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On Orbifold Coverings of Genus 2 Surfaces

Alexander Hulpke, Tapani Kuusalo, Marjatta Näätänen and Gerhard
Rosenberger

Abstract. Some algebraic and geometric results on orbifold coverings of genus
2 surfaces are presented with detailed examples.

1. Introduction

Two-dimensional hyperbolic geometry was used by Kuusalo and Näätänen in [5] to
determine all two-dimensional orbifolds regularly covered by closed surfaces of genus 2.
On the other hand, Abu Osman and Rosenberger applied in [1] purely algebraic meth-
ods to the classification of Fuchsian groups having a surface group of genus 2 as a
subgroup. When the existence is known, the complete list of all conjugacy classes of
genus 2 subgroups of a given group can be obtained using a computer package like
GAP. This was done by Hulpke in [4]. Our aim here is to show by some examples how
effective a combination of geometric and algebraic approaches can be.

2. Notation

We denote a pointed surface of genus g with cone points of order m,n, . . . by
(g; m,n, . . . ), the same notation being used also for the corresponding ramified covering
group. A (0; m,n, . . . )-group and the corresponding orbifold are denoted by (m,n, . . . )
for short, but occasionally the spherical orbifold (m,n, . . . ) is denoted also by Sm,n....
Similarly a torus with cone points of orders m,n, . . . is denoted by Tm,n....

3. Geometric considerations

In [5] a list all two-dimensional orbifolds regularly covered by closed surfaces of
genus 2 was given on p. 412. According to the results of Takeuchi [13] - [15] all the
triangle groups included in the list are arithmetic. The cases when an orbifold covers
one of the minimal orbifolds S2,3,8, S2,5,10 or S2,4,6 were denoted by D, E or F , with a
subscript r added when the covering is regular (we call a ramified covering regular, if
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the covering group acts transitively on the fibres). Unfortunately there were a couple
of errors, a corrected list follows below.

List 1:

T2,2 D F 2
S2,2,2,2,2,2 Dr Er Fr 2
S2,2,2,2,2 D F 4
S3,3,3,3 D Fr 3
S2,2,3,3 D Fr 6
S2,2,2,3 D Fr 12
S2,2,4,4 D F 4
S2,2,2,4 D F 8
S4,4,4 Dr 8
S3,3,4 Dr 24
S2,3,8 Dr 48
S2,8,8 D 8
S2,4,8 D 16
S3,6,6 F 6
S2,6,6 Fr 12
S2,4,6 Fr 24
S3,4,4 Fr 12
S5,5,5 Er 5
S2,5,10 Er 10

4. Algebraic approach

All triangle groups which have a surface group of genus 2 as a subgroup have been
listed by Abu Osman and Rosenberger [1]. They used group theoretic arguments
based on Singerman’s theorem. Besides triangle groups there are other cocompact
Fuchsian groups having a genus 2 surface group as a subgroup of finite index.

Abu Osman and Rosenberger say in [1] that a group of type (g′;m1,m2, . . . ,mk)
has (g)–property if it has a (g; 0) subgroup for all g > 2. In Theorems 3.5 and 3.7
of [1] two lists are given.

List 2. Assume k > 4 if g′ = 0. Then (g′; m1,m2, . . . , mk) has (g)–property if
and only if (g′; m1, m2, . . . , mk) is one of the following groups:
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(i) (2,2,2,3) N = 12
(ii) (2,2,2,4) 8
(iii) (2,2,2,6) 6
(iv) (2,2,3,3) 6
(v) (2,2,4,4) 4
(vi) (3,3,3,3) 3
(vii) (2,2,2,2,2) 4
(vii) (2,2,2,2,2,2) 2
(ix) (1;2) 4
(x) (1;3) 3
(xi) (1;2,2) 2
(xii) (2;0) 1

where N is the index of (2; 0) in (g′; m1,m2, . . . , mk).

