
45



SCIENTIA

Series A: Mathematical Sciences, Vol. 13 (2006), 46–56
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Adaptive solutions of an augmented mixed finite element

scheme for linear elasticity

Tomás Barrios

Abstract. Through several numerical experiments, we explore the theoretical

properties of a residual based a posteriori error estimator of an augmented mixed

method applied to linear elasticity problem in the plane. More precisely, we show

numerical evidence confirming the theoretical properties of the estimator, and

ilustrating the capability of the corresponding adaptive algorithm to localize the

singularities and the large stress regions of the solution.

1. Introduction

In the recent paper [2], an augmented mixed finite element method for the linear
elasticity was presented and analyzed. The approach used in [2] is based on the
introduction of suitable Galerkin least-squares terms arising from the constitutive
and equilibrium equations, and from the relation defining the rotation in terms of
the displacement. This leads to well posed continuous and discrete problems. In
particular, the discrete scheme allows the use of simple finite element spaces, such as,
Raviart-Thomas spaces of lowest order for the stress tensor, piecewise linear elements
for the displacement, and piecewise constants for the rotation, which should be easily
generalized to 3D.

On the other hand, since adaptive techniques are particularly necessary for the
elasticity problem, we provided in [1] a residual based a posteriori error estimator
for the augmented approach for the elasticity problem with pure Dirichlet boundary
condition in the plane. Specifically, we derives a reliable and efficient a posteriori error
estimator.

The purpose of the present work is twofold. First, we want to present a review
of a priori and a posteriori error analysis of the augmented mixed formulation applies
to linear elasticity problem with pure Dirichlet boundary conditions, and secondly,
we show numerical evidence confirming the theoretical properties of the augmented
scheme and the corresponding adaptive algorithm based on a posteriori error estima-
tor.

The rest of the paper is organized as follows. In Section 2, 3 and 4, we give a
review of the a priori and a posteriori error analysis of the augmented mixed formula-
tion. Finally, several numerical results illustrating the performance of the augmented
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mixed finite element scheme, and the reliability and efficiency of the a posteriori error
estimator, are provided in Section 5.

2. The augmented mixed variational formulation

Let Ω be a simply connected domain in R
2 with polygonal boundary ∂Ω. Given

a volume force f ∈ [L2(Ω)]2, we seek the displacement u and the stress tensor σ such
that

σ = Ce(u) in Ω ,

−div (σ) = f in Ω u = 0 on ∂Ω .

Here, e(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations and C is the

elasticity tensor determined by Hooke’s law, that is

Cζ := λtr(ζ)I + 2µζ ∀ζ ∈ [L2(Ω)]2×2 ,

where λ, µ,> 0 denote the corresponding Lamé constants. The inverse tensor C−1 is
given by

C−1ζ :=
1

2µ
ζ −

λ

4µ(λ+ µ)
tr(ζ)I .

In order to introduce the variational formulation we let us define the spaces

H(div ; Ω) := {τ ∈ [L2(Ω)]2×2 : div (τ ) ∈ [L2(Ω)]2} ,

[L2(Ω)]2×2
skew := {η ∈ [L2(Ω)]2×2 : η + ηt = 0}

and H0 := {τ ∈ H(div ; Ω) :
∫

Ω
tr(τ ) = 0}. Note that H = H0 ⊕ RI, that is, for

any τ ∈ H there exists a unique representation τ = τ 0 + dI with τ 0 ∈ H0 and
d = 1

2|Ω|

∫

Ω
tr(τ ) ∈ R.

Given positive parameters κ1, κ2, κ3 independent of λ, we obtain, as in [2], the
following augmented variational formulation: Find (σ,u,γ) ∈ H0 := H0× [H1

0 (Ω)]2×
[L2(Ω)]2×2

skew such that

(2.1) A((σ,u,γ), (τ ,v,η)) = F (τ ,v,η) ,

for all (τ ,v,η) ∈ H0. Here, the bilinear form A : H0 × H0 → R and the functional
F : H0 → R are defined by

A((σ,u,γ), (τ ,v,η)) :=

∫

Ω

C−1σ : τ +

∫

Ω

u · div (τ ) +

∫

Ω

γ : τ −

∫

Ω

v · div (σ)

−

∫

Ω

η : σ + κ1

∫

Ω

(e(u) − C−1σ) : (e(v) + C−1τ )

+ κ2

∫

Ω

div (σ) · div (τ ) + κ3

∫

Ω

(γ −
1

2
(∇u − (∇u)t) : (η +

1

2
(∇v − (∇v)t)

and

F (τ ,v,η) :=

∫

Ω

f · (v − κ2 div (τ )) .

