SCIENTIA

Series A: Mathematical Sciences, Vol. 11 (2005), 69–81 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2005

Singularities of quasiregular mappings on Carnot groups

Irina Markina

ABSTRACT. In 1970 Poletskiĭ applied the method of the module of a family of curves to describe behavior of quasiregular mappings (in another terminology mappings with bounded distortion) in \mathbb{R}^n . In the present paper we generalize a result by Poletskiĭ and study a singular set of a quasiregular mapping using the method of the module of a families of curves on Carnot groups.

1. Introduction

A mapping with bounded distortion is a natural generalization of an analytic function of one complex variable to the Euclidean space of the dimension n > 2. It was firstly introduced and studied by Reshetnyak in 1966—1968 [29, 30, 31]. In some sense it is a quasiconformal mapping admitting branch points. Later these mappings, under the name quasiregular mappings, were investigated intensively by Martio, Rickman, Väisälä, Gehring, Vuorinen, Bojarski, Iwaniec and others [4, 12, 23, 24, 33, 37].

The method of extremal lengths or the module of a family of curves was actively employed to treat analytic functions and quasiconformal mappings (see, for example, [1, 2, 5, 38]). Poletskiĭ successfully applied this method to study quasiregular mappings and obtained some interesting and fundamental results [27, 28].

Recently, the analysis on homogeneous groups has been developed intensively. Quasiconformal mappings on a homogeneous group of special type were initially considered by Mostow [25] in 1971 in connection with the rigidity theorems for the rank one symmetric space. Quasiconformal and quasiregular mappings on the Carnot groups have been studied, for instance, in [8, 9, 14, 18, 35].

The main result of this paper concerns with a characteristic of a singular set of quasiregular mappings. This singular set is defined in terms of the module of a family of locally rectifiable curves on Carnot groups. We prove that the module of a family of curves terminating on a closed set vanishes, if the module of a sub-family of this family, starting on a closed set of positive capacity, also vanishes. Precisely, let \mathbb{G} be a Carnot group, $\Omega \subset \mathbb{G}$ be a domain, and $f:\Omega \to \mathbb{G}$ be a quasiregular mapping. Set I, A closed sets in Ω . By $\Gamma^*(I)$ we denote the family of horizontal curves in $f(\Omega)$ admitting a lifting $\Gamma(I;\Omega)$ terminating on the set $I \subset \Omega$. We use the notation $\Gamma^*(A;I)$ for the family of

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C65. Secondary 22E30.

 $Key\ words\ and\ phrases.$ Carnot group, quasiregular mapping, lifting of curves, module of families of curves, capacity.

This work is partially supported by projects: Fondecyt (Chile) #1040333, and UTFSM #12.05.23.

horizontal curves in $f(\Omega)$, such that the lifting of these curves $\Gamma(A, I; \Omega)$ starts on the set $A \subset \Omega$ and terminates on $I \subset \Omega$. We prove the next theorem.

THEOREM 1.1. Let I, A be closed disjoint sets in $\Omega \subset \mathbb{G}$, such that $\operatorname{cap} A > 0$. Then $M(\Gamma^*(I)) = 0$, if and only if $M(\Gamma^*(A, I)) = 0$.

In the next section the reader can find the exact definitions and preliminary results.

2. Definitions and preliminaries

The Carnot group is a connected and simply connected nilpotent Lie group \mathbb{G} whose Lie algebra \mathcal{G} decomposes into the direct sum of vector subspaces $V_1 \oplus V_2 \oplus \ldots \oplus V_m$ satisfying the following relations:

$$[V_1, V_i] = V_{i+1}, \qquad 1 \leqslant i < m, \qquad [V_1, V_m] = \{0\}.$$

We identify the Lie algebra \mathcal{G} with a space of left-invariant vector fields. Let X_{11}, \ldots, X_{1n_1} be a basis of V_1 , $n_1 = \dim V_1$, and $\langle \cdot, \cdot \rangle_0$ be a left-invariant Riemannian metric on V_1 such that

$$\langle X_{1i}, X_{1j} \rangle_0 = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Then, V_1 determines a subbundle HT of the tangent bundle $T\mathbb{G}$. We call HT the horizontal tangent bundle of \mathbb{G} with HT_q as the horizontal tangent space at $q \in \mathbb{G}$. Respectively, the vector fields X_{1j} , $j = 1, \ldots, n_1$, are said to be horizontal vector fields.

Next, we extend X_{11}, \ldots, X_{1n_1} to a basis X_{ij} , $i = 1, \ldots, m, j = 1, \ldots, n_j = \dim V_i$, of \mathcal{G} . It is known (see, for instance, [10]) that the exponential map $\exp : \mathcal{G} \to \mathbb{G}$ from the Lie algebra \mathcal{G} into the Lie group \mathbb{G} is a global diffeomorphism. We can identify the points $q \in \mathbb{G}$ with the points $x \in \mathbb{R}^N$, $N = \sum_{i=1}^m \dim V_i$, by means of the mapping

 $q = \exp(\sum_{i,j} x_{ij} X_{ij})$. The number $N = \sum_{i=1}^{m} \dim V_i$ is the topological dimension of the

Carnot group. The bi-invariant Haar measure on \mathbb{G} is denoted by dx; this is the push-forward of the Lebesgue measure in \mathbb{R}^N under the exponential map. The family of dilations $\{\delta_{\lambda}(x): \lambda > 0\}$ on the Carnot group is defined as $\delta_{\lambda}x = \delta_{\lambda}(x_{ij}) = (\lambda^i x_{ij})$.

Moreover, $d(\delta_{\lambda}x) = \lambda^{Q}dx$ and the quantity $Q = \sum_{i=1}^{m} i \dim V_{i}$ is called the homogeneous dimension of \mathbb{G} .

EXAMPLE 1. The Euclidean space \mathbb{R}^n with the standard structure is an example of an Abelian group. The exponential map is the identical mapping and the vector fields $X_i = \frac{\partial}{\partial x_i}$, $i = 1, \ldots, n$, have only trivial commutators and constitute a basis for the corresponding Lie algebra.

EXAMPLE 2. The simplest example of a non-abelian Carnot group is the Heisenberg group \mathbb{H}^n . The non-commutative multiplication is defined as

$$pq = (x, y, t)(x', y', t') = (x + x', y + y', t + t' - 2xy' + 2yx'),$$

where $x, x', y, y' \in \mathbb{R}^n$, $t, t' \in \mathbb{R}$. Left translation $L_p(\cdot)$ is defined as $L_p(q) = pq$. The left-invariant vector fields

$$X_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad Y_i = \frac{\partial}{\partial u_i} - 2x_i \frac{\partial}{\partial t}, \quad i = 1, \dots, n, \qquad T = \frac{\partial}{\partial t},$$

constitute the basis of the Lie algebra of the Heisenberg group. All non-trivial relations are only of the form $[X_i, Y_i] = -4T$, i = 1, ..., n, and all other commutators vanish. Thus, the Heisenberg algebra has the dimension 2n + 1 and splits into the direct sum $\mathcal{G} = V_1 \oplus V_2$. The vector space V_1 is generated by the vector fields $X_i, Y_i, i = 1, ..., n$, and the space V_2 is the one-dimensional center which is spanned by the vector field T. For more information see [17].

