangent. In this case, we have
three tangency points. These three tangency points determine a unique circle, this
circle being the common orthogonal one. We may assume this common orthogonal
circle to be the unit circle. By a Möbius transformation that keeps invariant the unit
circle, we may assume these three tangency points to be 1, e2πi/3 and e4πi/3. In this
way, we see that 0 is a geometric center in the unit disc D. As a consequence of
Gauss-Bonnet’s formula it cannot be another geometric center.

We may now assume that at least two of the circles are not tangent, say C1 and
C3. As mentioned in the previous section, we may assume that C1 is the unit circle,
that C3 a circle centered at the origin and radius R2 > 1, and that C2 is orthogonal
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to the segment [1, R2] ⊂ R. Let us consider the circle N centered at the origin and
radius R. If we consider a Möbius transformation in PSL(2,R) that sends R to 0 and
−R to ∞, then we have that the circle N is sent to the imaginary line. As C3 is the
reflection about N of C1, we have that the image of C1 is a circle that is orthogonal to
the negative real line at points −B < −A < 0, that the image of C3 is a circle that is
orthogonal to the positive real line at points 0 < A < B, and that C2 is sent to a circle
orthogonal to the segment [−A,A] ⊂ R. Now by use of a dilation, we may assume
that A = 1, that is, we may assume that C1 is orthogonal to the real line at the points
−B and −1, that C3 is orthogonal to the real line at the points 1 and B, and that C2

is orthogonal to the real line at points −1 6 U < V 6 1. Up to a reflection on the
imaginary line and permuting C1 with C3, we may assume now on that V > 0.

Some reflections. Given any point w = x + iy, with y > 0, we draw the circle L1

containing w and orthogonal to both C1 and the real line. As the reflection τ1 on L1

fixes w and permutes −1 with −B, it follows that

τ1(z) =
p + (1 + p)B + pz

z − p

where

p =
x2 + y2 −B

1 + B + 2x

We draw the circle L2 containing w and orthogonal to both C2 and the real line.
As the reflection τ2 on L2 fixes w and permutes U with V , it follows that

τ2(z) =
V U − r(U + V ) + rz

z − r

where

r =
x2 + y2 − UV

2x− U − V

We draw the circle L3 containing w and orthogonal to both C3 and the real line.
As the reflection τ3 on L3 fixes w and permutes 1 with B, it follows that

τ3(z) =
B(1− q)− q + qz

z − q

where

q =
x2 + y2 −B

2x− 1−B

A pair of polynomials. The condition for the angle between L1 and L2 to be the
same as the angle between L2 and L3 is equivalent to have:

(∗) τ2(−B) = τ3(τ2(−1))

The condition for the angle between L2 and L3 to be the same as the angle between
L3 and L1 is equivalent to have:

(∗∗) τ3(U) = τ1(τ3(V ))
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The equality of both (∗) and (∗∗) for the same w = x + iy, y > 0, is equivalent to
solve our problem. Now, equality (∗) holds exactly for the zeroes (x, y), y > 0, of the
polynomial of degree 6 (of degree 5 if U = −V ) given by:

P1(x,y) = A0(x) + A1(x)y2 + A2(x)y4 + A3(x)y6 ∈ R[x,y]
where

A0(x) = (−B2U2V − B2UV 2) + (B2U2 + 4B2UV + B2V 2 + U2V 2 + B2U2V 2)x+

(−3B2U − 3B2V − U2V − B2U2V − UV 2 − B2UV 2)x2

+(2B2 − 2U2V 2)x3 + (U + B2U + V + B2V + 3U2V + 3UV 2)x4+

(−1− B2 − U2 − 4UV − V 2)x5 + (U + V )x6

A1(x) = (B2U + B2V − U2V − B2U2V − UV 2 − B2UV 2) + (−2B2 + 2U2V 2)x+

(2U + 2B2U + 2V + 2B2V + 2U2V + 2UV 2)x2−
−(2 + 2B2 + 2U2 + 8UV + 2V 2)x3 + (3U + 3V )x4

A2(x) = (U + B2U + V + B2V − U2V − UV 2)− (1 + B2 + U2 + 4UV + V 2)x+

+(3U + 3V )x2

A3(x) = (U + V )

Similarly, equality (∗∗) holds exactly for the zeroes (x, y), y > 0, of the polynomial
of degree 6 given by:

P2(x,y) = B0(x) + B1(x)y2 + B2(x)y4 + B3(x)y6 ∈ R[x,y]
where

B0(x) = (−B3U − B3V + 3B2UV + 3B3UV )+

(2B3 − 2B2U − 2B3U − 2B2V − 2B3V − 2BUV − 6B2UV − 2B3UV )x+

(B2 + B3 + 3BU + 5B2U + 3B3U + 3BV + 5B2V +

3B3V − UV − BUV − B2UV − B3UV )x2+

(−4B − 4B2 − 4B3 + 4UV + 4BUV + 4B2UV )x3+

(1 + B + B2 + B3 − 3U − 5BU − 3B2U − 3V − 5BV − 3B2V − UV − BUV )x4+

(2 + 6B + 2B2 + 2U + 2BU + 2V + 2BV − 2UV )x5+

(−3− 3B + U + V )x6

B1(x) = (−3B2 − 3B3 + 3BU + 9B2U + 3B3U + 3BV + 9B2V + 3B3V − UV − 9BUV−
9B2UV − B3UV ) + (−4B − 12B2 − 4B3 + 4UV + 12BUV + 4B2UV )x+

(2 + 10B + 10B2 + 2B3 − 6U − 14BU − 6B2U − 6V − 14BV − 6B2V + 2UV +

2BUV )x2 + (4 + 12B + 4B2 + 4U + 4BU + 4V + 4BV − 4UV )x3+

(−9− 9B + 3U + 3V )x4

B2(x) = (1 + 9B + 9B2 + B3 − 3U − 9BU − 3B2U − 3V − 9BV − 3B2V + 3UV + 3BUV )+

2 + 6B + 2B2 + 2U + 2BU + 2V + 2BV − 2UV )x + (−9− 9B + 3U + 3V )x2

B3(x) = (−3− 3B + U + V )

In order to solve our problem, we need to find the common zeroes (x, y), y > 0,
of the polynomials P1(x, y) and P2(x, y). We divide the arguments into the following
cases (1) V < 1, (2) V = 1 and U > −1 and (3) V = 1 and U = −1.

