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General conditions for the subadditivity
and superadditivity of relations

Tamás Glavosits and Árpád Száz

Abstract. After some preparations, we give general conditions for a relation on

one groupoid to another to be subadditive or superadditive.

1. Introduction

A relation F on one groupoid X to another Y is called subadditive if

F (x1 + x2) ⊂ F (x1) + F (x2)

for all x1, x2 ∈ X. If the inclusion is reversed, then F is called superadditive.
The importance of these definitions lies mainly in the fact that Banach’s closed

graph and open mapping theorems can be, most naturally, formulated in terms of su-
peradditive relations. The corresponding treatments of the Banach–Steinhaus, Hahn–
Banach and Hyers–Ulam theorems need subadditive relations. The ‘References’ of
our former paper [2] show that subadditive and superadditive relations have been
intensively studied by several authors. In [2], we have proved the following theorem.

Theorem 1.1. Let F be an odd relation on one group X to another Y . Suppose
that there exists a subset P of Y , such that Y = −P ∪ P , and

F (x1 + x2) ∩ P ⊂ F (x1) + F (x2)

for all x1, x2 ∈ X. Then F is subadditive.

Now, having in mind the anti-additive functions defined by

ϕ(x) = −x for all x ∈ X and ψ(y) = −y for all y ∈ Y,

and the dualization of groupoids, we shall prove the following generalization of the
above theorem.
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Theorem 1.2. Let F be a relation on one groupoid X to another Y . Suppose that
there exists a relation G on one groupoid Z to another W , a subadditive relation ϕ on
X to Z, an additive function ψ on W to Y , and moreover, subsets P of Y and Q of
W , such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) R

F
\ P ⊂ Dψ−1 and ψ−1

[
R

F
\ P

]
⊂ Q;

(3) F (x1 + x2) ∩ P ⊂ F (x1) + F (x2) for all x1, x2 ∈ X;
(4) G(z1 + z2) ∩Q ⊂ G(z1) +G(z2) for all z1, z2 ∈ Z.

Then F is subadditive.

Analogously to Theorem 1.2, we shall also prove the following result.

Theorem 1.3. Let F be a relation on a groupoid X to a group Y such that
R

F
+R

F
⊂ R

F
. Suppose that there exists a relation G on a groupoid Z to a group W ,

a superadditive relation ϕ on X to Z, an odd additive function ψ on W onto Y , and
moreover, subsets P of Y and Q of W such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ Q;

(3)
(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2) for all x1, x2 ∈ X;

(4)
(
G(z1) +G(z2)

)
∩Q ⊂ G(z1 + z2) for all z1, z2 ∈ Z.

Then F is superadditive.

Hence, we can easily derive the following counterpart of Theorem 1.1.

Theorem 1.4. Let F be an odd relation on one group X to another Y , such that
R

F
+R

F
⊂ R

F
. Suppose that there exists a subset P of Y such that Y = −P ∪P and(

F (x1) + F (x2)
)
∩ P ⊂ F (x1 + x2)

for all x1, x2 ∈ X. Then F is superadditive.

For the reader’s convenience, the necessary prerequisites concerning relations and
groupoids will be briefly laid out in the following preparatory sections.

2. A few basic facts on relations

A subset F of the product set X×Y is called a relation on X to Y . If in particular
F ⊂ X2, then we may simply say that F is a relation on X. Thus, ∆

X
= {(x, x) :

x ∈ X} is a relation on X.
If F is a relation on X to Y , then for any x ∈ X the set F (x) = {y ∈ Y : (x, y) ∈

F} is called the image of x under F . And the set D
F

= {x ∈ X : F (x) 6= ∅} is called
the domain of F .

In particular, a relation F on X to Y is called a function if for each x ∈ D
F

there
exists y ∈ Y , such that F (x) = {y}. In this case, by identifying singletons with their
elements, we may usually write F (x) = y in place of F (x) = {y}.