EXAMPLE 3. A Carnot group is said to be of \mathbb{H} -type if the Lie algebra $\mathcal{G} = V_1 \oplus V_2$ is two-step and if the inner product $\langle \cdot, \cdot \rangle_0$ in V_1 can be extended to an inner product $\langle \cdot, \cdot \rangle_0$ in all of \mathcal{G} so that the linear map $J: V_2 \to \operatorname{End}(V_1)$ defined by $\langle J_Z U, V \rangle = \langle Z, [U, V] \rangle$ satisfies $J_Z^2 = -\langle Z, Z \rangle$ Id for all $Z \in V_2$. For the moment we introduce the notation $\|Z\|^2 = \langle Z, Z \rangle$. Then $\|J_Z V\| = \|Z\| \cdot \|V\|$ and $\langle V, J_Z V \rangle = 0$ for all $V \in V_1$ and $Z \in V_2$. More details and information see in [7, 16].

A homogeneous norm on $\mathbb G$ is, by definition, a continuous function $|\cdot|$ on $\mathbb G$ which is smooth on $\mathbb G \smallsetminus \{0\}$ and such that $|x| = |x^{-1}|, \ |\delta_\lambda(x)| = \lambda |x|, \ \text{and} \ |x| = 0$ if and only if x = 0. The norm $|\cdot|$ defines a pseudo-distance: $d(x,y) = |x^{-1}y|$ satisfying the generalized triangle inequality $d(x,y) \leqslant \varpi(d(x,z)+d(z,y))$ with a positive constant ϖ . By B(x,r) we denote an open ball in the metric d of radius r>0 centered at x. By $\operatorname{mes}(E)$ we denote the measure of the set E. Our normalizing condition is such that the balls of radius one have measure one: $\operatorname{mes}(B(0,1)) = \int_{B(0,1)} dx = 1$. We have $\operatorname{mes}(B(0,r)) = r^Q$ because the Jacobian of the dilation δ_r is r^Q .

A continuous map $\gamma: I \to \mathbb{G}$ is called a curve. Here I is a (possibly unbounded) interval in \mathbb{R} . If I = [a,b] then we say that $\gamma: [a,b] \to \mathbb{G}$ is a closed curve. A closed curve $\gamma: [a,b] \to \mathbb{G}$ is rectifiable if $\sup \left\{ \sum_{k=1}^{p-1} d \left(\gamma(t_k), \gamma(t_{k+1}) \right) \right\} < \infty$, where the supremum ranges over all partitions $a = t_1 < t_2 < \ldots < t_p = b$ of the segment [a,b]. Pansu proved in $[\mathbf{26}]$ that any rectifiable curve is differentiable almost everywhere in (a,b) in the Riemannian sense and there exist measurable functions $a_j(s), s \in (a,b)$, such that

$$\dot{\gamma}(s) = \sum_{j=1}^{n_1} a_j(s) X_{1j}(\gamma(s)) \quad \text{and} \quad d(\gamma(s+\tau), \gamma(s) \exp(\dot{\gamma}(s)\tau)) = o(\tau) \text{ as } \tau \to 0$$

for almost all $s \in (a,b)$. The length $l(\gamma)$ of a rectifiable curve $\gamma:[a,b] \to \mathbb{G}$ can be calculated by the formula

$$l(\gamma) = \int_{a}^{b} \langle \dot{\gamma}(s), \dot{\gamma}(s) \rangle_{0}^{1/2} ds = \int_{a}^{b} \left(\sum_{j=1}^{n_{1}} |a_{j}(s)|^{2} \right)^{1/2} ds$$

where $\langle \cdot, \cdot \rangle_0$ is the left invariant Riemannian metric on V_1 . A result of [6] implies that one can connect two arbitrary points $x, y \in \mathbb{G}$ by a rectifiable curve. The Carnot-Carathéodory distance $d_c(x, y)$ is the infimum of the lengths over all rectifiable curves

with endpoints x and $y \in \mathbb{G}$. The Hausdorff dimension of the metric space (\mathbb{G}, d_c) coincides with the homogeneous dimension Q of the group \mathbb{G} .

DEFINITION 2.1. A function $u:\Omega\to\mathbb{R},\,\Omega\subset\mathbb{G}$, is said to be absolutely continuous on lines $(u \in ACL(\Omega))$ if for any domain $U \subseteq \Omega$, and any fibration \mathcal{X}_j defined by the left-invariant vector fields X_{1j} , $j = 1, \ldots, n_1$, the function u is absolutely continuous on $\gamma \cap U$ with respect to the \mathcal{H}^1 -Hausdorff measure for $d\gamma$ -almost all curves $\gamma \in \mathcal{X}_i$. (Recall that the measure $d\gamma$ on \mathcal{X}_i equals the inner product $i(X_i)$ of the vector field X_i by the bi-invariant volume form dx.)

The Sobolev space $W^1_p(\Omega)$ $(L^1_p(\Omega))$, $1 \leq p < \infty$, consists of locally summable functions $u: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{G}$, having distributional derivatives $X_{1j}u$ along the vector fields X_{1j} and the finite norm

$$||u| |W_p^1(\Omega)|| = \left(\int_{\Omega} |u|^p dx\right)^{1/p} + \left(\int_{\Omega} |\nabla_0 u|_0^p dx\right)^{1/p}$$

$$\Big(\text{semi-norm} \qquad \|u\mid L^1_p(\Omega)\| = \Big(\int\limits_{\Omega} |\nabla_0 u|_0^p \, dx\Big)^{1/p}\Big).$$

Here $\nabla_0 u = (X_{11}u, \dots, X_{1n_1}u)$ is the subgradient of u and $|\nabla_0 u|_0 = \langle \nabla_0 u, \nabla_0 u \rangle_0$. We say, that u belongs to $W_{p,\text{loc}}^1(\Omega)$ if for an arbitrary bounded domain $U, \overline{U} \subset \Omega$, the function u belongs to $W_p^1(U)$. For a function $u \in ACL(\Omega)$, the derivatives $X_{1j}u$ along the vector fields X_{1j} , $j = 1, \ldots, n_1$, exist almost everywhere in Ω . It is known that a function $u : \Omega \to \mathbb{R}$ belongs to $W_p^1(\Omega)$ ($L_p^1(\Omega)$), $1 \leq p < \infty$, if and only if it can be modified on a set of measure zero by such a way that $u \in L_p(\Omega)$ (u is locally p-summable), $u \in ACL(\Omega)$, and $X_{1j}u \in L_p(\Omega)$ hold, $j = 1, \ldots, n_1$.