(1) Case V < 1. In this case we have no tangencies between the circles.

Lemma 2.1. If −V < U , then the zeroes of A0 (respectively, B0) are exactly 6
different real points. Moreover:

(i) there is one zero of A0 inside (−∞, U);
(ii) there is one zero of A0 inside (U, V );
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(iii) there is one zero of A0 inside (1, B);
(iv) there is one zero of A0 inside (B, +∞);
(v) there are two zeroes of B0 inside (−∞, U), which are separated by the zero

of A0;
(vi) there is one zero of B0 inside (U, V ) which is greater than the zero of A0 in

there;
(vii) there is one zero of B0 inside (1, B) which is greater than the zero of A0 in

there;
(viii) the other two zeroes of A0 are U and V ;
(ix) the other two zeroes of B0 are 1 and B.
In the case U = −V we have the same except that A0(x) has exactly 5 zeroes; it

has no zeroes in (B, +∞).

Proof. We have by direct inspection that

A0(U) = 0 = A0(V )

B0(1) = 0 = B0(B)

dA0

dx
(U) = (B2 − U2)(1− U2)(V − U)2 > 0

dA0

dx
(V ) = (V 2 −B2)(V 2 − 1)(V − U)2 > 0

dB0

dx
(1) = 4(B − 1)2(1 + B)(1− U)(V − 1) < 0

dB0

dx
(B) = 4(B − 1)2B(1 + B)(U −B)(B − V ) < 0

It follows that in the open interval (U, V ) we must have a zero of A0 with negative
derivative and in the interval (1, B) we must have a zero of B0 with positive derivative.

As
B0(U) = (U − 1)(U −B)(U2 − 1)(U2 −B2)(U − V ) < 0

B0(V ) = (U − V )(V − 1)(V −B)(B2 − V 2)(V 2 − 1) > 0
we obtain that inside the open interval (U, V ) we also have a zero of B0. Similarly, as
we have

A0(1) = (B − 1)(B + 1)(U − 1)2(V − 1)2 > 0

A0(B) = (1−B)B(1 + B)(B − U)2(B − V )2 < 0
we also have a zero of A0 in the open interval (1, B).

If −V < U , then as the coefficient of x6 of A0(x) is (U + V ) > 0 and A0(B) < 0,
we have a zero of A0 inside (B, +∞). As A0(−B) = B(B2− 1)(B + U)2(B + V )2 > 0
and A0(−1) = −(B2−1)(U +1)2(V +1)2 < 0, we must have a zero of A0 in (−B,−1).

The coefficient of x6 of B0 is (U+V −3−3B) < 0. As we have that B0(−1) = 4(B−
1)(1+B)2(1+U)(1+V ) > 0 and B0(−B) = −4(B−1)B2(1+B)2(B+U)(B+V ) < 0,
then in the interval (−B,−1) there is zero of B0. As Q2(U) < 0, we also have that
one zero of B0 is inside (−1, U).
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At this point we have essentially the desired result, except that we have said
nothing about the relation between the zeroes of A0 and B0 in the intervals (−B,−1),
(U, V ) and (1, B). We need to check that the zero of A0 in (−B,−1) (respectively, in
(1, B)) is greater than the zero of B0 in the same interval. Similarly, we need to check
that the zero of A0 in (U, V ) is smaller than the zero of B0 in the same interval. We
first observe that the zeroes of A0(x) and B0(x) are disjoint. In fact, the condition
A0(x) = 0 asserts that

U ∈
{

x,
B2V − 2B2x + x3 + B2x3 − V x4

−B2 + V x + B2V x− 2V x3 + x4

}
.

Any of the two cases obligates to have B0(V ) = 0, a contradiction. By direct
computation of the zeroes of A0 and B0 for particular values of U , V and B together
the previous fact and continuity arguments we obtain the inequality desired part.

¤

Let us denote the real zeroes of A0(x) by a1,..., a6 and the real zeroes of B0 by
b1,..., b6, so that

−B < a1 < b1 < −1 < a2 < b2 < b3 < a3 < b4 < a4 < a5 < b5 < a6 < b6 6 +∞
b2 = U, b4 = V, a4 = 1, a6 = B

We call each component of zeroes of Pj an oval of Pj . Observe that both polyno-
mials have a central oval; the one that separates the other two ovals.

(1.1) Case −V < U . As A3(x) = U + V > 0 and B3(x) = −3− 3B + U + V < 0,
we may consider the polynomials in x ∈ R and w ∈ [0, +∞) given by

Q1(x, w) = P1(x, +
√

w)/A3(x) = w3 +
A2(x)

A3(x)
w2 +

A1(x)

A3(x)
w +

A0(x)

A3(x)

Q2(x, w) = P2(x, +
√

w)/B3(x) = w3 +
B2(x)

B3(x)
w2 +

B1(x)

B3(x)
w +

B0(x)

B3(x)

We have that if Pj(x, y) = 0 for some (x, y) ∈ R2, then we have Qj(x,w) = 0 for
(x,w = y2) ∈ R × [0,+∞). A suitable study of the above polynomials of degree 3 in
the positive variable w permits us to obtain the following fact.

