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On the Surface Group Conjecture

B. Fine, O. G. Kharlampovich, A. G. Myasnikov,
V. N. Remeslennikov and G. Rosenberger

Abstract. We consider the following conjecture. Suppose that G is a non-free
non-cyclic one- relator group such that each subgroup of finite index is again a
one-relator group and each subgroup of infinite index is a free group. Must G be
a surface group? We show that if G is a freely indecomposable fully residually
free group and satisfies the property that every subgroup of infinite index is free
then G is either a cyclically pinched one-relator group or a conjugacy pinched
one-relator group. Further such a group G is either hyperbolic or free abelian of
rank 2.

1. Introduction

Let G be the fundamental group of a compact surface of genus g. Then G has a
one-relator presentation

< a1, b1, ..., ag, bg; [a1, b1]....[ag, bg] >

in the orientable case and
< a1, ....ag; a2

1...a
2
g >

in the non-orientable case. From covering space theory it follows that any subgroup
of finite index is again a surface group of higher genus while any subgroup of infinite
index must be a free group. These results, although known since the early 1900’s were
proved purely algebraically using Reidemeister-Schreier rewriting by Hoare,Karrass
and Solitar in 1971 [HKS 1,2]. It is well known (see [FR]) that an orientable surface
group can be faithfully represented as a discrete subgroup of PSL2(C) and hence each
such group is linear. It follows that surface groups are residually finite. G.Baumslag
[GB] showed that any orientable surface group of genus ≥ 2 must be residually free and
2-free from which it can be deduced using results of Remeslennikov [Re] and Gaglione
and Spellman [GS] that they are fully residually free (see section 2). The article [AFR]
surveys most of the properties of surface groups and shows how they are the primary
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motivating examples for much of combinatorial group theory.

In this paper we consider the surface group conjecture. In the Kourovka
notebook Melnikov proposed the following problem.

Conjecture 1.1. Surface Group Conjecture A Suppose that G is a residually
finite non-free, non-cyclic one-relator group such that every subgroup of finite index is
again a one-relator group. Then G is a surface group.

Since subgroups of infinite index in surface groups must be free groups this con-
jecture was modified to:

Conjecture 1.2. Surface Group Conjecture B Suppose that G is a non-free,
non-cyclic one-relator group such that every subgroup of finite index is again a one-
relator group and every subgroup of infinite index is a free group. Then G is a surface
group.

Using the structure theorem for fully residually free groups in terms of its JSJ
decomposition (see section 2) we can make some progress on these conjectures. We
say that a group G satisfies Property IF if every subgroup of infinite index is free.
Recall that the one-relator presentation for a surface group allows for a decomposition
as a cyclically pinched one-relator group in both the orientable and non-orientable
cases and as a conjugacy pinched one relator group in the orientable case (see section
3 and [FRS]). In particular we prove the following:

Theorem 1.1. Suppose that G is a finitely generated fully residually free group
with property IF. Then G is either a free group or a cyclically pinched one relator
group or a conjugacy pinched one relator group.

Corollary 1.1. Suppose that G is a finitely generated fully residually free group
with property IF. Then G is either free or every subgroup of finite index is freely
indecomposable and hence a one-relator group.

Further if the surface group conjecture is true then a group satisfying the condi-
tions of the conjecture must be hyperbolic or free abelian of rank 2. We then prove
the following:

Theorem 1.2. Let G be a finitely generated fully residually free group with prop-
erty IF. Then either G is hyperbolic or G is free abelian of rank 2.

In light of these results we give a modified version of the surface group conjecture.

Conjecture 1.3. Surface Group Conjecture C Suppose that G is a finitely
generated nonfree freely indecomposable fully residually free group with property IF.
Then G is a surface group.

We then give some conditions under which Surface Group Conjecture C is true.