Definition 2.2. A mapping $f:\Omega\to\mathbb{G},\ \Omega\subset\mathbb{G}$, belongs to the Sobolev class $W^1_{p,\mathrm{loc}}(\Omega),\,1\leqslant p<\infty,$ if and only if it can be modified on a set of measure zero by such a way that

- 1) $|f(x)| \in L_{p,loc}(\Omega)$;
- 2) the coordinate functions f_{ij} belong to $ACL(\Omega)$ for all i and j;
- 3) $f_{1j} \in W^1_{p,\text{loc}}(\Omega)$ for $1 \leq j \leq n_1$; 4) the vector $X_{1k}(f(x)) = \sum_{\substack{1 \leq l \leq m, 1 \leq \omega \leq n_l}} X_{1k}(f_{l\omega}(x)) \frac{\partial}{\partial x_{l\omega}}$ belongs to $HT_{f(x)}$ for almost all $x \in \Omega$ and all k = 1, ...

In [13, 36], one can find various definitions of the Sobolev space on Carnot groups and their correlations. The matrix $X_{1k}f = (X_{1k}f_{1j})_{k,j=1,\dots,n_1}$ defines a linear operator $D_H f: V_1 \to V_1$ [26] which is called a formal horizontal differential. A norm of the operator $D_H f$ is defined by

$$|D_H f(x)| = \sup_{\xi \in V_1, |\xi|_0 = 1} |D_H f(x)(\xi)|_0.$$

The norm $|D_H f|$ is equivalent to $|\nabla_0 f|_0 = \left(\sum_{i=1}^{n_1} |X_{1i} f|_0^2\right)^{\frac{1}{2}}$. It has been proved in [36] that the formal horizontal differential $D_H f$ generates a homomorphism $Df: \mathcal{G} \to \mathcal{G}$ of Lie algebras which is called a *formal differential*. The determinant of the matrix Df(x) is denoted by J(x, f) and called a *(formal) Jacobian*.

A continuous map $f: \Omega \to \mathbb{G}$, $\Omega \subset \mathbb{G}$, is *open* if the image of an open set is open and *discrete* if the pre-image $f^{-1}(y)$ of each point $y \in f(\Omega)$ consists of isolated points. We say that f is sense-preserving if a topological degree $\mu(y, f, U)$ is strictly positive for all domains $U, \overline{U} \subset \Omega$ and $y \in f(U) \setminus f(\partial U)$.

DEFINITION 2.3. Let Ω be a domain on the group \mathbb{G} . A mapping $f:\Omega\to\mathbb{G}$ is said to be a *quasiregular mapping* if

- 1) f is continuous open discrete and sense-preserving;
- 2) f belongs to $W_{Q,\text{loc}}^1(\Omega)$;
- 3) the formal horizontal differential $D_H f$ satisfies the condition

(2.1)
$$\max_{|\xi|_0 = 1, \xi \in V_1} |D_H f(x)(\xi)|_0 \leqslant K \min_{|\xi|_0 = 1, \xi \in V_1} |D_H f(x)(\xi)|_0$$

for almost all $x \in \Omega$.

It is known [36] that the pointwise inequality (2.1) is equivalent to the following one: the formal horizontal differential $D_H f$ satisfies the condition

$$(2.2) |D_H f(x)|^Q \leqslant K' J(x, f)$$

for almost all $x \in \Omega$ where K' depends on K. The smallest constant K' in inequality (2.2) is called the *outer distortion* and denoted by $K_O(f)$. It is not hard to see that for a quasiregular mapping the inequality

(2.3)
$$0 \leqslant J(x,f) \leqslant K'' \min_{|\xi|_0 = 1, \xi \in V_1} |D_H f(x)(\xi)|_0^Q$$

also holds for almost all $x \in \Omega$ where $K^{"}$ depends on K. The smallest constant $K^{"}$ in inequality (2.3) is called the *inner distortion* and denoted by $K_I(f)$.

DEFINITION 2.4. A continuous mapping $f:\Omega\to\mathbb{G}$ is \mathcal{P} -differentiable at $x\in\Omega$ if the family of maps $f_t=\delta_{1/t}(f(x)^{-1}f(x\delta_t y))$ converges locally uniformly to an automorphism of \mathbb{G} as $t\to0$.

In the following theorem we formulate some analytic properties of quasiregular mappings [35, 36]. We denote by B_f the set of points where a quasiregular mapping f is not homeomorphic. In the statement of the theorem we use notions of the topological degree $\mu(y, f, D)$ of the mapping f and the multiplicity function $N(y, f, A) = \operatorname{card}\{x \in f^{-1}(y) \cap A\}$ (see the precise definitions, for instance, in [34]).

THEOREM 2.1. Let $f:\Omega\to\mathbb{G},\ \Omega\subset\mathbb{G}$, be a quasiregular mapping. Then it possesses the following properties:

- 1) f is \mathcal{P} -differentiable almost everywhere in Ω ;
- 2) \mathcal{N} -property: if mes(A) = 0 then mes(f(A)) = 0;
- 3) \mathcal{N}^{-1} -property: if mes(A) = 0 then $mes(f^{-1}(A)) = 0$;
- 4) $mes(B_f) = mes(f(B_f)) = 0;$
- 5) J(x, f) > 0 almost everywhere in Ω ;

6) for every compact domain $D \in \Omega$ such that $\operatorname{mes}(f(\partial D)) = 0$ (every measurable set $A \subset \Omega$) and every measurable function u, the function $y \mapsto u(y)\mu(y,f,D)$ ($y\mapsto u(y)N(y,f,D)$) is integrable in $\mathbb G$ if and only if the function $(u\circ f)(x)J(x,f)$ is integrable on D (A); moreover, the following change of variable formulas hold:

(2.4)
$$\int\limits_{D}(u\circ f)(x)J(x,f)\,dx=\int\limits_{\mathbb{G}}u(y)\mu(y,f,D)\,dy,$$

(2.5)
$$\int\limits_A (u \circ f)(x) J(x, f) \, dx = \int\limits_{\mathbb{G}} u(y) N(y, f, A) \, dy.$$

If A is a closed set in an open set $\Omega \in \mathbb{G}$, then we use the following definition of the capacity:

$$\operatorname{cap} A = \inf \int_{\mathbb{G}} |\nabla_0 v|^Q \, dx,$$

where the infimum is taken over all non-negative functions $v \in C_0^{\infty}(\Omega)$, such that $v|_A \ge 1$.

