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BEM-FEM coupling for wave-structure interaction

Salim Meddahi A and Francisco-Javier Sayas B

Abstract. We present a numerical method, based on a coupling of finite elements

and boundary elements, to solve a fluid–solid interaction problem posed in the

plane. The boundary unknowns involved in our formulation are approximated

by a spectral method. We provide error estimates for the Galerkin method and

present numerical results that illustrate the accuracy of our scheme.

1. Introduction

We introduce a numerical method based on the coupling of finite elements (FEM)
and boundary elements (BEM) to describe the interaction between a bounded solid
body and the compressible inviscid fluid surrounding it, when time–harmonic excita-
tions of the system are imposed.

We follow [1, 3, 7] and use linear integral equations as nonlocal boundary condi-
tions on an artificial interface. In [1, 3] the boundary that separates the two media
(the wet interface) is used as a coupling boundary. The well posedness of the result-
ing formulation (at the continuous level) requires regularity assumptions for the wet
interface that may not be fulfilled in practice. In the present paper, we proceed as in
[7] and impose the absorbing boundary conditions on a smooth but arbitrary interface
that contains the obstacle in its interior. This procedure enlarges the domain for finite
element computations, however, this drawback is compensated by the fact that our
scheme is no more limited to problems with smooth wet boundaries.

We also point out that the coupling methods proposed in [1, 3, 7] lead to for-
mulations that are not well-posed when the square of the wave number is a Dirichlet
eigenvalue of the Laplace operator in the interior domain. Thus, the corresponding
numerical method may exhibit an unstable behavior in the vicinity of these singular
coefficients. The method presented here is free from this restriction.

The paper is organized as follows. In sections 2 and 3, we introduce the model
problem, derive a coupled boundary–interior formulation and prove its well-posedness.

2000 Mathematics Subject Classification. Primary 65N30 Secondary 65N12.

Key words and phrases. Mixed finite elements, elastodynamics, Helmholtz equation.

5



6 SALIM MEDDAHI AND FRANCISCO-JAVIER SAYAS

In section 5 we introduce the Galerkin BEM-FEM discretization and provide a con-
vergence result. Finally, section 5 is devoted to the numerical results.

1.1. Notations and Sobolev spaces. We will extensively deal with complex
valued functions. The symbol ı is used for

√
−1. For a complex number α ∈ C, α

denotes its conjugate and |α| its modulus. If Ω is bounded open set in R2, ‖·‖0,Ω

denotes the L2(Ω)-norm. More generally, for any m ∈ N, ‖·‖m,Ω denotes the usual
norm of the Sobolev space Hm(Ω), see [2].

We will also consider periodic Sobolev spaces. Let C∞
2π be the space of 2π-periodic

and infinitely differentiable complex valued functions of a single variable. Given g ∈
C∞

2π, we define its Fourier coefficients

(1.1) ĝ(k) :=
1

2π

∫ 2π

0

g(s)e−ıks ds.

Then, for p ∈ R, we define the Sobolev space Hp to be the completion of C∞
2π with

respect to the norm ‖g‖p :=
(∑

k∈Z
(1 + |k|2)p|ĝ(k)|2

)1/2
. It is well known (see [4])

that Hp are Hilbert spaces and Hp ⊂ Hq for every p > q, the inclusion being dense
and compact. Notice that H0 = L2(0, 2π). The H0-bilinear form

〈 λ, η 〉 :=

∫ 2π

0

λ(t) η(t) dt

can be extended to represent the duality between H−p and Hp for all p > 0. We will
keep the same notation for this duality bracket.

2. Governing equations

Consider an elastic body, modelled as an infinitely long cylinder (parallel to the
x3-axis) whose cross section is Ωs. The boundary of Ωs is denoted Σ and we assume
that the exterior of the body is occupied by a fluid. We are concerned with the
response of the fluid–solid system to the action of time–harmonic forces on the solid
and of a time–harmonic wave travelling in the fluid. The variables of the problem are
the spacial components of the displacement field for the solid and the scattered wave
in the fluid.

Let ω be the frequency of the incident wave and of the body forces and let the
amplitudes of those be denoted respectively by w = w(x1, x2) and f = f(x1, x2). The
incident wave is generally taken to satisfy the Helmholtz equation ∆w + k2w = 0 in
Ωf := R2 r Ωs.