The unique solvability of (2.1) was proved in [2]:

Theorem 2.1. Assume that (κ1, κ2, κ3) is independent of λ and such that 0 <
κ1 < 2µ, 0 < κ2, and 0 < κ3 < κ1. Then, there exist positive constants M, α,

independent of λ, such that

(2.2) |A((σ,u,γ), (τ ,v,η)) | 6 M ‖(σ,u,γ)‖H0
‖(τ ,v,η)‖H0
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and

(2.3) A((τ ,v,η), (τ ,v,η)) > α ‖(τ ,v,η)‖2
H0

for all (σ,u,γ), (τ ,v,η) ∈ H0. In particular, taking

(2.4) κ1 = C̃1 µ , κ2 =
1

µ

(

1 −
κ1

2µ

)

, and κ3 = C̃3 κ1 ,

with any C̃1 ∈ ]0, 2[ and any C̃3 ∈ ]0, 1[, this yields M and α depending only on µ,
1

µ
,

and Ω. Therefore, the augmented variational formulation (2.1) has a unique solution

(σ,u,γ) ∈ H0, and there exists a positive constant C, independent of λ, such that

‖(σ,u,γ)‖H0
6 C ‖F‖ 6 C ‖f‖[L2(Ω)]2 .

Proof. See Theorems 3.1 and 3.2 in [2]. 2

3. The augmented mixed finite element scheme

By the coercivity and continuity of the bilinear form A(·, ·) (see Theorem 2.1),
any conforming finite element scheme converges quasi-optimal. In the following we
introduce the finite element scheme presented in [2].

Let {Th}h>0 be a regular family of triangulations of Ω̄ by triangles T of diameter
hT and define, as usual, h := max{ hT : T ∈ Th }. Given an integer l > 0 and a subset
S of R

2, we denote by Pl(S) the space of polynomials in two variables defined on S of
total degree at most l, and for each T ∈ Th we put

RT0(T ) := span

{(

1
0

)

,

(

0
1

)

,

(

x1

x2

) }

,

where x :=

(

x1

x2

)

is a generic vector of R
2. We define the Raviart-Thomas space of

lowest order

Hσ
h := {τh ∈ H(div ; Ω) : τh|T ∈ [RT0(T )t]2 ∀T ∈ Th}

and the space of continuous piecewise linear functions

Hu

h := {vh ∈ [C(Ω)]2 : vh|T ∈ [P1(T )]2 ∀T ∈ Th} .

Then the finite element space is H0,h := Hσ
0,h ×Hu

0,h ×H
γ
h ⊆ H0 := H0 × [H1

0 (Ω)]2 ×

[L2(Ω)]2×2
skew , where

Hσ
0,h :=

{

τ h ∈ Hσ
h :

∫

Ω

tr(τ h) = 0

}

,

Hu

0,h := {vh ∈ Hu

h : vh = 0 on ∂Ω} ,

and

H
γ
h :=

{

ηh ∈ [L2(Ω)]2×2
skew : ηh|T ∈ [P0(T )]2×2 ∀T ∈ Th

}

.

The Galerkin scheme then reads: Find (σh,uh,γh) ∈ H0,h such that

(3.1) A((σh,uh,γh), (τ h,vh,ηh)) = F (τh,vh,ηh) ∀(τh,vh,ηh) ∈ H0,h .

As mentioned above, the Galerkin scheme converges quasi-optimally:
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Theorem 3.1. Let H0,h be any finite element subspace of H0. Then, under the

same assumptions of Theorem 2.1, the Galerkin scheme (3.1) has a unique solution

(σh,uh,γh) ∈ H0,h, and there exist positive constants C1, C2, independent of λ and

h, such that

‖(σh,uh,γh)‖H0
6 C1‖f‖[L2(Ω)]2

and

(3.2) ‖(σ,u,γ)− (σh,uh,γh)‖H0
6 C2 inf

(τ h,vh,η
h
)∈H0,h

‖(σ,u,γ)− (τh,vh,ηh)‖H0
.