List 3. Let (l,m, n) be a triangle group. Then (l, m, n) has
(g)–property if and only if (l, m, n) is one of the following groups:

1. (2,3,7) N = 84
2. (2,3,8) 48
3. (2,3,9) 36
4. (2,3,10) 30
5. (2,3,12) 24
6. (2,3,18) 18
7. (2,4,5) 40
8. (2,4,6) 24
9. (2,4,8) 16
10. (2,4,12) 12
11. (2,5,5) 20
12. (2,5,10) 10
13. (2,6,6) 12
14. (2,8,8) 8
15. (3,3,4) 24
16. (3,3,5) 15
17. (3,3,6) 12
18. (3,3,9) 9
19. (3,4,4) 12
20. (3,6,6) 6
21. (4,4,4) 8
22. (5,5,5) 5

where N is the index of (2; 0) in (l, m, n).

All groups in the lists 2 and 3 can be isomorphically embedded into an arith-
metic triangle group, hence they have a realization as an arithmetic group, see also
Ackermann, Näätänen and Rosenberger [2].
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For example (0; 2, 2, 2, 3) is a subgroup of (2, 3, 7) with index 7. This can be seen
as follows: Singerman’s theorem can be applied to get

(5176234)(254)(167)(3)(12)(34)(5)(6)(7) = (1)(2)(3)(4)(5)(6)(7)

(see Abu Osman and Rosenberger [1]). For more details, see Maclachlan and Rosen-
berger [8], cf. also [7] and [9] as well as Baer [3].

In [4] Hulpke used GAP low index calculations based on the algorithm of Sims
(Sims [12], 5.6) to determine up to conjugacy all genus 2 subgroups of the groups
of list 2, giving at the same time also their generators in the containing groups. His
results were the following.

The group (2, 2, 2, 3) has 39 conjugacy classes of genus 2 subgroups of index 12,
of which 3 are normal (i.e. 3 conjugacy classes consist of just one subgroup). Corre-
spondingly (2, 2, 2, 4) has 19 conjugacy classes of subgroups of index 8, of which 3 are
normal, and (2, 2, 2, 6) has 3 conjugacy classes of subgroups of index 6, but no normal
subgroups of genus 2. In (2, 2, 3, 3) there are 9 conjugacy classes of index 6, 3 of them
normal, and in (2, 2, 4, 4) there are 3 conjugacy classes of index 4, one of them normal.
In (3, 3, 3, 3) all 3 conjugacy classes of index 3 are normal, as well as the 10 conjugacy
classes of index 4 in (2, 2, 2, 2, 2). The group (2, 2, 2, 2, 2, 2) has only one conjugacy
class of index 2 which is thus normal. The group (1; 2) has 10 conjugacy classes of
subgroups of index 4, and the group (1; 3) has 3 conjugacy classes of subgroups of
index 3, none of them normal. Finally, all 4 conjugacy classes of subgroups of index 2
in (1; 2, 2) are normal.

The respective algebraic calculations for the conjugacy classes of genus 2 subgroups
for the triangle groups in list 3 were done at earlier occasions in connection with two-
generator arithmetic Fuchsian groups where, for instance, they were used to determine
their commensurabilty classes (see [9]). We were provided by Neubüser [11] with
these calculations. In some cases there are quite large numbers of conjugacy classes of
genus 2 subgroups, especially in the (2, 3, 7) triangle group. Since the corresponding
geometric calculations about the triangle groups which contain genus 2 subgroups were
also already completely done (see [5], [6] and [10]), we renounce here the calculations
for the triangle groups and restrict ourselves on list 2.

5. Examples

Original ideas of Hurwitz can be used to decide geometrically whether a subgroup
Γ of finite coarea of a discrete subgroup G in PSL(2,R) is normal or not.

