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Numerical simulation of time-harmonic

scattering problems with an optimal PML

A. Bermúdez A, L. Hervella-Nieto B, A. Prieto A and R. Rodŕıguez C

Abstract. We present an optimal bounded Perfectly Matched Layer
(PML) by choosing a particular absorbing function with unbounded
integral. With this choice, any spurious reflection is avoided even
when the thickness of the layer is finite. We show that such choice is
easy to implement in a finite element method and overcomes the de-
pendency of parameters for the discrete problem. Finally, we presents
some numerical tests.

1. Introduction

The scattering problems in unbounded domains have many practical
applications. To solve numerically this kind of problems, it is necessary to
truncate the computational domain, what can be done by several ways:
imposing absorbing boundary conditions, using the boundary element
method, Dirichlet to Neumann operators, etc. (see, for instance, (1; 8;
10)). In this work we consider an alternative approach: the so called
Perfectly Matched Layer (PML) method, introduced by Berenger in (3).

The PML method is based on simulating an absorbing layer of damp-
ing material surrounding the domain of interest, like a thin sponge which
absorbs the scattered field radiated to the exterior of this domain. It is
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known as ‘perfectly matched’ because the interface between the fluid do-
main and the absorbing layer does not produce spurious reflections inside
the domain of interest.

In practice, since the PML has to be truncated at a finite distance
of the domain of interest, its external boundary produces artificial reflec-
tions. Theoretically, these reflections are of minor importance because of
the exponential decay of the acoustic waves inside the PML. In fact, for
Helmholtz-type scattering problems, Lassas and Somersalo (9) proved,
using boundary integral equation techniques, that the approximate solu-
tion obtained by the PML method converges exponentially to the exact
solution in the computational domain as the thickness of the layer tends
to infinity. This result was generalized by Hohage et al. (7) using tech-
niques based on the pole condition. Similarly, Becache et al. (2) proved
an analogous result for the convected Helmholtz equation.

When the problem is discretized, the approximation error typically
gets larger, and depends on many parameters (shape of the source, phys-
ical data, discretization, etc.). Increasing the thickness of the PML may
be a remedy, but not always available because of computational cost. An
alternative usual choice to achieve low error levels is to take larger val-
ues for the damping function involved in the complex-valued coordinate
stretching. However, Collino and Monk (6) showed that this methodol-
ogy may produce an increasing error in the discretized problem. Con-
sequently, we have to choose an optimal absorbing function to minimize
the error.

In (4) we have proposed to take a damping function with unbounded
integral on the PML layer. In this way, at the continuous level and with
a bounded PML layer, we recover the exact solution of the original time-
harmonic scattering problem stated in an unbounded domain.

The outline of this paper is as follows: In Section 2 we recall the classi-
cal two-dimensional scattering problem with Cartesian perfectly matched
layers. In Section 3 we consider a special case, easy to analyze: the
propagation of plane waves with oblique incidence in a 2D unbounded
domain. We show that a PML method based on a non-integrable ab-
sorbing function allows recovering the exact solution in the domain of
interest. In Section 4 we come back to the original PML problem to pro-
pose a finite element method to solve it. Finally, in Section 5, we report
the numerical results obtained with our PML methods applied to some
real-life scattering problems.
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2. Cartesian PML layers

We deal with the time-harmonic scattering problem stated in an un-
bounded domain. More precisely, let Ω be a bounded domain in R

2,
where the obstacle of the scattering problem is situated. We assume that
it has a totally reflected boundary denoted by Γ. Our goal is to solve the
following problem:

For fixed frequency ω > 0 and acoustic excitation g, find the pressure

field p such that

(2.1)























∆p + k2p = 0 in R
2

r Ω,
∂p

∂n

= g on Γ,

lim
|x|→∞

|x|
1

2

(

∂p

∂|x|
− ikp

)

= 0,

where n is the unit normal vector to Γ outward to Ω and k = ω
c

is the

wave number, c being the sound speed in the physical domain.

We introduce PML layers on the x and y directions in order to trun-
cate the unbounded domain R

2
r Ω. With this purpose we choose a

rectangular domain, (−a, a)× (−b, b), containing Ω, and a second rectan-
gle, (−a⋆, a⋆) × (−b⋆, b⋆), containing the first one, i.e., satisfying a < a⋆

and b < b⋆ (see Figure 1).
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Figure 1. Cartesian PML layers on a two-dimensional domain.

We introduce some notation on the domains, as we show in Figure 1.
We denote the physical domain by

ΩF = [(−a, a) × (−b, b)] r Ω,
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whereas the bounded PML is situated in

ΩA = [(−a⋆, a⋆) × (−b⋆, b⋆)] r [(−a, a) × (−b, b)] .

The interface between the fluid cavity and the absorbing layer is denoted
by ΓI = ∂ΩF r Γ whereas ΓD = ∂ΩA r ΓI denotes the artificial boundary
where the perfectly matched layer is truncated. The vector ν = (νx, νy)
denotes the unit normal vector to ΓI outward to ΩF.

