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A mapping theorem on g-metrizable spaces

Zhaowen Li1,a, Qingguo Li1

Abstract. In this paper, we give some mapping theorems on g-metrizable spaces

in terms of some sequence-covering mappings, σ-mappings and π-mappings.

1. Introduction and definitions

G-metrizable spaces constitute an important class of generalized metric spaces in
the metrization theory. In 1965, R.W.Heath[12] proved that a space is developable if
and only if it is an open π-image of a metric space. In 1969, J.A.Kofner[13] proved
that a space is a symmetric space satisfying weak cauchy condition if and only if it is
a quotient π-image of a metric space. In 1972, D.K.Burke[14] proved that a space is
semimetrizable if and only if it is a countably bi-quotient (or pseudo-open) π-image
of a metric space. In 1976, K.B.Lee[15] proved that every g-metrizable space is a
quotient π-image of a metric space. In this paper, the relationships between metric
spaces and g-metrizable spaces are established in terms of some sequence-covering
mappings, σ-mappings and π-mappings.

In this paper, all spaces are regular and T1, all mappings are continuous and
surjective. N denotes the set of all positive integers. ω denotes the set of all natural
numbers. For a family P of subsets of a space X and a mapping f : X → Y , let
f(P ) = {f(P ) : P ∈ P}. For two families A and B of subsets of X, let A ∧ B =
{A ∩ B : A ∈ A and B ∈ B}. For the usual product space

∏
i∈N

Xi, pi denotes the

projection from
∏

i∈N

Xi onto Xi.

Definition 1.1 Let f : X → Y be a mapping.
(1) f is said to be a σ-mapping[1] if there exists a base B for X such that f(B)

is a σ-locally finite family of subsets of Y .
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(2) f is said to be a strong sequence-covering mapping[6] if each convergent
sequence (including its limit point) of Y is the image of some convergent sequence
(including its limit point) of X.

(3) f is said to be a sequence-covering mapping[10] if each convergent sequence
(including its limit point) of Y is the image of some compact subset of X.

(4) f is said to be a π-mapping[7] if (X, d) is a metric space and for each y ∈ Y
and its open neighborhood V in Y , d(f−1(y),M r f−1(V )) > 0.

It is easy to check that compact mappings on metric spaces are π-mappings.

Definition 1.2 Let P be a cover of a space X.
(1) P is said to be a k-network[8] for X if for each compact subset K of X and

its open neighborhood V , there exists a finite subfamily P ′ of P such that K ⊂ ∪
P ′ ⊂ V .

(2) P is said to be a cs-network for X if for each x ∈ X, its open neighborhood
and a sequence {xn} converging to x, there exists P ∈ P such that {xn : n > m}∪{x}
⊂ P ⊂ V for some m ∈ N .

(3) P is said to be a cs∗-network for X if for each x ∈ X, its open neighborhood
V and a sequence {xn} converging to x, there exist P ∈ P and a subsequence {xnk

}
of {xn} such that {xnk

: k ∈ N} ∪ {x} ⊂ P ⊂ V .
A space X is called an ℵ-space if X has a σ-locally finite k-network.

Definition 1.3 Let P = ∪{Px : x ∈ X} be a family of subsets of a space X
satisfying that for each x ∈ X,

(1) Px is a network of x in X,
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

P is called a weak-base for X [2] if G ⊂ X such that for each x ∈ G, there exists
P ∈ Px satisfying P ⊂ G, then G is open in X.

A space X is called a g-metrizable space[3] if X has a σ-locally finite weak-base.
We have the following implications for a space X [5]:

metrizable =⇒ g-metrizable ⇐⇒ symmetrizable + ℵ-space

2. The main result

Lemma 2.1 The following are equivalent for a space X:
(1) X is an ℵ-space;
(2) X is a strong sequence-covering σ-image of a metric space;
(3) X is a sequence-covering σ-image of a metric space.
Proof. (1) =⇒ (2). Suppose X is an ℵ-space, then X has a σ-locally finite cs-

network by Theorem 4 of [4]. Let P = ∪{Pi : i ∈ N} be a σ-locally finite cs-network
for X, where each Pi = {Pα : α ∈ Ai} is a locally finite family of subsets of X which is
closed under finite intersections and X ∈ Pi ⊂ Pi+1. For each i ∈ N , endow Ai with
discrete topology, then Ai is a metric space. Put