Finally we note that although here we concentrate on Property IF there has been
some evidence for the Surface Group Conjecture based on the subgroups of finite
index. Note that an orientable surface group of genus g ≥ 2 with the presentation

G =< a1, b1, ..., ag, bg; [a1, b1]....[ag, bg] >
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also has a presentation

G =< x1, ..., xn; x1...xnx−1
1 ...x−1

n = 1 >

with n even. P. M. Curran [C] has proved the following.

Theorem 1.3. Let G be a one-relator group with the presentation

G =< x1, ..., xn; xν1
1 ...xνn

n x−ν1
1 ...x−νn

n = 1 > .

Then, if n is odd, there exist normal subgroups of finite index which do not have
one-relator presentations. In particular if

G =< x1, ..., xn; x1...xnx−1
1 ...x−1

n = 1 >

then every subgroup of finite index is again a one-relator group if and only if n is even
and hence a surface group.

2. Fully Residually Free Groups

Our results depend on the properties of fully residually free groups. A group G
is fully residually free if given finitely many nontrivial elements g1, ..., gn in G there
is a homomorphism φ : G → F , where F is a free group, such that φ(gi) 6= 1 for
all i = 1, ..., n. Fully residually free groups have played a crucial role in the study of
equations and first order formulas over free groups and in particular the solution of
the Tarski problem (see [KhM] and [Se 1-6]). Finitely generated fully residually free
groups are also known as limit groups. In this guise they were studied by Sela (see
[Se 1-6] and [BeF 2]) in terms of studying homomorphisms of general groups into free
groups.

A universal sentence in the language of group theory is a first order sentence using
only universal quantifiers (see [FGMRS]. The universal theory of a group G consists
of all universal sentences true in G. All free groups share the same universal theory.
A group G is called a universally free group if it shares the same universal theory as
the class of free groups. Since any universal sentence is equivalent to an existential
sentence the universally free groups have the same existential theory. Remeslennikov
calls the universally free groups ∃-free groups. Remeslennikov [Re] and independently
Gaglione and Spellman [GS] proved the following remarkable theorem.

Theorem 2.1 (Re,GS). Suppose G is residually free. Then the following are
equivalent:

(1) G is fully residually free
(2) G is commutative transitive
(3) G is universally free

From the linearity it is easy to see that orientable surface groups are commutative
transitive. A result of G. Baumslag [GB] shows that they are residually free and hence
we have

Theorem 2.2. An orientable surface group is fully residually free.
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The class of fully residually free groups coincides with the class of universally
free groups. From the solution of the Tarski problem all free groups share the same
elementary or first-order theory. An elementary free group is a group G which shares
the same elementary theory as the class of free groups. As an outgrowth of the solution
to the Tarski problem Kharlampovich and Myasnikov and independenly Sela have
completely characterized the elementary free groups. In particular, in the language of
Kharlampovich and Myasnikov, they are precisely the NTQ-groups - the coordinate
groups of regular NTQ-systems of equations over free groups. What is important here
is that an elementary free group must be universally free and hence fully residually
free. Therefore results proved about fully residually free groups apply to elementary
free groups.

Kharlampovich, Myasnikov, Remesslenikov, Sela and others have done extensive
work on describing both the subgroups and the subgroup structure of fully residually
free groups. We mention a few results that are relevant to our main result. The
following is a summary of several results:

Theorem 2.3. (see [KhM] and the references there) Let G be a finitely generated
fully residually free group. Then

(1) G can be embedded as a subgroup in the free exponential group FZ[t]

(2) G is finitely presentable
(3) G can be constructed in a systematic way starting with free groups and

abelian groups using free products with cyclic amalgamation and extensions of centra-
lizers.

The construction mentioned in the theorem leads to the existence of nontrivial
JSJ decompositions. This is crucial to our results.

JSJ-decompositions were introduced by Rips and Sela ([RiS]) and have played
a fundamental role in the study of both hyperbolic groups and fully residually free
groups. Roughly a JSJ-decomposition of a group G is a splitting of G as a graph of
groups with abelian edges which is canonical in that it encodes all other such abelian
splittings. If each edge is cyclic it is called a cyclic JSJ-decomposition. For a formal
definition we refer to [KhM]. There are also full discussions in [BeF 2] and the work
of Sela [Se 1-6]. The relevant fact for fully residually free groups is the following.