Furthermore, if σ ∈ [Hr(Ω)]2×2, div σ ∈ [Hr(Ω)]2, u ∈ [Hr+1(Ω)]2, and γ ∈
[Hr(Ω)]2×2 for some r ∈ (0, 1]. Then there exists C > 0, independent of h and λ,
such that

‖(σ,u,γ) − (σh,uh,γh)‖H0

6 C hr
{

‖σ‖[Hr(Ω)]2×2 + ‖div σ‖[Hr(Ω)]2 + ‖u‖[Hr+1(Ω)]2 + ‖γ‖[Hr(Ω)]2×2

}

.

Proof. See Theorem 4.1 and Section 4.1 in [2] for more details. 2

4. The residual based a posteriori error estimator

In this section we present a residual based a posteriori error estimator developed
in [1].

First we introduce some notations. Given T ∈ Th, let E(T ) be the set of its
edges, and let Eh be the set of all edges of the triangulation Th. Then we write
Eh = Eh(Ω) ∪Eh(∂Ω), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω} and Eh(∂Ω) := {e ∈ Eh :
e ⊆ ∂Ω}. In what follows, hT and he stand for the diameters of the triangle T ∈ Th and
the edge e ∈ Eh, respectively. Further, given a tensor-valued function τ ∈ [L2(Ω)]2×2

defined in Ω, an edge e ∈ E(T )∩Eh(Ω) and the unit tangential vector tT along e, let
J [τtT ] be the corresponding jump across e, that is, J [τ tT ] := (τT − τT ′)|etT , where
T ′ is the other triangle of Th having e as an edge. Abusing notation, when e ∈ Eh(∂Ω),
we also write J [τtT ] := τ |etT . The tangential vector tT is given by (−ν2, ν1)

t where
νT := (ν1, ν2)

t is the unit outward normal to ∂T . Analogously we define J [τνT ].
Then, for (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h being the solutions of the

continuous and discrete formulations (2.1) and (3.1), respectively, we define an error
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indicator θ2T as follows:

θ2T := ‖f + div (σh)‖2
[L2(T )]2 + ‖σh − σt

h‖
2
[L2(T )]2×2 + ‖γh −

1

2
(∇uh − (∇uh)t)‖2

[L2(T )]2×2

+ h2
T

{

‖ curl(C−1σh + γh)‖2
[L2(T )]2 + ‖ curl(C−1(e(uh) − C−1σh))‖2

[L2(T )]2

}

+
∑

e∈E(T )

he

{

‖J [(C−1σh −∇uh + γh)tT ]‖2
[L2(e)]2 + ‖J [(C−1(e(uh) − C−1σh))tT ]‖2

[L2(e)]2

}

+ h2
T ‖div (e(uh) −

1

2
(C−1σh + (C−1σh)t))‖2

[L2(T )]2

+ h2
T ‖div (γh −

1

2
(∇uh − (∇uh)t))‖2

[L2(T )]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(e(uh) −
1

2
(C−1σh + (C−1σh)t))νT ]‖2

[L2(e)]2

+
∑

e∈E(T )∩Eh(Ω)

he ‖J [(γh −
1

2
(∇uh − (∇uh)t))νT ]‖2

[L2(e)]2 .

(4.1)

As usual, the expression θ :=
(

∑

T∈Th
θ2T

)1/2

is used as error estimator.

The following theorem establishing the reliability and efficiency of the estimator.

Theorem 4.1. Let (σ,u,γ) ∈ H0 and (σh,uh,γh) ∈ H0,h be the solutions of

(2.1) and (3.1), respectively. Then there exist Ceff, Crel > 0, independent of h and λ,
such that

(4.2) Ceff θ 6 ‖(σ − σh,u − uh,γ − γh)‖H0
6 Crel θ .