More generally, if F is a relation on X to Y , then for any A ⊂ X the set F [A] =⋃
x∈A F (x) is called the image of A under F . And the set R

F
= F [D

F
] is called the

range of F .
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If F is a relation such that D
F

= X and R
F
⊂ Y , then we say that F is a relation

of X into Y . While, if F is relation such that D
F
⊂ X and R

F
= Y , then we say that

F is a relation on X onto Y .
If F is a relation on X to Y , then the values F (x), where x ∈ X, uniquely determine
F since F =

⋃
x∈X{x}×F (x). Therefore, the inverse F−1 of F can be defined such

that F−1(y) =
{
x ∈ X : y ∈ F (x)

}
for all y ∈ Y .

Moreover, if F is a relation on X to Y and G is a relation on Y to Z, then the
composition G ◦ F of G and F can be defined such that (G ◦ F )(x) = G

[
F (x)

]
for all

x ∈ X. Thus, we also have (G ◦ F )[A] = G
[
F [A]

]
for all A ⊂ X.

Concerning relations, in the sequel, we shall also need the following

Theorem 2.1. If F is a relation on X to Y , then

∆R
F
⊂ F ◦ F−1.

Proof. If y ∈ R
F
, then there exists x ∈ X such that y ∈ F (x), and thus,

x ∈ F−1(y). Hence, we can see that

∆R
F

(y) = {y} ⊂ F (x) ⊂ F
[
F−1(y)

]
=

(
F ◦ F−1)(y).

Now, since ∆R
F

(y) = ∅ for all y ∈ Y \R
F
, it is clear that we actually have ∆R

F
(y) ⊂(

F ◦ F−1)(y) for all y ∈ Y . Therefore, the required inclusion is also true. �

Now, as an immediate consequence of the above theorem, we can also state

Corollary 2.1. If F is a relation on X to Y , then

A ∩R
F
⊂ F

[
F−1[A]

]
for all A ⊂ Y .

Hence, we can easily derive the following two corollaries

Corollary 2.2. If F is a relation on X to Y and A ⊂ Y , then the following
assertions are equivalent:

(1) A ⊂ R
F
;

(2) A ⊂ F
[
F−1[A]

]
.

Remark 2.1. Thus, in particular, for any y ∈ Y we have y ∈ F
[
F−1(y)

]
if

and only if y ∈ R
F
.

Corollary 2.3. If F is a relation on X to Y , then

R
F

= R
F◦F−1 = D

F◦F−1 .

Proof. To check this, note that

R
F

= Y ∩R
F
⊂ F

[
F−1[Y ]

]
= F [D

F
] = R

F
,

and thus,
R

F
=

(
F ◦ F−1

)
[Y ] = R

F◦F−1 = D
(F◦F−1)−1 = D

F◦F−1 .

�
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3. Some useful characterizations of functions

In the sequel, in addition to Theorem 2.1, we shall also need the following

Theorem 3.1. If F is a relation on X to Y , then the following assertions are
equivalent:

(1) F is a function;
(2) F ◦ F−1 ⊂ ∆Y ;
(3) ∆R

F
= F ◦ F−1.

Proof. If y ∈ Y and z ∈
(
F ◦ F−1

)
(y), then z ∈ F

[
F−1(y)

]
. Therefore, there

exists x ∈ F−1(y), such that z ∈ F (x). This shows that y, z ∈ F (x). Hence, if (1)
holds, we can infer that z = y. Therefore,(

F ◦ F−1
)
(y) ⊂ {y} = ∆Y (y),

and thus (2) also holds.
To prove the converse implication, note that if (1) does not hold, then there exist

x ∈ X and y, z ∈ F (x) such that y 6= z. Hence, we can infer that x ∈ F−1(y), and
thus

{y, z} ⊂ F (x) ⊂ F
[
F−1(y)

]
=

(
F ◦ F−1

)
(y).