Theorem 2.4. (see [KhM]) (a) A finitely generated fully residually free group
which is indecomposable relative to JSJ-decompositions is either the fundamental group
of a closed surface, a free group or a free abelian group.

(b) A finitely generated fully residually free group admits a non-trivial cyclic
JSJ-decomposition if it is not abelian or a surface group.

3. Main Results

Recall that a surface group has a one-relator presentation

< a1, b1, ..., ag, bg; [a1, b1]....[ag, bg] >

in the orientable case and
< a1, ....ag; a2

1...a
2
g >
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in the non-orientable case. Orientable surface groups are fully residually free, resid-
ually finite and have the property that subgroups of finite index are again surface
groups while subgroups of infinite index are free groups.

A cyclically pinched one-relator group is a one-relator group of the following
form

G = < a1, ..., ap, ap+1, ..., an; U = V >

where 1 6= U = U(a1, ..., ap) is a cyclically reduced, non-primitive (not part of a free
basis) word in the free group F1 on a1, ..., ap and 1 6= V = V (ap+1, ..., an) is a cyclically
reduced, non-primitive word in the free group F2 on ap+1, ..., an.

Clearly such a group is the free product of the free groups on a1, ..., ap and
ap+1, ..., an respectively amalgamated over the cyclic subgroups generated by U and
V .

Consider the standard one-relator presentation for an orientable surface group of
genus g ≥ 2:

Sg =< a1, b1, ..., ag, bg; [a1, b1]...[ag, bg] = 1 > .

If we let U = [a1, b1]...[ag−1, bg−1], V = [ag, bg]−1 then Sg decomposes as the free
product of the free groups F1 on a1, b1, ...., ag1 , bg−1 and F2 on ag, bg amalgamated
over the maximal cyclic subgroups generated by U in F1 and V in F2. Hence these
are cyclically pinched one-relator groups. There is a similar decompositon in the
nonorientable case.

Cyclically pinched one-relator groups have been shown to be extremely similar to
surface groups. G.Baumslag [GB ] has shown that such a group is residually finite.
A group G is conjugacy separable if given elements g, h in G either g is conjugate
to h or there exists a finite quotient where they are not conjugate. J. Dyer [Dy] has
proved the conjugacy separability of cyclically pinched one-relator groups. Note that
conjugacy separability in turn implies residual finiteness. S. Lipschutz proved that
cyclically pinched one-relator groups have solvable conjugacy problem [Li]. P.Scott
[Sc] proved that surface groups are subgroup separable and then Brunner, Burns
and Solitar [BBS] showed that in general cyclically pinched one-relator groups are
subgroup separable. Cyclically pinched one-relator groups with neither U nor V (in the
presentation (2.1)) proper powers were shown to be linear by Wehrfritz [W] while using
a result of Shalen [Sh], Fine and Rosenberger (see [FR]) showed that such a cyclically
pinched one-relator group has a faithful representation in PSL2(C). If neither U
nor V is a proper power Juhasz and Rosenberger [JR], and independently Bestvinna
and Feign [BeF 1] and Kharlampovich and Myasnikov [KhM 4] have proved that
cyclically pinched one-relator groups are hyperbolic. Rosenberger [Ro], using Nielsen
cancellation, has given a positive solution to the isomorphism problem for cyclically
pinched one-relator groups, that is, he has given an algorithm to determine if an
arbitrary one-relator group is isomorphic or not to a given cyclically pinched one-
relator group.

The HNN analogs of cyclically pinched one-relator groups are called conjugacy
pinched one-relator groups and are also motivated by the structure of orientable
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surface groups. In particular suppose

Sg = < a1, b1, ..., ag, bg; [a1, b1]...[ag, bg] = 1 > .