The linear integral is defined by $\int_{\gamma} \rho \, ds = \sup \int_{\gamma'} \rho \, ds = \sup \int_{0}^{l(\gamma')} \rho(\gamma'(s)) \, ds$, where the supremum is taken over all closed parts γ' of γ and $l(\gamma')$ is the length of γ' . Let Γ be a family of curves in \mathbb{G} . Denote by $\mathcal{F}(\Gamma)$ the set of Borel functions $\rho: \mathbb{G} \to [0; \infty]$, such that the inequality $\int \rho \, ds \geqslant 1$ holds for locally rectifiable curves $\gamma \in \Gamma$.

DEFINITION 2.5. Let Γ be a family of curves in $\overline{\mathbb{G}}$. The quantity

$$M(\Gamma) = \inf \int_{\mathbb{G}} \rho^Q \, dx$$

is called the module of the family of curves Γ . The infimum is taken over all functions $\rho \in \mathcal{F}(\Gamma)$.

Here and subsequently $\langle a,b\rangle$ stands for an interval of one of the following type (a,b), [a,b), (a,b], and [a,b]. Let F_0, F_1 be disjoint compacts in $\overline{\Omega}$. We say that a curve $\gamma: \langle a,b\rangle \to \Omega$ connects F_0 and F_1 in Ω (terminates on F_0 in Ω) if

- 1. $\overline{\gamma(\langle a,b\rangle)} \cap F_i \neq \emptyset, i = 0, 1, (\overline{\gamma(\langle a,b\rangle)} \cap F_0 \neq \emptyset),$
- 2. $\gamma(t) \in \Omega$ for all $t \in (a, b)$.

A family of curves connecting F_0 and F_1 (terminating at F_0) in Ω is denoted by $\Gamma(F_0, F_1; \Omega)$ ($\Gamma(F_0; \Omega)$).

Remark 2.1. Let $f:\Omega\to\mathbb{G}$ be a quasiregular mapping and Γ be a family of curves in Ω . We correlate the parametrization of the curves in $\Gamma\subset\Omega$ and in $\Gamma^*=f(\Gamma)\subset f(\Omega)$. Let $\gamma^*\in\Gamma^*$ be a rectifiable curve. We introduce the length arc parameter s^* in the curve $\gamma^*\in\Gamma^*$. Thus $s^*\in I^*=[0,l(\gamma^*)]$ where $l(\gamma^*)$ is the length of the curve γ^* . If t is any other parameter on γ^* : $\gamma^*(t)=f(\gamma(t))$, then the function $s^*(t)$ is strictly monotone and continuous, so the same holds for its inverse function $t(s^*)$. For the

curve $\gamma(t) \in \Gamma$, such that $f(\gamma(t)) = \gamma^*$, the parameter s^* can be introduced by the following way

$$f(\gamma(t(s^*))) = f(\gamma(s^*)) = \gamma^*(s^*), \quad s^* \in I^*.$$

We note that if we take the length arc parameter s on γ , $s \in I = [0, l(\gamma)]$ and the length arc parameter s^* on γ^* , $s^* \in I^* = [0, l(\gamma^*)]$, then

(2.6)
$$1 = \left| \frac{d\gamma(s)}{ds} \right|_0 = \left| \frac{d\gamma(s^*)}{ds^*} \right|_0 \cdot \left| \frac{ds^*}{ds} \right|.$$

and

(2.7)
$$1 = \left| \frac{d\gamma^{\star}(s^{\star})}{ds^{\star}} \right|_{0} = \left| \frac{d\gamma^{\star}(s)}{ds} \right|_{0} \cdot \left| \frac{ds}{ds^{\star}} \right|.$$

From now on, we use the letters s and s^* to denote the length arc parameters on curves $\gamma \in \Gamma$ and $\gamma^* \in \Gamma^*$. The corresponding domains of s and s^* are denoted by $I = [0, l(\gamma)]$ and $I^* = [0, l(\gamma^*)]$, respectively.

We state here a Poletskii type lemma. Its complete proof for \mathbb{R}^n can be found in [27, 33] and for Carnot groups in [19, 20].

LEMMA 2.1. Let $f: \Omega \to \mathbb{G}$ be a non-constant quasiregular mapping and $U \subset \Omega$ be a domain, such that $\overline{U} \subset \Omega$. Assume Γ to be a family of curves in U such that $\gamma^*(s^*) = f(\gamma(s^*))$ is locally rectifiable and there exists a closed part $\gamma'(s^*)$ of $\gamma(s^*)$ that is not absolutely continuous (the parameterization of Γ and $f(\Gamma)$ is correlated as in Remark 2.1). Then, $M(f(\Gamma)) = 0$

Let $f: \Omega \to \mathbb{G}$ be a continuous discrete and open mapping of a domain $\Omega \in \mathbb{G}$. Let $\beta: [a,b[\in \mathbb{G}$ be a curve and let $x \in f^{-1}(\beta(a))$. A curve $\alpha: [a,c[\to \Omega]$ is called an f-lifting of β starting at point x if

- 1) $\alpha(a) = x$,
- 2) $f \circ \alpha = \beta|_{[a,c[},...]}$

We say that a curve $\alpha: [a, c[\to \Omega \text{ is a } maximal \ f\text{-lifting of } \beta \text{ starting at point } x \text{ if both } 1), 2)$ and the following property hold:

3) if c < c' < b then there does not exist a curve $\alpha' : [a, c'] \to \Omega$ such that $\alpha = \alpha'|_{[a,c]}$ and $f \circ \alpha' = \beta|_{[a,c']}$.

Let $f^{-1}(\beta(a)) = \{x_1, \dots, x_k\}$ and $m = \sum_{j=1}^k i(x_j, f)$. We say that $\alpha_1, \dots, \alpha_m$ is a

maximal essentially separate sequence of f-liftings of β starting at the points x_1, \ldots, x_k if

- 1) each α_j is a maximal lifting of f,
- 2) $\operatorname{card}\{j : \alpha_j(a) = x_l\} = i(x_l, f), 1 \le l \le k,$
- 3) $\operatorname{card}\{j: \alpha_j(t) = x\} \leq i(x, f) \text{ for all } x \in \Omega \text{ and all } t.$

Similarly, we define a maximal sequence of f-liftings terminating at x_1, \ldots, x_k if $f:]b, a] \to \mathbb{G}$. More information about the existence and the properties of liftings can be found in $[\mathbf{32}, \mathbf{40}]$.