Proof. See Theorem 3.1 in [1] for details. 2

5. Numerical results

In this section we present several numerical results illustrating the performance of
the augmented mixed finite element scheme (3.1) and the a posteriori error estimator
θ. To this end, in order to implement the integral mean zero condition for functions
of the space Hσ

0,h =
{

τ h ∈ Hσ
h :

∫

Ω
tr(τ h) = 0

}

, in virtue of Theorem 4.3 in [2], we

consider the equivalent problem: Find (σh,uh,γh, ϕh) ∈ Hσ
h ×Hu

0,h ×H
γ
h × R such

that

(5.1)

A((σh,uh,γh), (τ h,vh,ηh)) + ϕh

∫

Ω

tr(τ h) = F (τh,vh,ηh) ,

ψh

∫

Ω

tr(σh) = 0 ,

for all (τ h,vh,ηh, ψh) ∈ Hσ
h ×Hu

0,h ×H
γ
h × R.

In what follows, N stands for the total number of degrees of freedom (unknowns)
of (5.1), which, at least for uniform refinements, behaves asymptotically as five times
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the number of elements of each triangulation (see [2]). Also, the individual and total
errors are denoted by

e(σ) := ‖σ − σh‖H(div ;Ω) , e(u) := |u− uh|[H1(Ω)]2 , e(γ) := ‖γ − γh‖[L2(Ω)]2×2 ,

and

e(σ,u,γ) :=
{

[e(σ)]2 + [e(u)]2 + [e(γ)]2
}1/2

,

respectively, whereas the effectivity index with respect to θ is defined by e(σ,u,γ)/θ.

On the other hand, we recall that given the Young modulus E and the Poisson
ratio ν of a linear elastic material, the corresponding Lamé constants are defined by
µ := E

2(1+ν) and λ := E ν
(1+ν) (1−2 ν) . Then, in order to emphasize the robustness of

the a posteriori error estimator θ with respect to the Poisson ratio, in the examples
below we fix E = 1 and consider ν = 0.4900, ν = 0.4999, or both, which yield the
following values of µ and λ :

ν µ λ
0.4900 0.3356 16.4430
0.4999 0.3333 1666.4444

In addition, since the augmented method was already shown in [2] to be robust with
respect to the parameters κ1, κ2, and κ3, we simply consider for all the examples

(κ1, κ2, κ3) =
(

µ, 1
2 µ ,

µ
2

)

, which corresponds to the feasible choice described in The-

orem 2.1 with C̃1 = 1 and C̃3 = 1
2 .

We now specify the data of the three examples to be presented here. We take Ω
as either the square ]0, 1[2 or the L-shaped domain ]− 0.5, 0.5[2 \ [0, 0.5]2, and choose
the datum f so that ν and the exact solution u(x1, x2) := (u1(x1, x2), u2(x1, x2))

t are
given in the table below.

Example Ω ν u1(x1, x2) = u2(x1, x2)

1 ]0, 1[2 0.4900 sin(π x1) sin(π x2)
0.4999

2 ] − 0.5, 0.5[2 \ [0, 0.5]2 0.4900
x1 x2 (x2

1−0.25) (x2
2−0.25)

(x2
2
+0.0001)1/3

3 ] − 0.5, 0.5[2 \ [0, 0.5]2 0.4900
x1 x2 (x2

1−0.25) (x2
2−0.25)

(x2
1
+x2

2
)1/4

We observe that the solution of Example 3 is singular at the boundary point (0, 0).
In fact, the behaviour of u in a neighborhood of the origin implies that div (σ) ∈
[H1/2(Ω)]2 only, which, according to Theorem 3.1, yields 1/2 as the expected rate of
convergence for the uniform refinement. On the other hand, the solutions of Example
2 and 3 show large stress regions in a neighborhood around the line x2 = 0, and in a
neighborhood of the boundary point (0, 0), respectively.