Let bg = t then Sg is an HNN group of the form

Sg =< a1, b1, ..., ag, t; tUt−1 = V >

where U = ag and V = [a1, b1]...[ag−1, bg−1]ag. Generalizing this we say that a
conjugacy pinched one-relator group is a one-relator group of the form

G =< a1, ..., an, t; tUt−1 = V >

where 1 6= U = U(a1, ..., an) and 1 6= V = V (a1, ..., an) are cyclically reduced in the
free group F on a1, ..., an.

More information about both cyclically pinched one-relator groups and conjugacy
pinched one-relator groups is in [FR] or [FRS].

We say that a group G satisfies Property IF if every subgroup of infinite index
is free and we concentrate on this property in conjunction with the property of being
fully residually free.

Proposition 3.1. If a one-relator group has Property IF and is freely decompos-
able then its a free group. More generally if G is a finitely generated freely decomposable
fully residually free group with property IF. Then G is a free group.

Proof. Suppose that G is a one-relator group and is a free product. Then each
factor has infinite index and so is a free group and hence the whole group is a free
group. The same proof follows in general. ¤

Now we present the main results.

Theorem 3.1. Suppose that G is a finitely generated fully residually free group
with property IF. Then G is either a free group or a cyclically pinched one relator
group or a conjugacy pinched one relator group.

Proof. Suppose that G is a finitely generated fully residually free group. Then
if it is indecomposable relative to JSJ-decompositions it is either the fundamental
group of a closed surface, a free group or a free abelian group. The first two cases are
covered by the theorem. If is free abelian of rank > 2 then it cannot satisfy property
IF. Therefore if it is abelian it must be either infinite cyclic and hence free or free
abelian of rank 2. In this case G has the presentation

G =< x, y; [x, y] = 1 > =⇒ G =< x, y; xyx−1 = y >

and G can be considered as a conjugacy pinched one-relator group.
If G is not abelian or a surface group then from Theorem E, G admits a non-

trivial cyclic JSJ-decomposition. Let e be a a non-trivial edge with edge stabilizer Ge.
Collapse everything at one vertex into a single group G1 and everything at the other
vertex to a single group G2. That is G1 is the subgroup generated by all vertex groups
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on one side of the vertex e and G2 is the subgroup generated by all vertex groups on
the other side of e. If both collapse totally, that is both G1 and G2 are trivial, then
G is cyclic which is a contradiction. Hence we can assume that at least one of G1 and
G2 is nontrivial.

Suppose first that both G1 and G2 are non-trivial. Then G is a free product of
G1 and G2 with cyclic amalgamation along the edge e and hence along Ge. Since this
is a free product with amalgamation, both factors G1 and G2 have infinite index. By
assumption G satisfies property IF and hence both factors are free groups. Therefore
G is a free product with amalgamation of two free groups with a cyclic amalgamated
subgroup; i.e a cyclically pinched one-relator group or a free group.

Now suppose that G2 is trivial. Then G has a tree decomposition with a single
edge emanating from G1. Hence G is an HNN extension of G1 with cyclic associated
subgroups. As before from property IF, G1 must be a free group, and hence G in this
case is a conjugacy pinched one-relator group. ¤

Corollary 3.1. Suppose that G is a finitely generated fully residually free group
with property IF. Then G is either free or every subgroup of finite index is freely
indecomposable and hence a one-relator group.

Proof. From Theorem 3.1, G is either free or a cyclically pinched or conjugacy
pinched one-relator group. From Property IF it follows that G is torsion-free. Suppose
that H is a subgroup of finite index. H is then also finitely generated and fully
residually free. Since subgroups of infinite index in H also have infinite index in G
the subgroup H also satisfies property IF. If H is freely decomposable then from
Proposition 1 H is a free group. In this case G is a torsion-free finite extension of
H and hence G is also free. Therefore if G is not free then every subgroup of finite
index must be freely indecomposable. From Theorem 3.1 it follows then that every
subgroup of finite index must be a one-relator group. ¤

Surface groups of genus g ≥ 2 are hyperbolic. Hence if the surface group conjecture
were to be true then the resulting group must be hyperbolic unless the group were free
abelian of rank 2. We can consider a free abelian group as a surface group of genus
g = 1; i.e. G =< x, y; [x, y] = 1 >. We then have.