Lemma 2.2. The locus of zeroes of both P1(x, y) and P2(x, y) are as described
in figure 1.

In this way, we have exactly 4 geometric centers. The common zero of both
polynomials given by the intersection of the the two central ovals corresponds to the
main geometric center.

Example 2.1. We have the following examples:
(i) If we set U = −0.4, V = 0.5 and B = 10, then the 4 points in upper-half plane

of theorem 2.1 are given by: 0.705127 + 0.307764i, −0.631108 + 0.352922i,
0.0783451 + 1.30366i and 0.155614 + 7.65529i.
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b5
U V b6B−B b1 −1 b3 1

a1

a3

locus of fixed point P1

locus of fixed points of P2

a2 a5

Figure 1. −1 < −V < U < V < 1: No tangencies and non-symmetric

(ii) If we set U = −0.5, V = 0.5 and B = 10, then the 2 points in upper-half
plane of theorem 2.1 are given by: 7.65687i and 1.30602i.

(1.2) Case U = −V . As A3(x) = 0 and B3(x) = −3 − 3B < 0, we may consider
the polynomials in x ∈ R and w ∈ [0, +∞) given by

Q1(x, w) = P1(x, +
√

w) = A2(x)w2 + A1(x)w + A0(x)

Q2(x, w) = P2(x, +
√

w)/B3(x) = w3 +
B2(x)

B3(x)
w2 +

B1(x)

B3(x)
w +

B0(x)

B3(x)

We have that if Pj(x, y) = 0 for some (x, y) ∈ R2, then we have Qj(x,w) = 0 for
(x,w = y2) ∈ R × [0,+∞). A suitable study of the above polynomials of degree 3 in
the positive variable w permits us to obtain the following fact.

Lemma 2.3. The locus of zeroes of both P1(x, y) and P2(x, y) are as described
in figure 2.

In this way, we have exactly 4 geometric centers. The common zero of both
polynomials given by the intersection of the the imaginary line (the central oval of P2)
with the central oval of P1 corresponds to the main geometric center.

(2) Case V = 1 and U > −1. In this case we have exactly one tangency,
A3(x) = 1 + U > 0 and B3(x) = −2− 3B + U < 0.

Lemma 2.4. The locus of zeroes of both P1(x, y) and P2(x, y) are as described
in figure 3.
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b5
U V B−B b1 −1 b3 1

a1

a3

locus of fixed point P1

locus of fixed points of P2

a2 a5

Figure 2. 0 < −U = V < 1: Non tangencies but symmetric

In this way, we have exactly 3 geometric centers. The common zero of both
polynomials given by the intersection of the the two central ovals corresponds to the
main geometric center.

(3) Case V = 1 and U = −1. In this case we have exactly two tangencies,
A3(x) = 0 and B3(x) = −3(1 + B) < 0.

Lemma 2.5. The locus of zeroes of both P1(x, y) and P2(x, y) are as described
in figure 4.

In this way, we have exactly 2 geometric centers. The common zero of both
polynomials given by the intersection of the the imaginary line (the central oval of P2)
with the central oval of P1 corresponds to the main geometric center.

¤

Remark 2.1. In the symmetrical case U = −V we have that the main geometric
center belongs to the same orthogonal circle (the imaginary line in our normalization)
as one of the other three geometric centers. But this is not true when U 6= −V .
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−1 U b6B−B b1 b3

a1

a3

locus of fixed point P1

locus of fixed points of P2

a2
1

Figure 3. V = 1, −1 < U < 1: One tangency

−1 B−B b1 b3

a1

a3

locus of fixed point P1

locus of fixed points of P2

1

Figure 4. −U = V = 1: Two tangencies
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C3

C1

C2

Figure 5

3. Classical Whittaker groups of rank 2

In this section we provide a family of classical Whittaker groups of rank 2 so that
they respective classical Schottky subgroups provide uniformization of all Riemann
surfaces of genus 2.

3.1. A geometrical construction. Let us consider the open set in R3 given by:

Q = {(θ1, θ2, θ3) ∈ R3 : 0 < θ1, θ2, θ3, θ1 + θ2 <
2π

3
, θ2 + θ3 <

2π

3
, θ3 + θ1 <

2π

3
}.

We have that Q is the interior of the convex hull of the points (0, 0, 0), (2π/3, 0, 0),
(0, 2π/3, 0), (0, 0, 2π/3), (π/3, π/3, π/3). We draw circles on the Riemann sphere (see
figure 5), say C1, C2 and C3, each one orthogonal to the unit circle C0, and so that:

(i) C1 intersects the unit circle at the points e±iθ1 ;
(ii) C2 intersects the unit circle at the points e(2π/3±θ2)i; and
(iii) C3 intersects the unit circle at the points e(4π/3±θ3)i.

Remark 3.1. The triples (θ1, θ2, θ3) ∈ Q should in particular satisfy that θ1 +
θ2 + θ3 < π. Also, one of the circles Cj may contain ∞, that is, to be the union of
∞ with an Euclidian line that containing 0. For instance, if θ1 = π/2, then C1 is an
Euclidian line. The restrictions given in (∗) asserts that the circles C1, C2 and C3

form a non-separating triple as defined in section 2, in particular, they are mutually
disjoint and that they bound a common domain D of connectivity 3. If we have that
one of the Cj is an Euclidian line, then the other two are Euclidian circles. If for
instance θ1 ∈ (π/2, 2π/3), we have that all are Euclidian circles and C2 and C3 are
separated from ∞ by C1.