M =

{
α = (αi) ∈

∏
i∈N

Ai : {Pαi
: i ∈ N} ⊂ P forms a network at some point x(α) ∈ X

}
,
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and endow M with the subspace topology induced from the usual product topology
of the family {Ai : i ∈ N} of metric spaces, then M is a metric space. Since X
is Hausdroff, x(α) is unique in X for each α ∈ M . We define f : M → X by
f(α) = x(α) for each α ∈ M . Because P is a σ-locally finite cs-network for X,
then f is surjective. For each α = (αi) ∈ M , f(α) = x(α). Suppose V is an open
neighborhood of x(α) in X, there exists n ∈ N such that x(α) ∈ Pαn

⊂ V , set
W = {c ∈ M : the n-th coordinate of c is αn}, then W is an open neighborhood of α
in M , and f(W ) ⊂ Pαn

⊂ V . Hence f is continuous. We will show that f is a strong
sequence-covering σ-mapping.

(i) f is a σ-mapping.
For each n ∈ N and αn ∈ An, put

V (α1, · · · , αn) = {β ∈ M : for each i 6 n, the i-th coordinate of β is αi}.
Let B = {V (α1, · · · , αn) : αi ∈ Ai(i 6 n) and n ∈ N}, then B is a base for M .
To prove f is a σ-mapping, we only need to check that f(V (α1, · · · , αn)) =

⋂
i6n

Pαi

for each n ∈ N and αn ∈ An because f(B) is σ-locally finite in X by this result.
For each n ∈ N , αn ∈ An and i 6 n, f(V (α1, · · · , αn))⊂ Pαi

, then f(V (α1, · · · , αn))
⊂

⋂
i6n

Pαi
. On the other hand. For each x ∈

⋂
i6n

Pαi
, there is β = (βj) ∈ M such that

f(β) = x. For each j ∈ N , Pβj
∈ Pj ⊂ Pj+n, then there is αj+n ∈ Aj+n such that

Pαj+n
= Pβj

. Set α = (αj), then α ∈ V (α1, · · · , αn) and f(α) = x. Thus
⋂

i6n

Pαi
⊂

f(V (α1, · · · , αn)). Hence f(V (α1, · · · , αn)) =
⋂

i6n

Pαi
. Therefore, f is a σ-mapping.

(ii) f is a strong sequence-covering mapping.
For each sequence {xn} converging to x0, we can assume that all x′ns are distinct,

and that xn 6= x0 for each n ∈ N . Set K = {xm : m ∈ ω}. Suppose V is an open
neighborhood of K in X. A subfamily A is said to hold the property F (K, V ), if

(a) A is finite;
(b) for each P ∈ A, ∅ 6= P ∩K ⊂ P ⊂ V ;
(c) for each z ∈ K, exists unique Pz ∈ A such that z ∈ Pz;
(d) if x0 ∈ P ∈ A, then K r P is finite.

Since P is a σ-locally finite cs-network for X, then the above construction can be
realized, and we can assume that {A ⊂Pi : A holds the property F (K, X)} = {Aij :
j ∈ N}.

For each n ∈ N , put

P ′
n =

∧
i,j6n

Aij ,

then P ′
n ⊂ Pn and P ′

n also holds the property F (K, X).
For each i ∈ N , m ∈ ω and xm ∈ K, there is αim ∈ Ai such that xm ∈ Pαim

∈ P ′
i .

Let βm = (αim) ∈
∏

i∈N

Ai. By definition, {Pαim
: i ∈ N} is a network of xm in X, and

f(βm) = xm for each m ∈ ω. For each i ∈ N , there is n(i) ∈ N such that αin = αio

when n > n(i). Hence the sequence {αin} converges to αio in Ai. Thus the sequence
{βn} converges to β0 in M . This shows that f is a strong sequence-covering mapping.

(2) =⇒ (3) are obvious.
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(3) =⇒ (1). Suppose X is the image of a metric space M under a sequence-
covering σ-mapping f . Since f is a σ-mapping, there exists a base B for M such
that f(B) is a σ-locally finite family of subsets of X. Because sequence-covering
mappings preserve cs∗-networks by Proposition 2.7.3 of [9], then f(B) is a σ-locally
finite cs∗-network for X. Hence X is an ℵ-space by [11, Lemma 1.17, Theorem 1.4].

Lemma 2.2[5] Suppose (X, d) is a metric space and f : X → Y is a quotient
mapping. Then Y is a symmetric space if and only if f is a π-mapping.

Lemma 2.3 Suppose f is a quotient mapping from a k-sapce M onto a space X.
If P is a k-network for M and f(P ) is point-countable in X, then f(P ) is a k-network
for X.