Therefore, since ∆Y (y) = {y}, the assertion (2) does not also holds.
Finally, to complete the proof, note that if (2) holds, then by Corollary 2.3, we

also have F ◦ F−1 ⊂ ∆R
F

. Hence, by Theorem 2.1, it is clear that (3) also holds.
Moreover, (3) trivially implies (2). �

Now, as an immediate consequence of the above theorem, we can also state

Corollary 3.1. If F is a relation on X to Y , then the following assertions are
equivalent:

(1) F is a function;
(2) F

[
F−1[A]

]
⊂ A for all A ⊂ Y ;

(3) A ∩R
F

= F
[
F−1[A]

]
for all A ⊂ Y .

Remark 3.1. Note that already the A = {y}, where y runs through R
F
, particular

cases of (2) and (3) imply (1).

In addition to the above corollary, it is also worth mentioning the following two
theorems.

Theorem 3.2. If F is a relation on X to Y , then the following assertions are
equivalent:

(1) F is a function;
(2) F−1[A] ∩ F−1[B] ⊂ F−1[A ∩B] for all A,B ⊂ X;
(3) F−1[A ∩B] = F−1[A] ∩ F−1[B] for all A,B ⊂ X.

Theorem 3.3. If F is a relation on X to Y , then the following assertions are
equivalent:

(1) F is a function;
(2) F [A \B] ⊂ F−1[A] \ F−1[B] for all A,B ⊂ X;
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(3) F−1[A \B] = F−1[A] \ F−1[B] for all A,B ⊂ X.

Remark 3.2. Note that if (1) does not hold, then there exists x ∈ X and y, z ∈
F (x), such that y 6= z. Therefore, x ∈ F−1(y) ∩ F−1(z), but x /∈ ∅ = F−1[∅] =
F−1[{y} ∩ {z}]. Moreover, x ∈ F−1(y) ⊂ F−1[Y \ {z}], but x /∈ F−1[Y ] \ F−1(z).
Thus, already some very particular cases of assertions (2) in the above two theorems
imply assertion (1).

4. A few basic facts on subadditive and superadditive relations

If X is a nonvoid set and + is a function of X2 = X×X into X, then the
ordered pair X(+) = (X,+) is called a groupoid. In this case, we may also write
x + y = +(x, y) for all x, y ∈ X. Moreover, if X is a groupoid, then we may also
naturally write A+B =

{
x+ y : x ∈ A, y ∈ B

}
for all A,B ⊂ X. Thus, the family

P(X) of all subsets of X is also a groupoid.
Note that ifX is, in particular, a group, then P(X) is, in general, only a semigroup

with zero element {0}. However, we can still naturally use the notations −A = {−x :
x ∈ A

}
and A−B = A+ (−B).

Definition 4.1. A relation F on one groupoid X to another Y is called sub-
additive if

F (x1 + x2) ⊂ F (x1) + F (x2)
for all x1, x2 ∈ X. If the inclusion is reversed, then F is called superadditive.

Remark 4.1. Now, the relation F may be naturally called additive if it is both
subadditive and superadditive.

Definition 4.2. A relation F on one group X to a group Y is called odd if
F (−x) = −F (x) for all x ∈ X.

Remark 4.2. Quite similarly, a relation F on a group X to a set Y is called even
if F (−x) = F (x) for all x ∈ X.

The importance of odd relation is apparent from the following

Theorem 4.1. If F is an odd superadditive relation of one group X into another
Y , then F is additive.

Proof. If x1, x2 ∈ X, then by taking y ∈ F (x1), we can easily see that

F (x1 + x2) = y − y + F (x1 + x2) ∈ F (x1)− F (x1) + F (x1 + x2) =

= F (x1) + F (−x1) + F (x1 + x2) ⊂ F (x1) + F (x2).
Therefore, the equality F (x1 + x2) = F (x1) + F (x2) is also true. �

Remark 4.3. In this respect, it is also worth to remark that an additive function
f on X to Y is odd if and only if its domain D

f
is symmetric in the sense that

−D
f

= D
f
.