The next statement is a generalization of the inequality of Väisälä. The Väisälä inequality is an essential tool on the study of quasiregular mappings. For proof of this inequality see [22, 33].

THEOREM 2.2. Let $f: \Omega \to \mathbb{G}$ be a nonconstant quasiregular mapping, Γ be a family of curves in Ω , Γ^* be a family in \mathbb{G} and m be a positive integer such that the following is true. For every locally rectifiable curve $\beta: \langle a,b \rangle \to \mathbb{G}$ in Γ^* there exist curves $\alpha_1, \ldots \alpha_m$ in Γ such that

1) $(f \circ \alpha_j) \subset \beta$ for all j = 1, ..., m,

2)
$$\operatorname{card}\{j: \alpha_j(t) = x\} \leq i(x, f) \text{ for all } x \in \Omega \text{ and for all } t \in \langle a, b \rangle.$$

Then

$$M(\Gamma^{\star}) \leqslant \frac{K_I(f)}{m} M(\Gamma).$$

3. Proof of the principal results

In the statement of the theorem we use the following notations. A Carnot group is denoted by \mathbb{G} , Ω is a domain on \mathbb{G} , $f:\Omega\to\mathbb{G}$, is a quasiregular mapping. Let I and A be closed sets in a domain Ω . By $\Gamma^*(I)$ we denote the family of locally rectifiable curves in $f(\Omega)$ that admit maximal essentially separate liftings $\Gamma(I;\Omega)$ terminating on the set $I\subset\Omega$. Let $\Gamma^*(A,I)$ be a family of locally rectifiable curves in $f(\Omega)$ such, that the maximal essentially separate liftings of these curves $\Gamma(A,I;\Omega)$ start on the set $A\subset\Omega$ and terminate in $I\subset\Omega$. We recall the statement of the principal theorem.

THEOREM 1.1 Let I, A be closed disjoint sets in $\Omega \subset \mathbb{G}$, such that $\operatorname{cap} A > 0$. Then $M(\Gamma^*(I)) = 0$, if and only if $M(\Gamma^*(A, I)) = 0$.

Proof of Theorem 1.1. Since $\Gamma^{\star}(A,I) \subset \Gamma^{\star}(I)$, we have $M(\Gamma^{\star}(A,I)) \leq M(\Gamma^{\star}(I))$ and the necessary part is obvious.

Let us prove that the assumption $M(\Gamma^*(A,I)) = 0$ implies $M(\Gamma^*(I)) = 0$. We consider an r-neighborhood I_r of the set I and a set G, such that $G = A \cap (\Omega \setminus \overline{I}_{2r})$ and cap G > 0. We fix $\varepsilon \in (0,1)$ and choose an admissible function $\rho^*(y)$ for the family $\Gamma^*(A,I)$, such that $\int_{f(\Omega)} (\rho^*(y))^Q dy < \varepsilon$. We denote by $E, E \subset \Omega$, the set of points

where the mapping f is not \mathcal{P} -differentiable. There exists a Borel set F of measure zero, such that $E \cup B_f \subset F$. Let us define a function $\rho(x)$ on Ω by the rule

(3.1)
$$\rho(x) = \begin{cases} \rho^{\star}(f(x)) \cdot |D_H f(x)| & \text{if } x \in \Omega \setminus (I \cup F), \\ 0 & \text{if } x \in I \cup F. \end{cases}$$

We claim that the function $\rho(x)$ is admissible for the family of curves $\Gamma(A, I; \Omega)$. Indeed, if $\gamma \in \Gamma(A, I; \Omega)$ is a lifting of a curve $\gamma^* \in \Gamma^*(A, I)$ and $s \in I$, $s^* \in I^*$ are the arc length parameters of curves γ and γ^* respectively, then we obtain

$$\int_{\gamma} \rho \, ds = \int_{I} \rho^{\star}(f(\gamma(s)))|D_{H}f(\gamma(s))| \, ds = \int_{I^{\star}} \rho^{\star}(f(\gamma(s^{\star})))|D_{H}f(\gamma(s^{\star}))| \left| \frac{ds}{ds^{\star}} \right| \, ds^{\star}$$

$$= \int_{I^{\star}} \rho^{\star}(\gamma^{\star}(s^{\star}))|D_{H}(\gamma^{\star}(s^{\star}))| \left| \frac{d\gamma^{\star}}{ds} \right|_{0}^{-1} \, ds^{\star} \geqslant \int_{I^{\star}} \rho^{\star}(\gamma^{\star}(s^{\star})) \, ds^{\star}$$

$$= \int_{I^{\star}} \rho^{\star} \, ds^{\star} \geqslant 1$$

by (2.7) and the inequality $|D_H(\gamma^{\star}(s^{\star}))| \left| \frac{d\gamma^{\star}}{ds} \right|_0^{-1} \geqslant 1$.

Two subsets $C_{\varepsilon}^{(r)}$ and $D_{\varepsilon}^{(r)}$ of the boundary ∂I_r are considered. Denote by $C_{\varepsilon}^{(r)}$ the set of the points $x \in \partial I_r$ for which there exists a curve $\alpha \in \Gamma(A,I;\Omega)$ passing through x and satisfying the condition: $\int_{\tilde{\alpha}} \rho \, ds < 1/2$ for an arc $\tilde{\alpha}$ of the curve α such that $\tilde{\alpha} \in \Omega \setminus \overline{I}_r$. Since the function ρ is admissible, we deduce that for any curve α that starts at $x \in C_{\varepsilon}^{(r)}$ and terminates on I we have $\int_{\alpha} \rho \, ds \geqslant 1/2$. Thus, 2ρ is an admissible function for $\Gamma(C_{\varepsilon}^{(r)}, I; \Omega)$.

The subset $D_{\varepsilon}^{(r)}$ is the complement to $C_{\varepsilon}^{(r)}$: $D_{\varepsilon}^{(r)} = \partial I_r \setminus C_{\varepsilon}^{(r)}$. By definition of $D_{\varepsilon}^{(r)}$, for any $\gamma \in \Gamma(G, D_{\varepsilon}^{(r)}; \Omega \setminus \overline{I}_r)$, we get $\int_{\Gamma} \rho \, ds \geqslant 1/2$. We deduce

$$M(\Gamma(G, D_{\varepsilon}^{(r)}; \Omega \setminus \overline{I}_{r})) \leq 2^{Q} \int_{\Omega \setminus \overline{I}_{r}} \rho^{Q} dx \leq 2^{Q} \int_{\Omega} (\rho^{\star}(f(x)))^{Q} |D_{H}f(x)|^{Q} dx$$

$$(3.2) \leq 2^{Q} K_{O}(f) \int_{\Omega} (\rho^{\star}(f(x)))^{Q} J(x, f) dx$$

$$= 2^{Q} K_{O}(f) \int_{f(\Omega)} (\rho^{\star})^{Q} N(y, f, \Omega \setminus \overline{I}_{r}) dy \leq 2^{Q} K_{O}(f) N\varepsilon,$$

where $N = \sup_{y \in \mathbb{G}} N(y, f, \Omega \setminus \overline{I}_r)$.