Since the deduction of the PML equations is nowadays well known
(see, for instance, (8)), we just show the final system of equations. Given
two absorbing functions, σx and σy, defined, respectively, in [a, a⋆) and
[b, b⋆), strictly positive and not decreasing, the pressure pF in the domain
of interest and the pressure pA in the PML are the solution of the following
equations:

(2.2)























































∆pF + k2pF = 0 in ΩF,

1

γx

∂

∂x

(

1

γx

∂pA

∂x

)

+
1

γy

∂

∂y

(

1

γy

∂pA

∂y

)
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+
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1
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∂pA

∂νx

+
1
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on ΓI,

pA = 0 on ΓD,

where

γx(x) =

{

1, x ∈ (a, a),
1 + i

ω
σx (|x|) , x ∈ (−a⋆,−a] ∪ [a, a⋆),

γy(y) =

{

1, y ∈ (b, b),
1 + i

ω
σy (|y|) , y ∈ (−b⋆,−b] ∪ [b, b⋆).

3. Plane waves with oblique incidence

In this section we deal with a particular Helmholtz problem: the prop-
agation of two-dimensional acoustic plane waves with oblique incidence
on the artificial boundary x = 0. This case is interesting because the
original and the PML problems both can be explicitly solved, what will
allow us to get a deeper knowledge about the choice of the absorbing
function, which is the main goal of this work.
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For a given incidence angle θ ∈
[

0, π
2

)

and a wave-number k, we are
interested in the following time-harmonic problem in the right-half space:

(3.1)















∆p + k2p = 0 x > 0,
p(0, y) = eikyy,

lim
x→+∞

(

∂p

∂x
− ikxp

)

= 0,

where kx = k cos θ and ky = k sin θ. It is easy to see that the solution of
this problem is the plane wave p(x, y) = ei(kxx+kyy).

To truncate the physical unbounded domain in the x-direction, we
introduce a PML in the horizontal strip a < x < a⋆. Then, we consider
equations (2.2) with PML layers exclusively in the x direction (i.e., γy =
1).

If we impose the homogeneous Dirichlet boundary condition at x =
a⋆, pA (a⋆, y) = 0, straightforward computations leads to the analytical
expression of the solution to the above PML problem is
(3.2)







pF(x, y) =
[

(1 − RA) eikxx + RAe−ikxx
]

eikyy,

pA(x, y) =
[

(1 − RA) eikxe−
1

c

R x

a
σ(s) ds + RAe−ikxe

1

c

R x

a
σ(s) ds

]

eikyy,

where RA is given by

(3.3) RA =
e2ikx a⋆

e2ikx a⋆ − e
2 cos θ

c

R a⋆

a
σx(s) ds

.

Since θ ∈ [0, π
2
), it is immediate to deduce from (3.3) that the larger

the integral
∫ a⋆

a
σx(s) ds, the closer RA to zero and, consequently, the

closer p to pF in the domain of interest (0 < x < a). Actually, if
∫ a⋆

a
σ(s) ds < ∞, it is easy to see that

‖p (·, y)− pF (·, y) ‖L2(0,a) = |RA|C (k, a) ∀y ∈ R,

where C (k, a) =

√

sin (2ka) + 2ka

k
.

Classical PML techniques rely on taking a bounded absorbing function
σx, such that its integral in [a, a⋆] be sufficiently large. We propose instead

to use an unbounded σx, such that
∫ a⋆

a
σx(s) ds = +∞. In this case, the

resulting pF will coincide exactly with p in the domain of interest.
In order to illustrate this behavior we take the following parameters:

a = 0.5 m, a⋆ = 0.6 m, ω = 1200 rad/s, c = 340 m/s, and θ = 3π
8

rad.
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We compare two examples of the above mentioned absorbing functions:
a classical choice, that is, the quadratic function taking the value σ⋆ at
x = a⋆,

(3.4) σx(x) = σ(Q)(x) =
σ⋆

(a⋆ − a)2 (x − a)2 x ∈ [a, a⋆),

and the following unbounded function with unbounded integral in [a, a⋆),

(3.5) σx(x) = σ(U)(x) =
c

a⋆ − x
x ∈ [a, a⋆).

In Figures 2 and 3 we can see that, when choosing the quadratic func-
tion, pF approximates the exact solution p when σ⋆ becomes large. The
reflection coefficient is, in this case, RA = 0.26 for σ⋆ = 50c, and RA =
2.88 × 10−6 for σ⋆ = 500c. In the same Figure we can see that the error
is 0 when choosing the unbounded absorbing function, σ(U).
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Figure 2. Real part of exact and approximated pressures
for θ = 3π/8.