Now, for each j = 1, 2, 3, we consider two angles ηj,1, ηj,2 ∈ [0, 2π) so that ηj,1 6=
ηj,2. These two angles, for each fixed j, determines (in a natural way) two different
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points on the circle Cj and, in particular, a unique elliptic transformation of order
two, say Ej , that has them as fixed points. We have that Ej permuts the two discs
bounded by Cj . We set

K(θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2)

the group generated by these transformations E1, E2 and E3.

3.2. Parameter space. We denote by F the collection of tuples

w = (θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2)

so that (θ1, θ2, θ3) ∈ Q and ηj,1, ηj,2 ∈ [0, 2π) so that ηj,1 6= ηj,2.
Similarly, for fixed values η1,1, η1,2, η2,1, η2,2, η3,1, η3,2, we denote by F(η1,1,η1,2,η2,1,η2,2,η3,1,η3,2)

the corresponding subfamily of F. It is not hard to see that each of these subfamilies
is a copy of Q and that they are all disjoint.

The following fact is easy to see from the construction.

Theorem 3.1. If w ∈ F, then the group K(w) is a classical Whittaker group of
rank 2.

If we have w ∈ F, then we have the classical Whittaker group of rank 2 K(w) =
〈E1, E2, E3〉. The group K(w) has unique index two torsion free subgroup G(w). It
is not hard to see that G(w) is a classical Schottky group of rank 2 generated by the
loxodromic transformations A1 = E1E2 and A2 = E1E3. Each one of the elliptics
involutions Ej induces the hyperelliptic involution on the uniformized surface S by
the Schottky group G(w). The set of the fixed points of E1, E2 and E3 project onto
the 6 fixed points of the hyperelliptic involution.

Conjecture 3.1. Given any genus two Riemann surface S which can be uni-
formized by a classical Schottky group, there is some w ∈ F so that, if Ω is the region of
discontinuity of K(w) (the same as for G(w)), then S = Ω/G(w) and S/〈j〉 = Ω/K(w),
where j : S → S denotes the hyperelliptic involuition.

The following Conjecture is part of the general one, due to L. Bers, saying that
every closed Riemann surface may be uniformized by a classical Schottky group.

Conjecture 3.2. Given any genus two Riemann surface S, there is some tuple
w ∈ F so that, if Ω is the region of discontinuity of K(w) (the same as for G(w)),
then S = Ω/G(w) and S/〈j〉 = Ω/K(w), where j : S → S denotes the hyperelliptic
involuition.

Remark 3.2.

(i) The parameter space F depends on 9 real parameters, but the moduli space
of genus 2 Riemann surfaces depends only on 6.
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(ii) The group of permutations on three letters S3 acts naturally on F as follows.
The cyclic permutation (1 2 3) acts by the rule

(θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2) 7→ (θ2, θ3, θ1, η2,1, η2,2, η3,1, η3,2, η1,1, η1,2)

and the involution (1 2) acts by the rule

(θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2) 7→ (θ2, θ1, θ3, η2,1, η2,2, η1,1, η1,2, η3,1, η3,2)

(iii) The collection of subfamilies F(η1,1,η1,2,η2,1,η2,2,η3,1,η3,2) is kept invariant un-
der the previous action of S3. Of course, some of them have non-trivial
stabilizers.

(iv) It is not clear the relations must have two tuples w, w′ ∈ F in order for G(w)
and G(w′) to produce isomorphic Riemann surfaces.

4. Real curves

In order for a tuple

w = (θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2) ∈ F

to determine a real Whitaker group, we need to have that, for each j = 1, 2, 3, both
fixed points of Ej be either on the unit circle or on the same ray from 0. In this way,
we have the following cases:

(1) (η1,1, η1,2) ∈ {(0, π), (π/2 + θ1, 3π/2− θ1)};
(2) (η2,1, η2,2) ∈ {(2π/3, 5π/3), (7π/6 + θ2, 13π/6− θ2)};
(3) (η3,1, η3,2) ∈ {(π/3, 4π/3), (5π/6− θ3, θ3 − π/6)}.

In this way, we obtain 8 different subfamilies in F as above. Up to the natural
action of S3, as described in Remark 3.2, we obtain only 4 different classes of such
families; they describe exactly the 4 different possible actions of a reflection in genus
2. Two of these (classes of) subfamilies are invariant under the action of S3 (one
corresponds to M-real actions and the other to the case when the reflection as one
diving oval) and the other two are only invariant under the action of a Z2 (they
correspond to the other two actions). In Section 5.2 we describe the action of S3 on
the subfamily corresponding to M-real curves.

4.1. M-real curve’s case. We next proceed to describe some basics facts for
one of the subfamilies, M-real curves, but it may be written (with the suitable mod-
ifications) for all other cases. The subfamily providing the M-real situation is given
by

F(π/2+θ1,3π/2−θ1,7π/6+θ2,13π/6−θ2,5π/6−θ3,θ3−π/6)

which we denote by short as F(3,0). The next, which provides some of the properties
of these M-type groups, is not hard to check from the construction.