Concerning the superadditivity of inverse relations, we can easily establish the
following theorem
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Theorem 4.2. If F is a superadditive relation on one groupoid X to another Y ,
then F−1 is a superadditive relation on Y to X.

Remark 4.4. By defining F (x) = {0, x} for all x ∈ R, one can easily see that the
counterparts of Theorems 4.1 and 4.2 are not true for subadditive relations.

However, analogously to Theorem 4.2, we also have the following theorem

Theorem 4.3. If F is an odd relation on one group X to another Y , then F−1

is an odd relation on Y to X.

Remark 4.5. In this respect, it is also worth to note that if F is a relation on
a set X to a group Y , then F−1 is even if and only if F is symmetric-valued in the
sense that F (x) is symmetric for all x ∈ X.

Now, as an immediate consequence of Theorems 4.3, 4.2 and 4.1, we can also state

Theorem 4.4. If F is an odd superadditive relation on one group X onto another
Y , then F−1 is an odd additive relation of Y into X.

5. Some further results on subadditive and superadditive relations

Theorem 5.1. If F is a relation on one groupoid X to another Y and P ⊂ Y ,
such that F (x1 + x2) ∩ P ⊂ F (x1) + F (x2) for all x1, x2 ∈ X, then

F [A1 +A2] ∩ P ⊂ F [A1] + F [A2]

for all A1, A2 ⊂ X.

Proof. If A1, A2 ⊂ X and y ∈ F [A1 +A2] ∩ P , then y ∈ F [A1 +A2] and y ∈ P .
Therefore, there exist x1 ∈ A1 and x2 ∈ A2, such that y ∈ F (x1 + x2). Hence, it
is clear that y ∈ F (x1 + x2) ∩ P ⊂ F (x1) + F (x2) ⊂ F [A1] + F [A2]. Therefore,
F [A1 +A2] ∩ P ⊂ F [A1] + F [A2]. �

The particular case of the above theorem for P = Y gives

Corollary 5.1. If F is a subadditive relation on one groupoid X to another Y ,
then

F [A1 +A2] ⊂ F [A1] + F [A2]
for all A1, A2 ⊂ X.

Analogously to Theorem 5.1, we can also prove the following two theorems

Theorem 5.2. If F is a relation on one groupoid X to another Y and P ⊂ Y ,
such that

(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2) for all x1, x2 ∈ X, then(
F [A1] + F [A2]

)
∩ P ⊂ F [A1 +A2]

for all A1, A2 ⊂ X.

Theorem 5.3. If F is a relation on one groupoid X to another Y and P1, P2 ⊂ Y ,
such that F (x1) ∩ P1 + F (x2) ∩ P2 ⊂ F (x1 + x2) for all x1, x2 ∈ X, then

F [A1] ∩ P1 + F [A2] ∩ P2 ⊂ F [A1 +A2]

for all A1, A2 ⊂ X.
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Proof. If A1, A2 ⊂ X and y ∈ F [A1] ∩ P1 + F [A2] ∩ P2, then for each i ∈ {1, 2}
there exists yi ∈ F [Ai] ∩ Pi, such that y = y1 + y2. Hence, it follows that yi ∈ F [Ai]
and yi ∈ Pi. Therefore, there exists xi ∈ Ai, such that yi ∈ F (xi). Hence, it is clear
that

y = y1 + y2 ∈ F (x1) ∩ P1 + F (x2) ∩ P2 ⊂ F (x1 + x2) ⊂ F [A1 +A2].

Therefore, F [A1] ∩ P1 + F [A2] ∩ P2 ⊂ F [A1 +A2]. �

The particular cases of the above two theorems for P = Y and P1 = P2 = Y give

Corollary 5.2. If F is a superadditive relation on one groupoid X to another
Y , then

F [A1] + F [A2] ⊂ F [A1 +A2]
for all A1, A2 ⊂ X.