In Figure 4 we show the dependency of the reflection coefficient RA,
with respect to the angle of incidence of the plane wave, when σ(Q) is used.
It is important to emphasize that, in this case, the reflection coefficient
(and hence the error) increases when taking a larger angle of incidence,
whereas the error is null, for any angle of incidence, when σ(U) is used.

Analogously, we show, in Figure 5, the dependency of RA with respect
to the frequency ω when σ(Q) is used. For this test we have taken as angle
of incidence θ = 0.99π

2
(very close to the critical value π

2
). We can observe
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Figure 3. Imaginary part of exact and approximated
pressures for θ = 3π/8.

that RA achieves periodically maximum values for certain frequencies.
Again, we want to remark that, taking the unbounded absorbing function
σ(U) in the PML, we recover RA = 0, for any value of the frequency.
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Figure 4. Absolute value of the reflection coefficient for
σ(Q) versus incidence angle.
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Figure 5. Absolute value of the reflection coefficient for
σ(Q) versus frequency.

4. Finite element discretization

In this section we present a standard finite element method to solve
the general problem (2.2). Let Th be a partition of ΩF ∪ ΩA such that
each element is completely contained either in ΩF or in ΩA. We assume
that the elements in the fluid domain are triangles whereas the elements
lying in the perfectly matched layer are rectangles.

We approximate the fluid pressure field, pF, using continuous piecewise
linear finite elements in each triangle, whereas we approximate the PML
pressure field, pA, using continuous piecewise bilinear Q1 finite elements
in each rectangle, vanishing on ΓD.

The degrees of freedom defining the approximate pressure fields, ph
F

and ph
A, are the values at the vertices of the triangular and rectangular

meshes, respectively.
In this finite element framework, we define the following discrete prob-

lem from the weak formulation of problem (2.2):
For fixed frequency ω > 0 and acoustical excitation g on Γ, find

(ph
F
, ph

A
) such that
∫

ΩF

grad ph
F
· grad q̄h

F
dV −

∫

ΩF

k2ph
F
q̄h
F

dV +

∫

ΩA

γy

γx

∂ph
A

∂x

∂q̄h
A

∂x
dV

+

∫

ΩA

γx

γy

∂ph
A

∂y

∂q̄h
A

∂y
dV −

∫

ΩA

k2γxγyp
h
F
q̄h
A

dV =

∫

Γ

gq̄h
F
dS,(4.1)
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for all discrete virtual pressure fields (qh
F
, qh

A
) in the corresponding finite

element spaces.

5. Numerical results

In this section we study a real life Helmholtz problem stated in an
unbounded domain using the non integrable absorbing function (3.5).
More numerical examples can be found in (5).

We consider that the obstacle of the problem is a diapason whose
thickness is 0.2 m, its interior aperture 1 m, and its length 4.1 m (see
Figure 6).

In the first problem, we consider that a plane wave in the positive
x-direction is scattered by the diapason. The mesh corresponds to the
physical domain ΩF = [−3.6, 3.6]2 r Ω and to PML layers with thickness
0.5 m. We use two meshes, named mesh 4 and mesh 8, which are refine-
ments of the mesh in Figure 6. Mesh N = 4 has 9140 triangles in ΩF

and 3120 rectangles in the PML layers, whereas mesh N = 8 has 36610
triangles in the fluid domain and 12480 in the PML.

−4.1−3.6 0 3.6 4.1
−2.7

−2.2

0

2.2

2.7

Figure 6. Mesh of the fluid domain and PML surrounding
the diapason.
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In Figures 7 and 8 we show the results that we have obtained for the
reflected pressure field by the diapason, for a wave number k = 2π m−1,
using the mesh N = 4.

Figure 7. Real part of the pressure field generated by an
incident plane wave, k = 2π m−1.

Figure 8. Imaginary part of the pressure field generated
by an incident plane wave, k = 2π m−1.

Figures 9 and 10 show the same numerical problem with a higher wave
number, k = 10π m−1. In this case we have used the mesh N = 8.

In the second numerical experiment we keep the same geometry and
meshes, but now we simulate a Dirac’s delta (monopole) actuating at the
point (0.5, 0) m (inside the arc of the diapason). In Figures 11–14 we show
the real and the imaginary part of the reflected pressure fields generated
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Figure 9. Real part of the pressure field generated by an
incident plane wave, k = 10π m−1.

Figure 10. Imaginary part of the pressure field generated
by an incident plane wave, k = 10π m−1.

by a monopole for the wave numbers k = 2π m−1 (with the mesh N = 4)
and k = 10π m−1 (with the mesh N = 8).
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Figure 11. Real part of pressure field generated by a
monopole, k = 2π m−1.

Figure 12. Imaginary part of the pressure field generated
by a monopole, k = 2π m−1.
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Figure 13. Real part of the pressure field generated by a
monopole, k = 10π m−1.

Figure 14. Imaginary part of the pressure field generated
by a monopole, k = 10π m−1.
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