When G is a discrete group of finite coarea in PSL(2,R), the orbit space X = H/G
is a finitely punctured compact orbifold. If Γ ⊂ G is a subgroup of finite coarea and
Y = H/Γ the corresponding orbifold, the identification mapping f from Y = H/Γ
to X = H/G extends to a holomorphic mapping f̂ : Ŷ → X̂ of the compactified
Riemann surfaces Ŷ and X̂, the mapping f̂ being induced by the action of a finite
automorphism group A of the surface Ŷ exactly when Γ is normal in G. Should Γ be
normal in G and A = G/Γ the corresponding automorphism group, the order of an
image point x̂ = f̂(ŷ) in X̂ can only be a multiple of the order of ŷ in Ŷ . Furthermore,
if f̂ is induced by the automorphism group A, all points in an A-orbit on Ŷ must
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Figure 1. g = 2

have the same order. This poses quite heavy restrictions for the automorphism group
A, the full automorphism group of a Riemann surface being usually rather small,
or geometrically simple in the cases when the surface is the sphere or a torus. For
subgroups of some triangle groups this type of reasoning works quite well.

In the pictures below the group PSL(2,R) acts in the hyperbolic disc instead of
H.

5.1. Example. We construct first a normal tower of the regular covering of
(2, 4, 8) by the Bolza curve w2 = z5−z of genus 2 (case D in Kuusalo and Näätänen [5],
pp. 404-406).

The covering group of the Bolza curve D has a regular octagon with diagonal
pairings as a fundamental domain, cf. Figure 1. The full conformal automorphism
group of D contains three conjugate subgroups of order 16, generated by two cyclic
automorphisms of orders 8 and 4. Considering the hyperbolic area of the quotient
orbifold one can thus see that the normalizer (2, 3, 8) of the covering group Γ of D
must contain three conjugate triangle groups (2, 4, 8) of index 3. For one of these
(2, 4, 8) groups we can choose the generators S, T, U with relations

U2 = T 4 = S8 = I, STU = I

and a corresponding fundamental domain located in the regular octagon as indicated
in Figure 3, where the fixed points of S and T are Weierstrass points of the Bolza
curve D. Here as well as in the diagrams that follow we shade just one vertex in every
orbit representing a cone point.

The orbifold (2, 4, 8) is covered 2 : 1 by (0; 2, 2, 2, 4). The generators of the group
(0; 2, 2, 2, 4) are c = S2, U , b1 = S−1US and (2, 4, 8) is obtained by adjoining S to the
group (0; 2, 2, 2, 4).

The orbifold (0; 2, 2, 2, 4) is covered 2 : 1 by (0; 2, 2, 2, 2, 2). The generators are
a = US2, b0 = S4 = c2, b1 = S−1US, b2 = S−3US3. The group (0;2,2,2,4) is obtained
by adjoining S2 to the group (0;2,2,2,2,2).
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Figure 2. (2, 4, 8)
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Figure 4. (0; 2, 2, 2, 4)

The orbifold (0;2,2,2,2,2) is covered 2 : 1 by T22 = (1; 2, 2), presented as a regular
octagon with all angles π/2 and two cone points of order 2. The generators of the
covering group of T22 are

g1 = SUS3, g2 = S2U, g3 = S4US2, b1 = S−1US, b3 = S3US−3,
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Figure 5. (0; 2, 2, 2, 2, 2)
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Figure 6. (0; 2, 2, 2, 2, 2), g1 = SUS3
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Figure 7. (1; 2, 2)

and one gets the group (0; 2, 2, 2, 2, 2) by adjoining S4 to the group (1; 2, 2).
T22 is covered 2 : 1 by the regular octagon with all angles π/4 and diagonal pairings

f1 = S4T 2, f2 = ST 2S3, f3 = S−2T 2S6, f4 = S3T 2S,
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which generate the covering group Γ = (2; 0) of the Bolza curve D. The group (1; 2, 2)
is obtained by adjoining either b1 of b3 to the group (2; 0). Since T = S−1U , we can
also write the generators of the genus 2 group as

f1 = S3US−1U, f2 = US−1US3, f3 = S−3US−1US6, f4 = S2US−1US.