The numerical results given below were obtained using a Compaq Alpha ES40

Parallel Computer and a Fortran 90 code. The linear system arising from the aug-
mented mixed scheme (5.1) is implemented as explained in Section 4.3 of [2], and the
individual errors are computed on each triangle using a Gaussian quadrature rule.
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We first utilize Example 1 to illustrate the good behaviour of the a posteriori error
estimator θ in a sequence of uniform meshes generated by equally spaced partitions on
the sides of the square ]0, 1[2. In Tables 5.1 and 5.2 we present the individual and total
errors, the a posteriori error estimators, and the effectivity indexes for this example,
with ν = 0.4900 and ν = 0.4999, for this sequence of uniform meshes. We remark
that in this case, and independently of how large the errors could become, there are
practically no differences between the effectivity indexes obtained with the two values
of ν, which numerically shows the robustness of θ with respect to the Poisson ratio
(and hence with respect to the Lamé constant λ). Moreover, this index remains always
in a neighborhood of 0.44, which confirms the reliability and efficiency of θ.

Next, to illustrate the performance of the adaptive algorithm based on θ, which
use a parameter γ ∈]0, 1[ and blue-green procedure to refine (see [3] for more details),
we consider Example 2 and 3, with parameter γ = 1

2 . At this point we introduce the
experimental rate of convergence, which, given two consecutive triangulations with
degrees of freedom N and N ′ and corresponding total errors e and e′, is defined by

r(e) := − 2
log(e/e′)

log(N/N ′)
.

In Tables 5.3 through 5.6 we provide the individual and total errors, the experimental
rates of convergence, the a posteriori error estimators, and the effectivity indexes for
the uniform and adaptive refinements as applied to Examples 2 and 3. In this case,
uniform refinement means that, given a uniform initial triangulation, each subsequent
mesh is obtained from the previous one by dividing each triangle into the four ones
arising when connecting the midpoints of its sides. We observe from these tables that
the errors of the adaptive procedure decrease much faster than those obtained by the
uniform one, which is confirmed by the experimental rates of convergence provided
there. This fact can also be seen in Figures 5.1 and 5.2, where we display the total
error e(σ,u,γ) vs. the degrees of freedom N for both refinements. As shown by the
values of r(e), particularly in Example 3 (where r(e) approaches 1/2 for the uniform
refinement), the adaptive method is able to recover, at least approximately, the quasi-
optimal rate of convergence O(h) for the total error. Furthermore, the effectivity
indexes remain again bounded from above and below, which confirms the reliability
and efficiency of θ for the adaptive algorithm. On the other hand, some intermediate
meshes obtained with the adaptive refinement are displayed in Figures 5.3 and 5.4.
Note that the method is able to recognize the singularities and the large stress regions
of the solutions. In particular, this fact is observed in Example 2 (see Figure 5.3) where
the adapted meshes are highly refined around the singular region x2 = 0. Similarly, the
adapted meshes obtained in Examples 3 (see Figures 5.4) concentrate the refinements
around the boundary point (0, 0), where the largest stresses occur.

Summarizing, the numerical results presented in this section underline the reliabil-
ity and efficiency of θ and strongly demonstrate that the associated adaptive algorithm
is much more suitable than a uniform discretization procedure when solving problems
with non-smooth solutions.
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Table 5.1: Mesh sizes, individual and total errors, a posteriori error estimators, and
effectivity indexes for a sequence of uniform meshes (Example 1, ν = 0.4900).
N h e(σ) e(u) e(γ) e(σ,u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.3321E+2 0.2981E+1 0.1116E+1 0.3336E+2 0.1082E+3 0.3081
363 0.16667 0.2224E+2 0.1484E+1 0.6155E+0 0.2230E+2 0.6638E+2 0.3359
643 0.12500 0.1671E+2 0.9399E+0 0.3978E+0 0.1674E+2 0.4686E+2 0.3572
1003 0.10000 0.1337E+2 0.6763E+0 0.2822E+0 0.1339E+2 0.3586E+2 0.3736
1443 0.08333 0.1115E+2 0.5251E+0 0.2133E+0 0.1116E+2 0.2890E+2 0.3864
1963 0.07143 0.9562E+1 0.4285E+0 0.1689E+0 0.9574E+1 0.2413E+2 0.3967
2563 0.06250 0.8369E+1 0.3617E+0 0.1385E+0 0.8377E+1 0.2067E+2 0.4052
3243 0.05556 0.7440E+1 0.3130E+0 0.1166E+0 0.7447E+1 0.1806E+2 0.4123
4003 0.05000 0.6696E+1 0.2720E+0 0.1004E+0 0.6703E+1 0.1602E+2 0.4183
4843 0.04545 0.6088E+1 0.2469E+0 0.8795E-1 0.6093E+1 0.1438E+2 0.4235
5763 0.04167 0.5581E+1 0.2234E+0 0.7810E-1 0.5586E+1 0.1305E+2 0.4279
6763 0.03846 0.5151E+1 0.2041E+0 0.7016E-1 0.5156E+1 0.1193E+2 0.4319
7843 0.03571 0.4784E+1 0.1879E+0 0.6364E-1 0.4788E+1 0.1099E+2 0.4353
9003 0.03333 0.4465E+1 0.1741E+0 0.5821E-1 0.4469E+1 0.1019E+2 0.4384
10243 0.03125 0.4186E+1 0.1623E+0 0.5362E-1 0.4189E+1 0.9495E+1 0.4412
11563 0.02941 0.3940E+1 0.1520E+0 0.4969E-1 0.3943E+1 0.8887E+1 0.4437
12963 0.02777 0.3721E+1 0.1429E+0 0.4630E-1 0.3724E+1 0.8351E+1 0.4459