Let us estimate the module of the family of curves $\Gamma^{\star}(C_{\varepsilon}^{(r)}, I) \subset \Gamma^{\star}(I)$ whose lifting starts at $C_{\varepsilon}^{(r)}$ and terminates at I. We denote $\lambda_f(x) = \min_{|\xi|_0 = 1, \xi \in V_1} |D_H f(x)(\xi)|_0$. If x belongs to $\Omega \setminus (I \cup F)$, then for a function $\rho^{\star} \in \mathcal{F}(\Gamma^{\star}(C_{\varepsilon}^{(r)}, I))$, we get

(3.3)
$$\rho^{\star}(y) = \rho^{\star}(f(x)) = \frac{\rho(x)}{|D_H f(x)|} \geqslant \frac{\rho(x)}{K_O^{1/Q} J^{1/Q}(x, f)} \geqslant \frac{\rho(x)}{K_O^{1/Q} K_I^{1/Q} \lambda_f(x)}$$

from (2.2) and (2.3). It can be proved, that since $\operatorname{mes}(f(F)) = 0$, we have $\int_{\gamma^*} \chi_{f(F)} ds^* = 0$ for $\gamma^* \in \Gamma^*(C_{\varepsilon}^{(r)}, I)$ and characteristic function $\chi_{f(F)}$ of the set f(F) (see [22, 39]). Thus,

$$\begin{split} \int\limits_{\gamma^{\star}} \rho^{\star}(s^{\star}) \, ds^{\star} &= \int\limits_{I^{\star}} \rho^{\star}(\gamma^{\star}(s^{\star})) \, ds^{\star} = \int\limits_{I} \rho^{\star}(f(\gamma(s))) \big| \frac{ds^{\star}}{ds} \big| \, ds \\ &\geqslant K_{O}^{-\frac{1}{Q}}(f) K_{I}^{-\frac{1}{Q}}(f) \int\limits_{I} \rho(\gamma(s)) \Big(\lambda_{f}(\gamma(s)) \big| \frac{d\gamma(s^{\star})}{ds^{\star}} \big|_{0} \Big)^{-1} \, ds \\ &\geqslant \frac{1}{K_{O}^{1/Q}(f) K_{I}^{1/Q}(f)} \int\limits_{\gamma} \rho(s) \, ds \geqslant \frac{1}{2K_{O}^{1/Q}(f) K_{I}^{1/Q}(f)} \end{split}$$

by (3.3), (2.6), and the inequality $\left(\lambda_f(\gamma(s)) \left| \frac{d\gamma(s^*)}{ds^*} \right|_0\right)^{-1} \geqslant 1$.

Finally, we deduce

$$(3.4) M(\Gamma^{\star}(C_{\varepsilon}^{(r)}, I)) \leq 2^{Q} K_{O}(f) K_{I}(f) \int_{f(\Omega)} (\rho^{\star})^{Q} dy \leq 2^{Q} K_{O}(f) K_{I}(f) \varepsilon.$$

Now we choose the sequence $\varepsilon_l = (2^{Q+l}K_O(f)K_I(f)j)^{-1}, l, j \in \mathbb{N}$. For the union $C_j^{(r)} = \bigcup_{i=1}^{\infty} C_{\varepsilon_i}^{(r)}$ we obtain

$$(3.5) \qquad M(\Gamma^{\star}(C_j^{(r)},I)) \leqslant \sum_{l=1}^{\infty} M(\Gamma^{\star}(C_{\varepsilon_l}^{(r)},I)) \leqslant \frac{1}{j} \sum_{l=1}^{\infty} \frac{1}{2^l} \leqslant \frac{1}{j}$$

from (3.4) and from the subadditivity of the module of a family of curves. For the set $D_j^{(r)} = \bigcap_{l=1}^{\infty} D_{\varepsilon_l}^{(r)}$ from (3.2), we have

(3.6)
$$M(\Gamma(G, D_j^{(r)}; \Omega \setminus \overline{I}_r)) = 0.$$

The estimates (3.5) and (3.6) imply that

$$\begin{split} M(\Gamma(G,D^{(r)};\Omega\smallsetminus\overline{I}_r)) &= 0 \qquad \text{with} \qquad D^{(r)} = \bigcup_{j=1}^\infty D_j^{(r)}, \\ M(\Gamma^\star(C^{(r)},I)) &= 0 \qquad \text{with} \qquad C^{(r)} = \bigcap_{j=1}^\infty C_j^{(r)}, \end{split}$$

$$M(\Gamma^*(C^{(r)}, I)) = 0$$
 with $C^{(r)} = \bigcap_{j=1}^{\infty} C_j^{(r)}$,

and

$$C^{(r)} \cup D^{(r)} = \partial I_r.$$

The next step of our proof is to show that $M(\Gamma(D^{(r)}; \Omega \setminus \overline{I}_r)) = 0$, where $\Gamma(D^{(r)}; \Omega \setminus \overline{I}_r)$ \overline{I}_r) is the family of curves connecting the points $x \in \Omega \setminus \overline{I}_r$ with the set $D^{(r)}$. Since $M(\Gamma(G, D^{(r)}; \Omega \setminus \overline{I}_r)) = 0$, we can choose a function $\rho \in L_Q(\Omega)$, such that $\int \rho \, ds = \infty$

for any curve $\gamma \in \Gamma(G, D^{(r)}; \Omega \setminus \overline{I}_r)$. Making use of constructions from [3, 15, 21] we can suppose that ρ is continuous in $\Omega \setminus \overline{I}_r$.

Now, let P be a subset of $\mathcal{Q} = \Omega \setminus (\overline{I}_r \cup G)$ with the following property: there is a curve $\gamma \in \Gamma(P, G; \Omega \setminus \overline{I}_r)$, such that $\int \rho(s) ds < \infty$. We claim that P is open and close

in \mathcal{Q} . First, we show that P is open. Let $x \in P$ and $B(x, \frac{\delta}{2})$ be a ball in \mathcal{Q} such that $B(x,\delta) \in \mathcal{Q}$. We choose a point $\omega \in B(x,\frac{\delta}{2})$ and we connect ω with x by a rectifiable curve α . The function ρ is locally bounded, therefore $\int \rho \, ds < \infty$. Thus,

$$\int\limits_{\gamma\cup\alpha}\rho\,ds=\int\limits_{\gamma}\rho\,ds+\int\limits_{\alpha}\rho\,ds<\infty,\qquad\gamma\in\Gamma(x,G;\Omega\smallsetminus\overline{I}_r),$$

and we deduce that P is open.