We assume that the phenomenon is invariant under a translation in the x3-
direction and consider a bidimensional model posed in the frequency domain. The
unknowns of the problem are the amplitude u : Ωs → C2 of the solid displacements
field and the amplitude p : Ωf → C of the scattered pressure.

We suppose that the solid is homogeneous, isotropic and linearly elastic, with
mass density ρs and Lamé constants λ, µ. We denote as usual the stress tensor by

σ(u) := λ trε(u) I + 2µ ε(u), where εij(u) := 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the infinitesimal strain

tensor. Furthermore, we assume that the fluid is ideal, compressible and homogeneous
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with mass density ρf and wave number k = ω
c where c is the speed of sound in the

linearized fluid.
Let us denote by n the unit normal on Σ directed into Ωf . Under the hypothesis

of small oscillations both in the solid and the fluid, u and p are found out to satisfy
the equations

(2.1)





∇ · σ(u) + ρs ω
2 u = −f in Ωs,

∆p+ k2 p = 0 in Ωf ,

σ(u)n = −(p+ w)n on Σ,

ρf ω
2 u · n = ∂(p+w)

∂n
on Σ,

and the decay condition

(2.2)
∂p

∂r
− ıkp = o(r−1/2)

when r := |x| → +∞ uniformly for all directions x

|x| .

It is known that if f = 0 and w = 0 then p = 0 and u is solution of (see [5])

(2.3)





∇ · σ(u) + ρs ω
2 u = 0 in Ωs,

σ(u)n = 0 on Σ,

u · n = 0 onΣ.

It turns out that for certain regions and some frequencies ρs ω
2, known as Jones

frequencies, problem (2.3) has nontrivial solutions. This seems to be a rare eventuality
but we will, in any case, assume that (2.3) only admits the trivial solution.

3. A week formulation with non-local boundary conditions

Figure 1. Geometry of the problem.
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Let us introduce an artificial boundary Γ such that Ωs lies in its interior. Then,
Γ separates R2 into a bounded domain Ω and an unbounded region Ω+

f exterior to Γ.

We denote Ω−
f := Ωf ∩Ω. Notice that Ω = Ωs∪Ω−

f . The normal vector on Γ is always

taken pointing into Ω+
f , see Figure 1.

We consider the bilinear forms

Eω(u,v) :=

∫

Ωs

(σ(u) : ε(v) − ρsω
2u · v) dx,

ak(p, q) :=

∫

Ω−

f

(∇p · ∇q − k2 p q) dx and D(v, q) :=

∫

Σ

v · n q dτ.

We are concerned here with the following BEM-FEM formulation of (2.1)–(2.2)
introduced in [10]:

(3.1)





find u ∈ (H1(Ωs))
2, p ∈ H1(Ω−

f ), ξ ∈ H−1/2 and ψ ∈ H1/2 such that

Eω(u,v) +D(v, p) = L(v) ∀v ∈ (H1(Ωs))
2

ak(p, q) + ρfω
2D(u, q) − 〈 ξ, γq 〉 = ℓ(q) ∀q ∈ H1(Ω−

f )

〈 µ, γp 〉 − 1
2 〈 µ, ψ 〉 − b(ψ, µ) − ıηs(ψ, µ) = 0 ∀µ ∈ H−1/2

〈 ξ, ϕ 〉 + c(ψ, ϕ) + ıη2 〈 ψ, ϕ 〉 − ıηb(ϕ, ψ) = 0 ∀ϕ ∈ H1/2

where η > 0 is arbitrary,

L(v) :=

∫

Ωs

f · v dx −D(v,w), ℓ(q) :=

∫

Σ

∂w

∂n
q dτ,

b(ψ, µ) := 〈 µ,Dψ 〉, c(ψ, ϕ) := 〈 Hψ, ϕ 〉 and s(ψ, µ) := 〈 µ,Sψ 〉.
We used here the single and double layer acoustic potentials

Sg(s) :=

∫ 2π

0

V (s, t)g(t)dt and Dg(s) :=

∫ 2π

0

K(s, t)g(t)dt,

where

V (s, t) :=
ı

4
H

(1)
0 (k|x(s) − x(t)|)

and

K(s, t) := −kı
4
H

(1)
1 (k|x(t) − x(s)|)x

′
2(t)(x1(t) − x1(s)) − x′1(t)(x2(t) − x2(s))

|x(t) − x(s)| ,

H
(1)
0 and H

(1)
1 being the Hankel functions of the first kind and order zero and one

respectively.
Finally, we define the hypersingular operator H through the following identity

that relate it to the single layer operator: (see [6, page 295])