Theorem 4.1. Let w ∈ F(3,0) and denote by τj the reflection on the circle Cj ,
for j = 0, 1, 2, 3. Then (see figure 6),

(1) K(w) = 〈E1 = τ0τ1, E2 = τ0τ2, E3 = τ0τ3〉;
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E3
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C3

A1

A2

E1

E2

Figure 6

(2) G(w) = 〈A1 = τ1τ2, A2 = τ1τ3〉;
(3) Ek is an elliptic transformation of order 2 keeping invariant the unit circle

which permutes both discs bounded by the unit circle, for k = 1, 2, 3; and
(4) the reflection τ0 induces on S = Ω(G(w))/G(w) a reflection τ with exactly 3

ovals, that is, we have that (S, τ) is a M-real curve of genus 2.

Theorem 4.2. If (S, τ) is a M-real curve of genus two, then there exists w ∈ F(3,0)

so that S is uniformized by the Schottky group G(w) and τ is induced by τ0.

Proof. As a consequence of the above construction, quasiconformal deformation
theory and the fact that the set of fixed points of reflections on the Riemann sphere
are circles, we have that every M-real curve can be uniformized by the index two
orientation preserving half (a Schottky group) of an extended Kleinian group generated
by the reflections on a triple of non-separating disjoint circles bounding a common
domain. As a consequence of the results of section 2, any such a collection of three
circles has a common orthogonal circle which, up to a Möbius transformation, we may
assume to be the unit circle C0. Let us consider the main geometric center (inside the
unit disc) of such a triple which, up to a conformal automorphism of the unit disc,
can be assume to be 0. Now, the (transformed) circles satisfy the needed conditions
(i), (ii) and (iii) for a suitable triple in Q.

¤

5. Algebraic-Schottky description

5.1. Burnside’s arguments. Let us consider a tuple

w = (θ1, θ2, θ3, η1,1, η1,2, η2,1, η2,2, η3,1, η3,2) ∈ F
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the Whittaker group K(w) and its Schottky subgroup G(w). We denote by Ω the
region of discontinuity of these two groups and denote by S = Ω/G(w) the uniformized
Riemann surface by G(w). We have the following convergence fact due to Burnside.

Theorem 5.1 (Burnside [4]). The serie
∑

γ∈G(w)

γ′(z)

converges locally uniformly on the region of discontinuity to a meromorphic function.
The poles of such a function are exactly at the points in C which are G(w)-equivalent
to ∞ and they are all of order 2.

As a consequence of the above, we have the holomorphic forms




w1(z) =
1

2πi

∑
γ∈G(w)

(
γ′(z)

γ(z)−A−1
1 (∞)

)
dz,

w2(z) =
1

2πi

∑
γ∈G(w)

(
γ′(z)

γ(z)−A−1
2 (∞)

)
dz.

and, in particular, we have the following holomorphic map Φ : Ω → C defined by

Φ(z) =

∑
γ∈G(w)

(
γ′(z)

γ(z)−A−1
1 (∞)

)

∑
γ∈G(w)

(
γ′(z)

γ(z)−A−1
2 (∞)

) .

If we give to the circle Cj (for j = 2, 3) the counterclockwise orientation, then we
have that ∫

Ck

wr =
{

1, for k = r + 1;
0, otherwise.

If we denote by αk ⊂ S the projection of the circle Ck+1 (for k = 1, 2), and we
denote by β∗1 (respectively, β∗2) the projection of a simple arc inside the region bounded
by the circles C1, C2 and C3 that connects one of the fixed of E2 (respectively, one of
the fixed points of E3) to one fixed point of E1, both of them disjoint (in particular,
each one ends at a different fixed point of E1).

Remark 5.1. In the case w ∈ F(3,0), we may choose β∗1 (respectively, β∗2) the
projection of the arc of the unit circle with arguments between θ1 and 2π/3 − θ2

(respectively, the projection of the arc of the unit circle with arguments between
4π/3 + θ3 and 2π − θ1).

We have a canonical homology basis for S given by

{α1, α2, β1 = β∗1 ∪ τ(β∗1), β2 = β∗2 ∪ τ(β∗2)}.
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The projection of w1 and w2 on S are respectively the holomorphic differentials
ω1 and ω2 so that ∫

αk

ωr =
{

1, for k = r;
0, otherwise.

In this way, the holomorphic map

Φ : Ω → Ĉ : z 7→ Φ(z) = x

is a lifting to Ω of the two-fold branched covering φ : S → Ĉ induced by the hyperel-
liptic involution. If we compose at the left of Φ by the Möbius transformation

U(x) =
(x− Φ(e−iθ1))(Φ(eiθ1)− Φ(ei(4π/3+θ3)))
(x− Φ(ei(4π/3+θ3)))(Φ(eiθ1)− Φ(e−θ1))

,

we obtain the map T : Ω → Ĉ defined by

T (z) =
(Φ(z)− Φ(e−iθ1))(Φ(eiθ1)− Φ(ei(4π/3+θ3)))
(Φ(z)− Φ(ei(4π/3+θ3)))(Φ(eiθ1)− Φ(e−θ1))

.

The fixed points of Ej , for j = 1, 2, 3, which correspond to the six fixed points of
the hyperelliptic involution, are send under T to the points T (e−iθ1) = 0, T (eiθ1) = 1,
T (e(2π/3−θ2)i) = a, T (e(2π/3+θ2)i) = b, T (e(4π/3−θ3)i) = c and T (e(4π/3+θ3)i) = ∞.

Remark 5.2. In the M-real type situation, that is w ∈ F(3,0), we observe that
the reflection τ keeps invariant (and does not change the orientations) of the loops β1

and β2, and keeps invariant (but changes the orientation) of the loops α1 and α2. It
follows that at the level of holomorphic forms the action of τ is given by




τ(ω1) = −ω1,

τ(ω2) = −ω2.