Theorem 3.2. Let G be a finitely generated fully residually free group with prop-
erty IF. Then either G is hyperbolic or G is free abelian of rank 2.

Proof. Suppose that G is a finitely generated fully residually free group with
property IF. Since free groups are hyperbolic we may assume that G is not free.
Therefore from Theorem 1 G is either a cyclically pinched one-relator group or a con-
jugacy pinched one-relator group.

Suppose first that G is cyclically pinched so that

G = < a1, ..., ap, ap+1, ..., an; U = V >

where 1 6= U = U(a1, ..., ap) is a cyclically reduced, non-primitive (not part of a free
basis) word in the free group F1 on a1, ..., ap and 1 6= V = V (ap+1, ..., an) is a cyclically
reduced, non-primitive word in the free group F2 on ap+1, ..., an. Suppose that U, V
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are both proper powers so that U = Um
1 and V = V k

1 with both m, k > 1 for some
non-trivial words U1, V1 in the free groups on the generators that U and V involve.
Therefore in G we have the relation Um

1 = V n
1 and further in G U1 and V1 do not

commute so that the commutator [U1, V1] 6= 1. Since G is fully residually free then
there is a homomorphism φ : G → F with F a free group with

φ(U1) 6= 1, φ(V1) 6= 1, φ([U1, V1]) = [φ(U1), φ(V1)] 6= 1.

But then we have a relation (φ(U1))m = (φ(V1)k between noncommuting elements
φ(U1), φ(V1) in a free group which is impossible. It follows than that under these con-
ditions not both U and V can be proper powers. From a result proved independently
by Kharlampovich and Myasnikov [KM], Juhasz and Rosenberger [JR] and Bestvinna
and Feighn [BeF] a cyclically pinched one-relator group with not both U, V proper
powers is hyperbolic completing the proof in the cyclically pinched case.

Now suppose that G is conjugacy pinched so that

G =< a1, ..., an, t; tUt−1 = V >

where 1 6= U = U(a1, ..., an) and 1 6= V = V (a1, ..., an) are cyclically reduced in the
free group F on a1, ..., an. Throughout the rest of the proof F will denote the free
group on a1, ..., an.

Suppose first that U and V are proper powers in the free group F so that
U = Um

1 , V = V k
1 with m, k ≥ 2 and both U1 and V1 are both not proper powers

in F . Then the commutator [tU1t
−1, v1] 6= 1 in G. Since G is fully residually free

there is then an homomorphism φ into a free group F1 with φ([tU1t
−1, v1] 6= 1 in

F1. However then there is a relation (φ(tu1t
−1))m = (φ(V1)k between noncommuting

elements φ(tU1t
−1) and φ(V1) in the free group F1 which is impossible. Hence either

m = 1 or k = 1. Without loss of generality we may assume then that k = 1 so that
V = V1 is not a proper power in F .

We claim that if G is fully residually free then either U and V are conjugately
separated in F or U = gV g−1 for some g ∈ F . In the latter case G must be free
abelian of rank 2. Recall that U, V are conjugately separated if no conjugate of
U intersects the cyclic subgroup < V >. Suppose that U and V are not conjugately
separated. Then there is an q 6= 1 with

g−1Ug = V q

for some element g ∈ F . Since t−1Ut = V in G this would imply that in G we have

t−1Uqt = V q and hence g−1Ug = t−1Umt.

Since G is fully residually free there is then a homomorphism φ of G into a free
group F1 with

φ(U) 6= 1, φ(g) 6= 1, φ(t) 6= 1, φ(gt−1) 6= 1

Then φ(U) would be conjugate to (φ(U))q in the free group F which is impossible if
|q| > 1.