The subgroups (0; 2, 2, 2, 4), (0; 2, 2, 2, 2, 2), (1; 2, 2) and (2; 0) form a desending
normal tower of (2, 4, 8). However, neither (0; 2, 2, 2, 2, 2) nor (1; 2, 2) are normal in
(2, 4, 8), for should (2, 4, 8) act on either of the surfaces (0; 2, 2, 2, 2, 2) and (1; 2, 2),
the orbit of the fixed point of U would contain points of different order. Cf. also the
following example.

5.2. Example. The triangle group (2, 4, 8), which admits three conjugate em-
beddings in (2, 3, 8), cannot be a normal subgroup of (2, 3, 8). The non-normality of
(2, 4, 8) can be reasoned also in a geometric way as follows. If (2, 4, 8) is a normal sub-
group of (2, 3, 8), then the quotient group (2, 3, 8)/(2, 4, 8) would have an operation on
the orbifold S2,4,8 with S2,3,8 as the quotient orbifold. But the group (2, 3, 8)/(2, 4, 8)
would operate by Möbius transformations on the pointed sphere S2,4,8, and excepting
the identity, no Möbius transformation can preserve the orders of the three cone points
of S2,4,8.

5.3. Example. It follows from Abu Osman and Rosenberger [1] that the (1; 3)
group G = 〈a, b; [a, b]3〉 contains a (2; 0) subgroup

H = 〈x, y, u, v; [x, y][u, v]〉
with generators x = aba−1, y = b−1aba−2, u = b−1ab, v = b2. The group G can
be given a presentation in the triangle group (2, 4, 12) with generators S, T, U, U2 =
T 4 = S12 = STU = I by setting a = T−2U , b = T−1UT−1. In this presentation
the subgroup H has x = T−2S3T−1, y = TS4T−1ST−1, u = TS3, v = T−1ST−1S
as generators and a regular hyperbolic 12-gon centered at the fixed point 0 of S as a
fundamental polygon (as in Figure 8).
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Denoting by k the common vertex of the sides k−1 and k of the 12-gon we suppose
further that U fixes the midpoint of side 1, respectively T the vertex 2. It can easily
be seen that H now identifies the side pairs {1, 11}, {2, 4}, {3, 9}, {5, 7}, {6, 12}, and
{8, 10}, thus the group H has the identification pattern 12.6 of Figure 2 in Näätänen
and Kuusalo [10].

We get the group G of the (1; 3) surface by adjoining S4 to the generators of H.
However, it is immediately seen from the diagram 12.6 of Figure 4 in Kuusalo and
Näätänen [6] that the rotation S4 of order 3 does not preserve the set of Weierstrass
points of the genus 2 surface determined by H, so that H cannot be a normal subgroup
of G. But the rotation S3 of order 4 is compatible with the identification pattern of
H and thus belongs to the normalizer N of H in PSL(2,R), generating with H the
subgroup H ′ = 〈H, S3〉 of (2, 4, 12). The fundamental polygon P ′ of the group H ′ is
given in Figure 9.

Now P ′ admits a further rotation R of order 2 with the intersection point E of
the geodesics AC and BD as a fixed point. Thus N = 〈H, S3, R〉 is the normalizer
of H in PSL(2,R) with the dihedral automorphism group D4 = N/H of the (2; 0)
surface determined by the group H (case A on p. 404 in Kuusalo and Näätänen [5]).
The domain in given in Figure 10, where F and G are the midpoints of the boundary
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arcs AD and BC of P ′, is the fundamental polygon of the normalizer N having non-
equivalent fixed points of order 2 at A,E and F , and respectively of order 4 at O. The
hyperbolic distance ρ between A and F is quite small with cosh(ρ) = 1

2

√
3 +

√
3 ≈

1.0877, which prevents the normalizer N from being contained in any triangle group.

5.4. Remark. In the above pictures triangle groups and some symmetric Rie-
mann surfaces determined by their subgroups are presented. By deforming the fun-
damental polygon of such a surface one gets examples of surfaces with less symmetry,
where a corresponding part of the normal chain in PSL(2,R) containing the surface
group is lost.
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