Proof. Denote F = f(P ). Suppose K ⊂ V with K non-empty compact and V
open in X. Put

A = {F ∈ F : F ∩K 6= ∅ and F ⊂ V },
then K ⊂ ∪A′ for some finite A′ ⊂ A. Otherwise, for any finite A′ ⊂ A, K r∪A′ 6= ∅.
For each x ∈ K, put

Ax = {F ∈ F : x ∈ F ⊂ V },
then Ax is countable, and A = ∪{Ax : x ∈ K}. Denote Ax = {Fi(x) : i ∈ N} for each
x ∈ K. Take x1 ∈ K, then there exists a infinite subset D = {xn : n ∈ N} of K such
that each xn+1 ∈ K r

⋃
i,j6n

Fi(xj). So D has a cluster point by the compactness of

K. Let x be a cluster point of D, and set B = D r {x}, then B isn’t closed in X.
Since f is a quotient mapping, f−1(B) isn’t closed in M . Because M is a k-space,
then there exists a compact subset L of M such that f−1(B)∩L isn’t closed in L. Let
g = f |L : L → f(L), then g is a closed mapping, and g−1(B ∩ f(L)) = f−1(B) ∩ L.
So B ∩ f(L) isn’t closed in f(L). Hence B ∩ f(L) is a infinite subset of X, and
D ∩ f(L) is so. By K ∩ f(L) 6= ∅, H = L ∩ f−1(K) is non-empty compact in M
and H ⊂ f−1(K) ⊂ f−1(V ), then H ⊂ ∪P ′ ⊂ f−1(V ) for some finite P ′ ⊂ P . Thus
f(H) ⊂ f(∪P ′) ⊂ V . Denote P ′ = {Pm : m 6 q}. We can assume that Pm ∩H 6= ∅
for each m 6 q, then f(Pm) ∈ A. Because

D ∩ f(∪P ′) ⊃ D ∩ f(H) = D ∩ f(L),

then D∩ f(∪P ′) is infinite. Thus f(Pm) includes infinite points of D for some m 6 q.
Take xj ∈ D ∩ f(Pm), then f(Pm) = Fi(xj) for some i ∈ N . However, there exists
n > i, j such that xn ∈ Fi(xj), a contradiction. Hence K ⊂ ∪A′ ⊂ V for some finite
A′ ⊂ A. So F is a k-network for X.

Theorem 2.4 The following are equivalent for a space X:
(1) X is a g-metrizable space.
(2) X is a strong sequence-covering, quotient, π, σ-image of a metric space.
(3) X is a sequence-covering, quotient, π, σ-image of a metric space.
(4) X is a quotient, π, σ-image of a metric space.
Proof. (1) =⇒ (2) follows from Lemma 4, Proposition 2.1.16 (2) of [9] and

Lemma 5.
(2) =⇒ (3) =⇒ (4) are obvious.
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(4) =⇒ (1). Suppose X is the image if a metric space (X, d) under a quotient,
π, σ-mapping f . Since f is a σ-mapping, then there exists a base B for M such that
f(B) is σ-locally finite in X. By Lemma 6, f(B) is a k-network for X. Thus X is an
ℵ-space. Hence X is a g-metrizable space by Lemma 5.

Example 2.5 Compact-covering, quotient, compact image of locally compact
metric spaces may not be g-metrizable.

Let

S =
{

1
n

: n ∈ N

}
∪ {0}, X = [0, 1]× S.

Define a typical neighborhood of (t, 0) in X to be of the form

{(t, 0)} ∪

 ⋃
k>n

V (t, 1/k)

 , n ∈ N,

where V (t, 1/k) is a neighborhood of (t, 1/k) in [0, 1]× {1/k}. Put

M = (⊕n∈N [0, 1]× {1/n})⊕ (⊕t∈[0,1]{t} × S),

and define f from M onto X such that f is the natural map, that is, f(t, s) = (t, s)
for each (t, s) ∈ M .

Then f is a compact-covering, quotient, at most two-to-one map from the locally
compact metric space M onto separable, regular, non-meta-Lindelöf space X (see
Example 2.8.16 in [9] or Example 1 in [16]). It is easy to check that f is a sequence-
covering map. By Lemma 2.2 in [11], X has a point-regular weak-base. Because X is
sequential, and a regular sequential space with a σ-locally countable k-network is meta-
Lindelöf (see [8, Proposition 1]), then X has not any σ-locally countable k-network.
So X is not an ℵ-space. Thus X is not g-metrizable.

This example also illustrates:
A quotient, π-image of a metric space is not necessarily a quotient, π, σ-image of

a metric space.
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