(3.2) 〈 Hψ, η 〉 = 〈 η′,Sψ′ 〉 − k2〈 S̃ψ, η 〉 ∀ψ, η ∈ H1/2,

where S̃ is the integral operator whose kernel is given by Ṽ (t, s) := x′(t) ·x′(s)V (t, s).
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We point out that the auxiliary unknown ξ is given in terms of the normal deriv-
ative of p on Γ by ξ := |x′| ∂p

∂ν
◦ x while ψ is a density function that is not directly

related to p.

Theorem 1. Problem (3.1) is well posed.

Proof. See [10]. �

4. The discrete scheme

For simplicity of exposition, from now on we assume that Σ is polygonal. Let
N be a given integer. We consider the equidistant subdivision {ti := iπ/N ; i =
0, · · · , 2N − 1} of the interval [0, 2π] with 2N grid points. We denote by Ωh the
polygonal domain whose vertices lying on Γ are {x(ti) : i = 0, . . . , 2N − 1}. Let
{τh} be a regular family of triangulations of Ωh by triangles T of diameter hT not
greater than max ||x′(·)||h, where h := π/N . We assume that the restriction τs

h :={
T ∈ τh; T ⊂ Ωs

}
of τh to Ωs is a triangulation, i.e., that τh respects the interface

between Ωs and Ω−
f . If we set τf

h := τh r τs
h, then Ω−

f,h := interior(∪T∈τf

h

T ) is a

polygonal approximation of Ω−
f .

From τf
h we can obtain a triangulation τ̃f

h of Ω−
f by replacing each triangle of τf

h

with one side along ∂Ωh by the corresponding curved triangle. Let then T be a curved

triangle in τ̃f
h . It is well known that there exists h0 > 0 such that if h ∈ (0, h0), T is

the range of T̂ by a C∞ and one-to-one mapping FT : T̂ → R2 that may be computed
explicitly in terms of x. This type of diffeomorfism was first proposed by Zlámal [11].
If T is a straight (interior) triangle, FT is the usual affine map from the reference
triangle. This hypothesis will be implicit in the following.

Let (T̂ , Pm(T̂ ), Σ̂m) denote the standard Lagrange finite element of order m on

the reference triangle T̂ . A finite element is defined on T by a triplet (T, Pm(T ),Σm),

where Pm(T ) is the image under FT of the space Pm(T̂ ) of polynomials of degree no

greater than m on T̂ :

Pm(T ) := {p : T → C; p = p̂ ◦ F−1
T , p̂ ∈ Pm(T̂ )},

and ΣT = {Nk
i ; i = 1, · · · , (m + 1)(m + 2)/2} is a set of linear functionals defined

by Ni(φ) = φ ◦ FT (âi) ∀φ ∈ C0(T ) where âi are the nodes in T̂ .
We introduce the finite element spaces

V s
h := {v ∈ C0(Ωs); v|T ∈ Pm(T ) ∀T ∈ τs

h}

and

V f
h := {q ∈ C0(Ω−

f ); q|T ∈ Pm(T ) ∀T ∈ τ̃f
h },

Finally, for any integer n, we consider the 2n–dimensional space

Tn :=





n∑

j=0

aj cos jt+
n−1∑

j=1

bj sin jt; aj , bj ∈ C



 .



10 SALIM MEDDAHI AND FRANCISCO-JAVIER SAYAS

The discrete version of (3.1) is given by

(4.1)





find uh ∈ (V s
h )2, ph ∈ V f

h , ξn ∈ Tn and ψn ∈ Tn such that

Eω(uh,v) +D(v, ph) = L(v) ∀v ∈ (V s
h )2

ak(ph, q) + ρfω
2D(uh, q) − 〈 ξn, γq 〉 = ℓ(q) ∀q ∈ V f

h

〈 µ, γph 〉 − 1
2 〈 µ, ψn 〉 − b(ψn, µ) − ıηs(ψn, µ) = 0 ∀µ ∈ Tn

〈 ξn, ϕ 〉 + c(ψn, ϕ) + ıη2 〈 ψn, ϕ 〉 − ıηb(ϕ, ψn) = 0 ∀ϕ ∈ Tn

Theorem 2. If δ := (h, 1
n ) is small enough, problem (4.1) has a unique solution.