Table 5.2: Mesh sizes, individual and total errors, a posteriori error estimators, and
effectivity indexes for a sequence of uniform meshes (Example 1, ν = 0.4999).

N h e(σ) e(u) e(γ) e(σ,u, γ) θ e(σ,u, γ)/θ

163 0.25000 0.3242E+4 0.2631E+3 0.1139E+3 0.3255E+4 0.1066E+5 0.3050
363 0.16667 0.2171E+4 0.1202E+3 0.6320E+2 0.2175E+4 0.6538E+4 0.3327
643 0.12500 0.1631E+4 0.6961E+2 0.4017E+2 0.1633E+4 0.4612E+4 0.3540
1003 0.10000 0.1305E+4 0.4582E+2 0.2773E+2 0.1306E+4 0.3528E+4 0.3704
1443 0.08333 0.1088E+4 0.3264E+2 0.2028E+2 0.1089E+4 0.2841E+4 0.3833
1963 0.07143 0.9334E+3 0.2453E+2 0.1548E+2 0.9338E+3 0.2371E+4 0.3937
2563 0.06250 0.8168E+3 0.1917E+2 0.1221E+2 0.8171E+3 0.2031E+4 0.4023
3243 0.05556 0.7261E+3 0.1542E+2 0.9892E+1 0.7264E+3 0.1773E+4 0.4095
4003 0.05000 0.6536E+3 0.1269E+2 0.8182E+1 0.6537E+3 0.1523E+4 0.4155
4843 0.04545 0.5942E+3 0.1064E+2 0.6885E+1 0.5943E+3 0.1412E+4 0.4208
5763 0.04167 0.5447E+3 0.9062E+1 0.5878E+1 0.5448E+3 0.1280E+4 0.4253
6763 0.03846 0.5028E+3 0.7814E+1 0.5081E+1 0.5029E+3 0.1171E+4 0.4293
7843 0.03571 0.4669E+3 0.6811E+1 0.4437E+1 0.4670E+3 0.1078E+4 0.4328
9003 0.03333 0.4358E+3 0.5993E+1 0.3910E+1 0.4358E+3 0.9997E+3 0.4360
10243 0.03125 0.4085E+3 0.5316E+1 0.3474E+1 0.4086E+3 0.9312E+3 0.4388
11563 0.02941 0.3845E+3 0.4750E+1 0.3107E+1 0.3846E+3 0.8714E+3 0.4413
12963 0.02777 0.3632E+3 0.4271E+1 0.2797E+1 0.3632E+3 0.8187E+3 0.4436

Table 5.3: Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for the uniform refinement

(Example 2).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.1399E+2 0.4611E+0 0.1636E+0 0.1400E+2 —– 0.1449E+2 0.9660
483 0.2522E+2 0.2897E+0 0.1568E+0 0.2522E+2 —– 0.2527E+2 0.9978
1923 0.2494E+2 0.1355E+0 0.1448E+0 0.2494E+2 0.0161 0.2495E+2 0.9993
7683 0.1449E+2 0.6382E-1 0.1739E+0 0.1449E+2 0.7841 0.1452E+2 0.9982
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Table 5.4: Individual and total errors, experimental rates of convergence, a
posterior error estimators, and effectivity indexes for the adaptive refinement