The above asserts that under the projection T : Ω → Ĉ, the reflection τ0 induces
the reflection on the real line, in particular, we have a, b, c ∈ R and, moreover, 1 <
a < b < c.

The above permits to obtain the following.

Theorem 5.2. The Riemann surface uniformized by the classical Schottky group
G(w), where w ∈ F, is represented by the algebraic curve

y2 = x(x− 1)(x− a)(x− b)(x− c),

where a, b, c ∈ C− {0, 1} are so that

a = T (e(2π/3−θ2)i), b = T (e(2π/3+θ2)i), c = T (e(4π/3−θ3)i).

In the M-real case, that is w ∈ F(3,0), we have

a, b, c ∈ R
1 < a = T (e(2π/3−θ2)i) < b = T (e(2π/3+θ2)i) < c = T (e(4π/3−θ3)i) < +∞
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5.2. Some remarks: M-real case. Let us set

P = {(a, b, c) ∈ R3 : 1 < a < b < c}.
The general theory (see for instance [6, 23]) asserts that for every M-real curve

of genus two there is at least one triple (a, b, c) ∈ P so that is is given algebraically by

y2 = x(x− 1)(x− a)(x− b)(x− c).

It is also known that two triples (a, b, c), (â, b̂, ĉ) ∈ P define real isomorphic M-real
curves if and only if there is a Möbius transformation A ∈ PGL(2,R) so that

A({0, 1, a, b, c,∞}) = {0, 1, â, b̂, ĉ,∞},
in other words, if they define the same orbit under the group D6 = 〈α, β〉, where

α(a, b, c) =
(

c

b
,
c− 1
b− 1

,
c− a

b− a

)

β(a, b, c) =
(

a,
a(c− 1)
c− a

,
a(b− 1)
b− a

)

The fixed points by α are also fixed points of β. These corresponds to the real
algebraic curves of type (2, 3, 0) having the dihedral group D6 as group of real au-
tomorphisms. The map α and β are induced, respectively, by the following Möbius
transformations

α′(z) =
a(z − 1)
z − a

, and β′(z) =
z − c

z − b
.

On the other hand, theorem 4.2 gives us a real analytic map

Ψ : Q → P : (θ1, θ2, θ3) 7→ (a, b, c),

so that for each triple p = (a, b, c) ∈ P there is a triple θ = (θ1, θ2, θ3) so that
Ψ(θ) is equivalent to p under the dihedral group D6. In this way, the M-real curve
determined by the triple (a, b, c) is uniformized by G(θ1, θ2, θ2). Theorem 5.2 gives
us transcendental relations between both triples (a, b, c) and (θ1, θ2, θ3). This gives
explicit transcendental relations between the triples in Q defining real isomorphic
M-real curves.

6. Numerical implementation

In this section we provide the numerical implementation of the previous process.

6.1. Obtaining an algebraic curve. Let us consider a tuple w ∈ F. We denote
by pj,i the point in Cj determined by the angle ηj,i.

We denote by Gm(w) the subset of G(w) formed by all reduced words (in A1

and A2) of length at most m. We now consider Φm in similar fashion as Φ, but the
summands are done over Gm(w) instead of G(w). Then we consider Tm : Ω → Ĉ
defined as

Tm(z) =
(Φm(z)− Φm(p1,2))(Φm(p1,1)− Φm(p3,2))
(Φm(z)− Φm(p3,2))(Φm(p1,1)− Φm(p1,2))

.
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Remark 6.1. In the case w ∈ F(3,0) we use p1,1 = eiθ1 p1,2 = e−iθ1 and p3,2 =
ei(4π/3+θ3).

We consider the values:



am = Tm(e(2π/3−θ2)i),

bm = Tm(e(2π/3+θ2)i),

cm = Tm(e(4π/3−θ3)i),

and we may then obtain as an approximation curve the following one:

y2 = P (x) = x(x− 1)(x− am)(x− bm)(x− cm).

Remark 6.2. The numerical program permits also to draw the image of the
three circles C1, C2 and C3 under Tm. We have observed that their images still arcs
of circle, say N1, N2 and N3 respectively. Moreover, if we denote by Mj the circle
determined by Nj we obtain that Mj∩Nk = ∅ for j 6= k. We conjecture that this holds
always. Reciprocally, given any three different points a, b, c ∈ C − {0, 1} we are able
to draw three circles M1, M2 and M3, each one containing only two points of the set
{0, 1,∞, a, b, c}, so that on each of the Mj we may choose an arc Nj , determined by the
two points, with the property that Mj ∩Nk = ∅ for j 6= k. This observation, together
with quasiconformal deformation theory, permits to see that for every Riemann surface
S of genus 2 there is a parameter w ∈ F so that S = Ω(G(w))/G(w).

6.2. Computing a Riemann period matrix: M-real case. Once we have
the approximated curve as in the previous section, we may easily compute numerically
a Riemann period matrix for it (see figure 7). There are already implemented packages
in Maple and Mathematica which permits this. We describe a process for the M-real
case, which may be adapted for the general case, we have used in our program. Assume
we have obtained the M-real algebraic curve

y2 = x(x− 1)(x− a)(x− b)(x− c),

where 1 < a < b < c. Let us consider first the base of holomorphic forms

Θ1 =
dx√
P (x)

, Θ2 =
xdx√
P (x)

.

We have that
ωj = s1jΘ1 + s2jΘ2, j = 1, 2.

As we should have that ∫

αj

ωk =
{

1, k = j
0, k 6= j,

we have {
s11L11 + s21L21 =

−1
2

s11L12 + s21L22 = 0
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Figure 7

{
s12L11 + s22L21 = 0

s12L12 + s22L22 =
−1
2

where 



L11 =
∫ b

a
Θ1, L12 =

∫ +∞
c

Θ1,

L21 =
∫ b

a
Θ2, L22 =

∫ +∞
c

Θ2.