We note that $\int_{\gamma} \rho(s) ds = \infty$ for any $\gamma \in \Gamma(P, D^{(r)}; \Omega \setminus \overline{I}_r)$. If it were not so, then we could choose a curve $\widetilde{\gamma} \in \Gamma(P,G;\Omega \setminus \overline{I}_r)$, such that $\int_{\widetilde{z}} \rho(s) ds < \infty$ and get a contradiction with $\int_{\gamma \cup \widetilde{\gamma}} \rho(s) ds = \infty$, where the curve $\gamma \cup \widetilde{\gamma}$ connects G and $D^{(r)}$. Finally, we have

(3.7)
$$M(\Gamma(P, D^{(r)}; \Omega \setminus \overline{I}_r)) = 0.$$

We assume that $P \neq \emptyset$ and show that P is closed in \mathcal{Q} . Let x be a limit point of the set P. Let us take a sufficiently small ball $B(x,\delta)$, $\overline{B}(x,\delta) \subset \mathcal{Q}$, and connect x with some point $x' \in B(x,\frac{\delta}{2}) \cap P$ by a rectifiable curve β , that belongs to $\mathcal{Q} \cap \overline{B}(x,\delta)$. Since ρ is continuous in \mathcal{Q} , then it is bounded in $\overline{B}(x,\delta)$ and $\int\limits_{\beta} \rho(s)\,ds < \infty$. The point x' belongs to P, hence there is a curve $\gamma \in \Gamma(x',G;\Omega \setminus \overline{I}_r)$ such that $\int\limits_{\gamma} \rho(s)\,ds < \infty$. Consequently, we have $\int\limits_{\gamma \cup \beta} \rho(s)\,ds < \infty$ for the curve that connect x and x. The point x belongs to x, it means that x is closed.

By the next step we show that the complement $\mathcal{Q} \setminus P$ is empty. From the contrary, let us assume that $H = \mathcal{Q} \setminus P$ is not empty. We denote by \mathcal{Q}_i connected components of \mathcal{Q} . Since $H = \mathcal{Q} \setminus P$ is open and closed, the components \mathcal{Q}_i lie either in $H = \mathcal{Q} \setminus P$ or in P. If $\mathcal{Q}_i \subset P$, then $M(\Gamma(\mathcal{Q}_i, D^{(r)}; \Omega \setminus \overline{I}_r)) = 0$. If $\mathcal{Q}_i \subset \mathcal{Q} \setminus P$, then we can choose a ball $B_0 = B(x, \varrho) \subset \mathcal{Q}_i$ such that $\int\limits_{\gamma} \rho(s) \, ds = \infty$ for any $\gamma \in \Gamma(B_0, G; \Omega \setminus \overline{I}_r)$. Consequently, $M(\Gamma(B_0, G; \Omega \setminus \overline{I}_r) = 0$.

We denote by W the set of points from $\Omega \setminus \overline{I}_r$ such that there is no rectifiable curve joining W with B_0 which does not intersect G. It is obvious, that W contains G. This and a result by B. Fuglede [11] imply that $M(\Gamma(B_0, W; \Omega \setminus \overline{I}_r)) = 0$.

The set W is closed. Really, if we choose $x' \in \mathbb{C}W$, then there exists a rectifiable curve γ connecting x' and B_0 . Let $B(x', \epsilon)$ be a small ball, $x'' \in B(x', \frac{\epsilon}{2})$. We unite x' and x'' by a rectifiable curve α . Since the function $\rho(x)$ is continuous in $\Omega \setminus \overline{I}_r$ we obtain $\int_{\alpha} \rho(s) ds < \infty$ and $\int_{\alpha \cup \gamma} \rho(s) ds < \infty$. So the set W is closed.

Let us show that $M(\Gamma(W, \mathcal{Q}_i \setminus W; \Omega \setminus \overline{I}_r)) = 0$. If $y \in \mathbb{C}W$ and $\gamma \in \Gamma(y, W; \Omega \setminus \overline{I}_r)$, then $\int_{\gamma} \rho(s) \, ds = \infty$. Suppose that it is not so: $\int_{\gamma} \rho(s) \, ds < \infty$. We connect y and B_0 by a rectifiable curve γ' . The continuity of the function ρ implies $\int_{\gamma' \cup \gamma} \rho(s) \, ds < \infty$. This contradicts to the fact that $M(\Gamma(B_0, W; \Omega \setminus \overline{I}_r)) \leq M(\Gamma(B_0, G; \Omega \setminus \overline{I}_r)) = 0$. Hence, $M(\Gamma(W, \mathcal{Q}_i \setminus W; \Omega \setminus \overline{I}_r)) = 0$. This implies cap W = 0, that contradicts to cap G = 0. We have shown that $H = \emptyset$ and, consequently, $P = \mathcal{Q}$. Finally,

$$M(\Gamma(D^{(r)}; \Omega \setminus \overline{I}_r)) = 0,$$

where $\Gamma(D^{(r)}; \Omega \setminus \overline{I}_r)$ is a family of curves joining points $x \in \Omega \setminus \overline{I}_r$ with $D^{(r)}$. We choose a sequence $r_k \to 0$ as $k \to \infty$. Any curve $\gamma^* \in \Gamma^*(I)$ has a maximal essentially separate lifting $\alpha_1, \ldots, \alpha_j$ that starts on $\Omega \setminus \overline{I}_{r_k}$ for some k. Since $\Omega \setminus I$ is connected, we can choose k sufficiently big, such that starting point of the lifting lies in a connected component of $\Omega \setminus \overline{I}_{r_k}$ with $\operatorname{cap}(A \cap (\Omega \setminus \overline{I}_{r_k})) > 0$. This lifting intersects either the set C^{r_k} or D^{r_k} . In the first case we have $M(\Gamma^*(C^{(r_k)}, I)) = 0$. In the second one

 $M(\Gamma(D^{(r_k)}; \Omega \setminus \overline{I}_{r_k})) = 0$ and Theorem 2.2 implies that

$$M(\Gamma^{\star}(D^{(r_k)})) \leqslant \frac{K_I(f)}{m} M(\Gamma(D^{(r_k)}; \Omega \setminus \overline{I}_{r_k})) = 0.$$

So $M(\Gamma^{\star}(C^{(r_k)},I) \cup \Gamma^{\star}(D^{(r_k)})) = 0$. Finally, letting $k \to \infty$ we deduce

$$M(\Gamma^{\star}(I)) = 0.$$

References

[1] L. V. Ahlfors, Lectures on quasiconformal mappings, Jr. Van Nostrand Mathematical Studies, No. 10 D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London 1966, 146 pp.