ON THE SURFACE GROUP CONJECTURE 9

Therefore U, V are conjugately separated unless q = ±1. Hence if U and V are
not conjugately separated then U = gV εg−1 for some g ∈ F , ε = ±1 and U and V are
both not proper powers in F . Hence G has a presentation

G =< a1, ..., an, t; tUt−1 = V >

with U = gV εg−1 in F . Now we replace t by t1 = gt and hence G has a presentation

G =< a1, ..., an, t; tUt−1 = U ε >

where ε = ±1 and U is not a proper power in F .

Suppose first that ε = 1. Then G is the rank one extension of centralizers

G =< a1, ..., an, t; tUt−1 = U >

G then contains the free abelian group or rank 2, < t, U >. If U were not just a
single generator ai then < t, U > would have infinite index in G. But this is not free
contradicting property IF and therefore U = ai for some generator ai. Then G has
the form

G =< a1, ..., an, t; tait
−1 = ai >

This is just the free product of the free abelian group < ai, t > and the free group
on the remaining generators. The free abelian group would have infinite index if there
were any remaining generators contradicting property IF. Therefore if U and V are
not conjugately separated G is a free abelian group of rank 2.

Now suppose that ε = −1. Then G contains the subgroup

H =< t, U ; tUt−1 = U−1 > .

In this case G cannot be fully residually free.

Therefore either U and V are conjugately separated in F or G is free abelian
of rank 2. From a result of Gildenhuys, Kharlampovich and Myasnikov [GKM] a
nonabelian conjugacy pinched one-relator group where U, V are conjugately separated
is hyperbolic. Since a free abelian group of rank 2 is a fully residually free group
satisfying property IF this completes the proof. ¤

In the preceding results we assumed that G was fully residually free and used the
JSJ decomposition. However property IF will imply the finite index property if we
assume not the fully residually free property but that we start with a graph of groups
decomposition. In particular which get the following which gives further evidence
towards the full surface group conjecture;

Theorem 3.3. Let G be a nonfree cyclically pinched or conjugacy pinched one-
relator group with property IF. Then each subgroup of finite index is again a cyclically
pinched or conjugacy pinched one-relator group.
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Proof. We use the subgroup theorems for free products with amalgamation and
HNN groups as described by Karrass and Solitar. We need these in the following form:

Theorem 3.4. (see [KS 1]) Let G = G1 ∗A G2 be a non-trivial free product with
amalgamation. If H is a subgroup of G then H is an HNN group

H =< t1, ..., tn, .., S; rels S, t−1
1 S1t1 = f1(S1), .... >

whose base S is a tree product . Each vertex group in the base is a conjugate of G1∩H
or G2 ∩ H and each amalgamated subgroup is a conjugate of A intersected with H.
Further the associated subgroups {Si, fi(Si)}are also conjugates of A intersected with
H and each associated subgroup is contained in a vertex group.

An HNN group whose base is a tree product and where each associated subgroup
is a subgroup of a vertex group is called a treed HNN group. The above theorem
says that subgroups of free products with amalgamation are treed HNN groups.

Karrass and Solitar also explicitly describe the vertex groups, amalgamated sub-
groups and associated subgroups in terms of double coset representatives for H (see
[KS 1]).

The corresponding subgroup theorem for HNN groups states:

Theorem 3.5. Suppose G is an HNN group with a presentation

G =< t1, ..., tn, ..,K; rels K, t−1
i Liti = fi(Li), i = 1, ... > .

Then any subgroup H of G is a treed HNN group. Further the vertex groups of the
base of H are conjugates of the base K intersected with H while the amalgamated
subgroups in the base of H are conjugates of the Li intersected with H and the non-
trivial associated subgroups in H are conjugates of K or of the Li intersected with
H.

Now suppose that G is a cyclically pinched one relator group with property IF.
Then G can be expressed as the amalgamted free product

G = F1 →
U=V

?F2

where F1 and F2 are free groups.

Suppose that H is a subgroup of finite index in G. Then H is a treed HNN group
as described by Theorem F. The base group K is a tree which has vertices of the form

... ? {F ?
1 →

U=V
?F ?