Once we have the values of sij , we have obtained the differentials ω1 and ω2. In
this way we may obtain a Riemann period matrix

Z =
[

t11 t12
t12 t22

]
,

where 



t11 = 2
(
s11

∫ a

1
Θ1 + s21

∫ a

1
Θ2

)
,

t12 = 2
(
s12

∫ a

1
Θ1 + s22

∫ a

1
Θ2

)
,

t22 = 2
(
s12

∫ 0

−∞Θ1 + s22

∫ 0

∞Θ2

)
.

6.3. Computing the accesory parameters. To the holomorphic branched
covering T : Ω → Ĉ we have associated the second order Fuchsian differential equation

w′′(x) +
1
2
{T−1, x}w(x) = 0,
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where

{T−1, x} =
(T−1)′′′(x)
(T−1)′(x)

− 3
2

(
(T−1)′′(x)
(T−1)′(x)

)2

is the Schwarzian derivative of T−1 respect to x = T (z). Usual computations asserts
that

{T−1, x} =
3

8

„
1

x2
+

1

(x− 1)2
+

1

(x− a)2
+

1

(x− b)2
+

1

(x− c)2
−

− 4x3 + c2x
2 + c1x + c0

x(x− 1)(x− a)(x− b)(x− c)

«
,

where a, b and c are as in theorem 5.2. The values c0, c1 and c2 are classically known as
the accesory parameters associated to the branch covering T : Ω → Ĉ. See for instance
[18] for some details on these accesory parameters. As for any Möbius transformation
A we have that {A, x} = 0, we get the equality

{T−1, x} = − {T, z}
(T ′(z))2

,

where T (z) = x. Since we have a numerical approximation Tm for T (as described
above), we may compute

− {Tm, z}
(T ′m(z))2

,

obtaining an approximation of {T−1, x} and, in particular, approximations of the
accesory parameters.

6.4. Some symmetrical cases of M-real curves. We consider a tuple w ∈
F(3,0).

6.4.1. First symmetrical situation. If we choose the values θ2 = θ3 in our construc-
tion of section 3, then we have that the reflection on the real line, say τ4, normalizes
G(w). This extra reflection induces a reflection on the uniformized surface S. Under
the projection T : Ω → Ĉ this reflection induces a reflection σ satisfying the following:

σ(0) = 1, σ(a) = ∞, σ(b) = c.

It follows that

σ(z) =
a(z − 1)
z − a

,

and
1 < a < b < c +

√
a(a− 1),

c =
a(b− 1)
b− a

.

In particular, in this case we have that the algebraic curve is given by:

y2 = x(x− 1)(x− a)(x− b)
(

x− a(b− 1)
b− a

)
.



CLASSICAL SCHOTTKY UNIFORMIZATIONS 89

In our homology basis we have that the action of σ is the following:{
α1 7→ −α2

β1 7→ β2

In particular, the extended symplectic representation of η is given by the matrix


0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0




If

Z =
[

t11 t12
t12 t22

]

denotes the Riemann period matrix of S in such a canonical homology basis, then we
have that σ should fix it, that is,

Z = −A−1ZA,

where

A =
[

0 1
1 0

]
∈ H2

It follows that
t22 = −t11, t12 ∈ iR.

6.4.2. Second symmetrical situation. If we now choose the values θ1 = θ2 = θ3 in
our construction of section 3, then we have that the reflection on the real line, say τ4,
and the reflection on the line through 0 and e2π/3, say τ5 both normalize G(w). This
two extra reflections induce on S the reflections σ (as above) and a new one, say η, so
that ση has order 3. As above, under T : Ω → Ĉ we have that

σ(z) =
a(z − 1)
z − a

,

and
1 < a < b < a +

√
a(a− 1),

c =
a(b− 1)
b− a

.

We also have that

η(0) = ∞, η(a) = b, η(1) = c.

It follows that:
η(z) =

ab

z
x3 = ab.

All the above gives us:

b =
1 + a +

√
(1 + a)2 − 4
2

,

c = a
1 + a +

√
(1 + a)2 − 4
2

.
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In particular, the algebraic curve is given by:

y2 = x(x− 1)(x− a)

 
x− 1 + a +

p
(1 + a)2 − 4

2

! 
x− a

1 + a +
p

(1 + a)2 − 4

2

!
.

In our homology basis we have that the action of η is the following:




α1 7→ −α1

α2 7→ α1 + α2

β1 7→ β1 − β2

β2 7→ −β2

In particular, the extended symplectic representation of σ is given by the matrix



−1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 −1




By the previous case we have that the Riemann period matrix of S in such a
canonical homology basis has the form

Z =
[

u iv
iv −u

]
, v ∈ R.

We have that η should fix it, that is,

Z = −BZ tB,

where

B =
[ −1 0

1 1

]
∈ H2

It follows that

Z = ix

[
2 −1

−1 2

]
, x ∈ (0, +∞).

Remark 6.3. The class of M-real curves described in the second case corresponds
to those with maximal group of automorphisms commuting with a M-reflection. Such
a group is generated by the hyperelliptic involution and the reflections τ , ω and η,
and it has order 24.