Moreover, if u ∈ Hm+1(Ωs)
2 and p ∈ Hm+1(Ω−

f ), then

‖û−ûδ‖M 6 C2

(
hm(‖u‖m+1,Ωs

+‖p‖m+1,Ω−

f
)+(2/n)σ(‖ξ‖σ−1/2+‖ψ‖σ+1/2)

)
(∀σ > 0),

where û := (u, p, ξ, ψ), ûδ := (uh, ph, ξn, ψn) and M := H1(Ωs)
2×H1(Ω−

f )×H−1/2×
H1/2.

Proof. See [10]. �

5. Numerical results

We test our numerical method with a problem (2.1) whose exact solution is known
explicitly. We take Ωs = (−0.2, 0.2)×(−0.4, 0.4) and define Γ to be the ellipse centered
at the origin with minor and major semiaxis equal to 0.4 and 0.6 respectively. We
also choose ρs = ρf = c = λ = µ = 1. In sequel, k2 = (ω/c)2 = 25.9948 is an
approximation of the first Dirichlet eigenvalue of the Laplace operator in Ω. Thus,
our method is tested in the case where the numerical schemes given in [1, 3, 7] may
exhibit an unstable behavior because of the lack of uniqueness. Let us denote by K0,
K1 and K2 the modified Bessel functions of the second kind and order 0, 1 and 2
respectively. The function given by

ue(x) =
1

2π

(
ψ(x) − (x1−0.3)2

r2

1

χ(x)

− (x1−0.3)x2

r2

1

χ(x)

)
,

(
r1 :=

√
(x1 − 0.3)2 + x2

2

)
,

with ψ(x) := K0(ıωr1) + 1
ıωr1

(
K1(ıωr1) − 1√

3
K1(

ıωr1√
3

)
)

and χ(x) := K2(ıωr1) −
1
3K2(

ıωr1√
3

), is a solution of the elastodynamic equation in Ωs when f = 0.

On the other hand, the scalar function pe(x) = H
(1)
0 (ω|x|) solves the Helmholtz

equation in Ωf and satisfies the radiation conditions (2.2). Thus, (ue, pe) is solution
of (2.1) with non-homogeneous transmission conditions on Σ.

In Table 1, we take h = 2π/64 and ω =
√

25.9948 and we use a quadratic finite
element method, i.e., we take m = 2. We decrease the spectral parameter n until we
obtain the smallest value that preserves the order of accuracy. We can see that the
number of degrees of freedom on the boundary may be drastically reduced without
affecting the convergence of the scheme. This justifies the following strategy used to
solve the linear systems of equations: We use a static condensation method to eliminate
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2n ‖u− u∗
h‖1,Ωs

‖p− p∗h‖1,Ω−

f

64 6.66 × 10−4 1.99 × 10−3

48 6.68 × 10−4 1.93 × 10−3

32 7.28 × 10−4 6.44 × 10−3

24 5.54 × 10−3 1.19 × 10−2

Table 1. Convergence history and number of iterations of the
method for different values of the parameter n when h = 2π/64 and

ω =
√

25.9948.

h ‖u− u∗
h‖1,Ωs

‖p− p∗h‖1,Ωs
iterations

2π/24 4.82 × 10−3 1.46 × 10−2 22
2π/32 3.14 × 10−3 6.83 × 10−3 22
2π/48 1.29 × 10−3 3.15 × 10−3 22
2π/64 6.77 × 10−4 2.07 × 10−3 22

Table 2. Convergence history and number of iterations of the
method for different values of the parameter h when ω =

√
25.9948

and n = 20.

the boundary variables. Afterwards, the reduced system is solved by a preconditioned
GMRES method with the preconditioner

(
A0 0

0 R0

)

where A0 and R0 are the matrices associated to the sesquilinear forms
∫
Ωs
σ(u) :

ε(v)dx and
∫
Ω−

f

∇p ·∇qdx respectively. We use a version of GMRES without restarts.

We take as an initial guess an identically vanishing function in both Ωs and Ω−
f . Itera-

tions are continued until ‖rk+1‖2/‖rk‖2 < 10−6 where rk is the k–th residual. Table 2
shows the number of iterations against h with n = 20 and ω = 5. The numerical
results suggest that the method has a number of iterations bounded independently of
the critical parameter h.
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