(Example 2).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ, u, γ)/θ

123 0.1399E+2 0.4611E+0 0.1636E+0 0.1400E+2 —— 0.1449E+2 0.9660
263 0.2524E+2 0.3049E+0 0.1386E+0 0.2524E+2 —— 0.2533E+2 0.9963
513 0.2498E+2 0.1994E+0 0.1270E+0 0.2498E+2 0.0309 0.2505E+2 0.9972
988 0.1507E+2 0.2016E+0 0.1882E+0 0.1507E+2 1.5421 0.1519E+2 0.9921
2383 0.8490E+1 0.1973E+0 0.1920E+0 0.8494E+1 1.3024 0.8593E+1 0.9884
4038 0.6956E+1 0.1587E+0 0.1468E+0 0.6959E+1 0.7558 0.7061E+1 0.9856
7918 0.5364E+1 0.1592E+0 0.1232E+0 0.5368E+1 0.7709 0.5458E+1 0.9834
12778 0.4268E+1 0.1458E+0 0.1107E+0 0.4272E+1 0.9543 0.4327E+1 0.9872
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Figure 5.1: Total errors e(σ,u,γ) vs. degrees of freedom N for the uniform and
adaptive refinements (Example 2).

Table 5.5: Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for the uniform refinement

(Example 3).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.1505E+1 0.1705E+0 0.7587E-1 0.1516E+1 —— 0.2251E+1 0.6738
483 0.8993E+0 0.7468E-1 0.8177E-1 0.9061E+0 0.7533 0.1254E+1 0.7223
1923 0.5514E+0 0.3097E-1 0.6290E-1 0.5558E+0 0.7074 0.7066E+0 0.7865
7683 0.3541E+0 0.1836E-1 0.3847E-1 0.3566E+0 0.6405 0.4156E+0 0.8582
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Table 5.6: Individual and total errors, experimental rates of convergence, a
posteriori error estimators, and effectivity indexes for the adaptive refinement

(Example 3).

N e(σ) e(u) e(γ) e(σ,u, γ) r(e) θ e(σ,u, γ)/θ

123 0.1505E+1 0.1705E+0 0.7587E-1 0.1516E+1 —— 0.2251E+1 0.6738
483 0.8993E+0 0.7468E-1 0.8177E-1 0.9061E+0 0.7525 0.1254E+1 0.7223
543 0.8201E+0 0.7105E-1 0.7832E-1 0.8268E+0 1.5643 0.1174E+1 0.7036
1168 0.6416E+0 0.5649E-1 0.5016E-1 0.6460E+0 0.6443 0.7954E+0 0.8122
1628 0.5109E+0 0.4913E-1 0.5098E-1 0.5158E+0 1.3556 0.6623E+0 0.7788
2033 0.4283E+0 0.5125E-1 0.5214E-1 0.4345E+0 1.5441 0.5911E+0 0.7349
2703 0.3826E+0 0.5260E-1 0.5036E-1 0.3895E+0 0.7676 0.5171E+0 0.7533
3898 0.3383E+0 0.6197E-1 0.4422E-1 0.3468E+0 0.6343 0.4301E+0 0.8063
6553 0.2555E+0 0.6762E-1 0.4636E-1 0.2683E+0 0.9881 0.3357E+0 0.7992
7933 0.2282E+0 0.5852E-1 0.4437E-1 0.2397E+0 1.1796 0.3058E+0 0.7840
11398 0.2015E+0 0.5833E-1 0.4187E-1 0.2139E+0 0.6284 0.2626E+0 0.8147
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Figure 5.2: Total errors e(σ,u,γ) vs. degrees of freedom N for the uniform and
adaptive refinements (Example 3).
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Figure 5.3: Adapted intermediate meshes with 4038 and 12778 degrees of freedom
(Example 2).

Figure 5.4: Adapted intermediate meshes with 6553 and 11398 degrees of freedom
(Example 3).
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