2 } ? ....

where as described, F ?
1 and F ?

2 are conjugates of subgroups of F1 and F2 respectively.
Since F1 and F2 are free each of these are free groups. If H has no nontrivial vertex
of this form then the base K is a free group and the conjugations by the free part are
trivial. Hence H is a free group. But since it has finite index in G this would imply
that G were free contrary to assumption. Therefore the base K in H must have at
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least one nontrivial vertex of the form above. If the free part of H (free part as an
HNN extension) were nontrivial then the vertex subgroup

{F ?
1 →

U=V
?F ?

2 }
would have infinite index in G. But this is not free contradicting property IF. Therefore
the free part is empty. Similarly if there were more than one vertex of this type then
each vertex of this type would have infinite index again contradicting property IF. It
follows that H must consist of just one vertex of this type and therefore be a cyclically
pinched one-relator group or a conjugacy pinched one relator group.

The same type of analysis using Theorem G gives the result for conjugacy pinched
one-relator groups with property IF. This gives further credence to the surface group
conjecture since a surface group can be expressed as either a cyclically pinched one-
relator group or a conjugacy-pinched one-relator group. ¤

We mention further that the following is known. It appears in [KRW] but not
stated exactly in the same way.

Theorem 3.6. (see [KRW]) Suppose that G =< a1, ..., an; aα1
1 · · · aαn

n = 1 > with
n ≥ 2 and all αi ≥ 2. Then G has Property IF if and only if α1 = ... = αn = 2.

In light of these results we give a modified version of the surface group conjecture.

Conjecture 3.1. Surface group Conjecture C Suppose that G is a finitely
generated freely indecomposable fully residually free group with property IF. Then G is
a surface group.

We note that Surface group Conjecture C is true under either of the following two
conditions

(1) The original relator is strictly quadratic
(2) There is only one (QH) vertex in the JSJ decomposition for G

That is:

Theorem 3.7. Suppose that G is a nonfree finitely generated freely indecompos-
able fully residually free group with property IF. If either

(1) G is a one-relator group with a strictly quadratic relator
(2) there is only one (QH) vertex in the JSJ decomposition for G

then G is a surface group.

Proof. It is well known (see [LS]) that if a one-relator group has a strictly qua-
dratic relator then it is a free product of a free group and a surface group. If G is
freely indecomposable the result follows immediately.

A QH-vertex in the cyclic JSJ decomposition is described in the following way.

Let P be a group which admits one of the following presentations
(1) < p1, .., pm, a1, b1, ..., ag, bg;

∏m
k=1 pk

∏g
i=1[ai, bi] >

(2) < p1, .., pm, v1, ..., vg;
∏m

k=1 pk

∏g
i=1 v2

i > .
Suppose Γ(V, E) is a splitting of a group G as a graph of groups and suppose

P = Gv where v ∈ V . Then G is a QH-vertex if e1, ...en are the all edges with initial
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vertex v then α(ei) = pi where α is the boundary monomorphism taking Gei
into Gv.

QH stands for quadratically hanging. Notice that a QH-vertex is a free group and
geometrically is the fundamental group of a punctured surface.

If there is only one QH-vertex then after the collapse as described in the proof of
Theorem 1 the resulting relator must be strictly quadratic and the result follows; ¤

We close the paper by mentioning a somewhat related conjecture due to Bogopol-
ski. Recall the following theorem due to Magnus (see [LS] ) related to automorphisms
of one-relator groups.

Theorem 3.8. Suppose that R and S are elements of a free group which have the
same normal closure. Then R is conjugate to S±1.

Recently Bogopolski [B] ( and independently Jim Howie [H]) proved the same
result for one-relator quotients of surface groups. Bogopolski calls this the Magnus
Property. His conjecture is the following.

Conjecture 3.2. Let G be a torsion-free hyperbolic one-relator group with Prop-
erty IF. Then G satisfies the Magnus Property.
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