6.5. An Example. In mathematica [25] we call the package by the command
In[1]:=<<Schottky‘RealSchottky‘

To execute the package for a concrete example of angles

θ1 = θ2 = θ3 = 0.275384001 =
52 · 1163543

24 · 3 · 432 · 3739
π,

and n = 6, we call the command
In[2]:=RealSchottky[0.275384001, 0.275384001, 0.275384001, 6]
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The program will print out generators of the Schottky group:

A1[z] =
(−1.55873− 0.899934i) + (0.039921− 1.8012i)z

(−1.57984− 0.866025i)− (0. + 1.79987i)z

A2[z] =
(−1.55873 + 0.899934i) + (0.039921 + 1.8012i)z

(−1.57984 + 0.866025i) + (0. + 1.79987i)z
two bi-rationally equivalent real curves

y2 = 8.999961x− 22.4999x2 + 19.9999x3 − 7.49999x4 + x5 =

x(x− 1)(x− 1.49777)(x− 1.99999)(x− 2.99998)

w2 = (−0.500001− 0.86602i + u)(−0.499999 + 0.866026i + u)

(1.− 1.4088× 10−6i + u)(u3 − 1)
and a Riemann period matrix

Z =
[

1.1546995388533579i −0.5773497684485667i
−0.5773497684485667i 1.1546995388533579i

]
∼=

[
2i/
√

3 −i/
√

3
−i/

√
3 2i/

√
3

]
.

One of the famous M-real curves of genus two is Bolza’s curve

y2 = x(x− 1)(x− 1.5)(x− 2)(x− 3),

which corresponds to the unique (conformal class) of Riemann surfaces of genus two
with maximal automorphisms group. We may then see that the Schottky group

G

(
52 · 1163543

24 · 3 · 432 · 3739
π,

52 · 1163543
24 · 3 · 432 · 3739

π,
52 · 1163543

24 · 3 · 432 · 3739
π

)

seems to be a good approximation Schottky uniformizing group of Bolza’s curve.

6.6. M-real curves of higher genera. A for real Schottky groups of genus
g > 3 the number of reduced words of length at most m is 2g · (2g−1)m−1, we see that
the above procedure is computationally very expensive for m > 2. We may consider
other approaches as follows in order to get higher genus computation. For instance,
every M-real curve S2 of genus two

y2 = x(x− 1)(x− a)(x− b)(x− c), 1 < a < b < c,

has as a double unbranched cover a M-real curve of genus three S3 of the form

w2 = (u2 − 1)(u2 − α2)(u2 − β2)(u2 − γ2), 1 < α < β < γ,

where the two-fold cover is given by

Q(u) = u2.

This double cover is given by cutting S2 along the oval corresponding to the
projection of the circle C3. If G(w) = 〈A1, A2〉, where w ∈ F(3,0), is the real Schottky
group that uniformizes S2, then the real Schottky group G3(w) = 〈A1, A

2
2, A2A1A

−1
2 〉

uniformizes S3.
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7. Connection to partial differential equations

One of the interests of M-curves is related to the theory of finite-gap integration
developed by Novikov, Dubrovin, Matveev, It·s and others. Let us consider a M-curve
(S, τ) and p0 ∈ S a real point (that is, a fixed point of τ). If we choose a canonical
homology basis of S, say

{α1, ..., αg, β1, ..., βg}
and a basis of holomorphic one-forms

{ω1, ..., ωg}
so that ∫

αj

ωk = δjk,

then the associated Riemann period matrix is given by Z = (zjk), where

zjk =
∫

βj

ωk.

If Z is a symmetric matrix with positive imaginary part, such a Riemann period
matrix, then its theta function is defined by

θ(z; Z) =
∑

m∈Zg

exp{π(i〈Zm,m〉+ 2〈z,m〉)}.

Near the point p0 we choose a local coordinate z so that z(p0) = 0. In this
coordinate ωj = fj(z)dz, for each j = 1, ..., g. Set

uj = 2πifj(0), vj = 2πif ′j(0), wj = πif ′′j (0),

and the vectors

U = (u1, ..., ug), V = (v1, ..., vg), W = (w1, ..., wg) ∈ Cg.

Let η be the unique meromorphic one-form which is holomorphic in S − {p0} so
that ∫

αj

η = 0, for every j = 1, .., g,

and so that has pole of order 2 at p0. In the above local coordinate η looks like

η =
(−1

z2
− a0 + a1z + · · ·

)
dz

For each vector D ∈ Cg, I.M. Krichever proved in [19] that

u(x, y, t) = 2
∂2

∂x2
ln θ

(
Ux + V y + Wt + D

2πi
; Z

)
+ 2a0,

gives all the real nonsingular finite-gap solutions of the Kadomtsev-Petviashvili equa-
tion [7]

(KP )
3
4
uyy =

∂

∂x

(
ut − 1

4
(6uux + uxxx)

)
.
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If, moreover, S is hyperelliptic and p0 is a fixed point of the hyperelliptic involu-
tion, then V = 0 [13] and u turns out to be a real nonsingular finite-gap solution of
the Korteweg-de Vries equation

(KdV ) 4ut = 6uux + uxxx.

If we consider a real Schottky group G(w), where w ∈ F(3,0), uniformizing a M-
real curve (S, τ), then all the above data, by the exception of a0, needed to obtain
the above finite-gap solution u(x, y, t) can be obtained from the previous numerical
algorithm. It is a well known fact that

η =

(
−1
z2

−
∑

γ∈G−{I} γ′(1/z)

z2

)
dz,

from which we obtain
a0 =

∑

γ∈G(w)−{I}
c−2
γ ,

where

γ =
(

aγ bγ

cγ dγ

)
∈ SL(2,C)

As a consequence of the results of this note, we have then a numerical algorithm
which permits to obtain finite-gap solutions of genus two of the (KP ) equation (then
of the (KdV ) equation) (see also [3]).
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