[2] L. V. Ahlfors, A. Beurling, Conformal invariants and function theoretic null sets, Acta Math. 83, (1950), 101–129.

[3] H. AIKAWA, M. OHTSUKA, Extremal length of vector measures, Ann. Acad. Scien. Fennicæ 24, (1999), 61–88.

[4] B. BOJARSKI, T. IWANIEC, p-harmonic equation and quasiregular mappings, Partial differential equations (Warsaw, 1984), 25–38.

[5] A. C. CAZACU, Modules and quasiconformality, Symposia Mathematica, Vol. XVIII (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse, INDAM, Rome, 1974), pp. 519–534. Academic Press, London, 1976.

[6] W. L. Chow, Systeme von linearen partiellen differential gleichungen erster ordnug, Math. Ann. 117, (1939), 98–105.

[7] M. COWLING, A. H. DOOLEY, A. KORÁNYI, F. RICCI, H-type groups and Iwasawa decompositions, Adv. Math. 87, (1991), no. 1, 1–41.

[8] N. S. DAIRBEKOV, Mappings with bounded distortion on Heisenberg groups, (Russian) Sibirsk. Mat. Zh. 41, (2000), no. 3, 567–590, translation in Siberian Math. J. 41, (2000), no. 3, 465–486.

[9] N. S. DAIRBEKOV, Mappings with bounded distortion of two-step Carnot groups, Proc. on Anal. and Geom. Novosibirsk: Sobolev Institute Press (2000), 122–155.

[10] G. B. FOLLAND, E. M. STEIN, Hardy spaces on homogeneous groups, Math. Notes 28, (1982), Princeton University Press, Princeton, New Jersey.

[11] B. Fuglede, Extremal length and functional completion, Acta Math. 98, (1957), 171—219.

[12] F. W. Gehring, The L^p-integrability of the partial derivatives of quasiconformal mappings, Acta. Math. 130, (1973), 265–277.

[13] P. HAJLASZ, P. KOSKELA, Sobolev met Poincarè, Mem. Amer. Math. Soc. 145 (688), (2000), 101 pp.

[14] J. HEINONEN, I. HOLOPAINEN, Quasiregular mappings on Carnot group, J. Geom. Anal. 7, (1997), no. 1, 109–148.

[15] J. HESSE, A p-extremal length and p-capacity equality, Ark. Mat. 13, (1975), no. 1, 131–144.

[16] A. KAPLAN, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258, (1980), no. 1, 147–153.

[17] A. KORÁNYI, Geometric aspects of analysis on the Heisenberg group, Topic in Moden Harmonic Analysis. Instituto nazionale di Alta matematica. (1983), Roma.

[18] A. Korányi A, H. M. Reimann, Foundation for the theory of quasiconformal mapping on the Heisenberg group, Adv. In Math. 111, (1995), 1–87.

[19] I. Markina, Extremal lengths for mappings with bounded s-distortion on Carnot groups, Bol. Soc. Mat. Mexicana (3) 9, (2003), no. 1, 89–108.

[20] I. MARKINA, Extremal lengths for quasiregular mappings on Heisenberg groups, J. Math. Anal. Appl. 384, (2003), no. 2, 532–547.

[21] I. MARKINA, On coincidence of the p-module of a family of curves and the p-capacity on the Carnot group, Rev. Mat. Iberoamericana. 19, (2003), no. 1, 143–160.

- [22] I. MARKINA, S. K. VODOPYANOV, On Value Distributions for Quasimeromorphic Mappings on H-type Carnot Groups, Arxiv, math.AP/0509289, pp. 56.
- [23] O. MARTIO, S. RICKMAN S, J. VÄISÄLÄ, Definitions for quasiregular mappings, Ann. Acad. Sci. Fen. Series A I. Math. 448, (1969), 1–40.
- [24] O. MARTIO, S. RICKMAN, J. VÄISÄLÄ, Topological and metric properties of quasiregular mappings, Ann. Acad. Scien. Fen. Series A I. Math. 488 (1971), 1–31.
- [25] G. D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. de l'Institute des Hautes Études Scientifiques 34, (1968), 53–104.
- [26] P. Pansu, Métriques de Carnot Carathéodory et quasiisométries des espacies symétriques de rang un, Ann. Math. 129, (1989), 1–60.
- [27] E. A. POLETSKII, Moduli method for non-homeomorphic quasiconformal mappings, Mat. Sbornik, 83 (125), (1970), no. 2 (10), 261–272.
- [28] E. A. Poletskii, On removing of singularites of quasiconformal mapping, Mat. Sbornik, 92 (134), (1973), no. 2 (10), 242–256.
- [29] Yu. G. Reshetnyak, Mappings with bounded distortion as extremals of integrals of Dirichlet type, (Russian) Sibirsk. Mat. Zh. 9, (1968), no. 3, 652–666.
- [30] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, (Russian) [Spatial mappings with bounded distortion] "Nauka" Sibirsk. Otdel., Novosibirsk, 1982.
- [31] Yu. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathematical Monographs, 73. American Mathematical Society, Providence, RI, 1989.
- [32] S. RICKMAN, Path lifting for discrete open mappings, Duke Math. J. 40, (1973), 187–191.
- [33] S. RICKMAN, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete 26, (3). Springer-Verlag, Berlin, 1993.
- [34] T. RADO, P. V. REICHELDERFER, Continuous transformations in analysis. With an introduction to algebraic topology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, 75. Springer-Verlag, 1955.
- [35] S. K. Vodop'Yanov, Mappings with bounded distortion and with finite distortion on Carnot groups, (Russian) Sibirsk. Mat. Zh. 40, (1999), no. 4, 764–804; translation in Siberian Math. J. 40, (1999), no. 4, 644–677.
- [36] S. K. Vodop'Yanov, P-Differentiability on Carnot groups in different topologies and related topics, Proc. on Anal. and Geom. Novosibirsk: Sobolev Institute Press (2000), 603–670.
- [37] M. VUORINEN, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, 1319. Springer-Verlag, Berlin, 1988.
- [38] J. VÄISÄLÄ, Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I 362, (1965), 12 pp.
- [39] J. VÄISÄLÄ, Lectures on n-dimensional quasiconformal mapping, Lecture Notes in Math. 229, (1971), pp. 144. Berlin a.o.: Springer-Verlag.
- [40] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloquium Publications, 1942.

Received 20 09 2005, revised 22 10 2005

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA CASILLA 110-V, VALPARAÍSO, CHILE

E-mail address: irina.markina@usm.cl