Remark 5.1. Moreover, we can easily see that if F is an odd relation on one
group X to another Y , then F [−A] = −F [A] for all A ⊂ X.

Now as an immediate consequence of Theorem 4.4 and Corollaries 5.1 and 5.2, we
can also state the following

Theorem 5.4. If F is an odd superadditive relation on one group X onto another
Y , then

F−1[B1 +B2] = F−1[B1] + F−1[B2]
for all B1, B2 ⊂ Y .

Finally, we note that in addition to Definition 4.1, it is also worth introducing the
following

Definition 5.1. A relation F on one groupoid X to another Y is called anti-
subadditive if

F (x1 + x2) ⊂ F (x2) + F (x1)
for all x1, x2 ∈ X. If the inclusion is reversed, then F is called antisuperadditive.

Remark 5.2. Namely, if X is a group and ϕ(x) = −x for all x ∈ X, then ϕ is an
anti-additive function of X onto itself.

Fortunately, the study of anti-subadditive and anti-superadditive relations can
be traced back to that of the subadditive and superadditive ones by means of the
following definition

Definition 5.2. If X(+) is a groupoid and

x1 ⊕ x2 = x2 + x1

for all x1, x2 ∈ X, then the groupoid X(⊕) will be called the dual of X(+).

Remark 5.3. Note that if X(+) has a zero element 0, then 0 is also a zero element
of X(⊕). Moreover, if an element x of X(+) has an inverse element −x, then −x is
also the inverse element of x in X(⊕).
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6. Some general conditions for the subadditivity of relations

Theorem 6.1. Let F be a relation on one groupoid X to another Y . Suppose
that there exists a relation G on one groupoid Z to another W , a subadditive (anti-
subadditive) relation ϕ on X to Z, an additive (anti-additive) function ψ on W to Y ,
and moreover, subsets P of Y and Q of W such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) R

F
\ P ⊂ Dψ−1 and ψ−1

[
R

F
\ P

]
⊂ Q;

(3) F (x1 + x2) ∩ P ⊂ F (x1) + F (x2) for all x1, x2 ∈ X;
(4) G(z1 + z2) ∩Q ⊂ G(z1) +G(z2) for all z1, z2 ∈ Z.

Then F is subadditive.

Proof. Suppose that x1, x2 ∈ X and y ∈ F (x1 + x2). If y ∈ P , then y ∈
F (x1 +x2)∩P ⊂ F (x1) +F (x2). Therefore, we may assume that y /∈ P . In this case,
because of F (x1 + x2) ⊂ R

F
, it is clear that

y ∈ F (x1 + x2) ∩ (Y \ P ) = F (x1 + x2) ∩ (R
F
\ P ) ⊂ R

F
\ P ⊂ Dψ−1 = Rψ.

Moreover, if ϕ is subadditive and ψ is additive, then by using Theorems 3.2, 5.1, and
4.2 and Corollary 5.2, we can see that

ψ−1(y) ⊂ ψ−1
[
F (x1 + x2) ∩ (R

F
\ P )

]
= ψ−1

[
F (x1 + x2)

]
∩ ψ−1

[
R

F
\ P

]
⊂

G
[
ϕ(x1 + x2)

]
∩Q ⊂ G

[
ϕ(x1) + ϕ(x2)

]
∩Q ⊂ G

[
ϕ(x1)

]
+G

[
ϕ(x2)

]
=

ψ−1
[
F (x1)

]
+ ψ−1

[
F (x2)

]
⊂ ψ−1

[
F (x1) + F (x2)

]
.

Hence, by Remark 2.1 and Corollary 3.1, it is clear that

y ∈ ψ
[
ψ−1(y)

]
⊂ ψ

[
ψ−1

[
F (x1) + F (x2)

]]
⊂ F (x1) + F (x2).

Therefore, F (x1 + x2) ⊂ F (x1) + F (x2), and thus, F is subadditive.
To prove the anti-additive case of the theorem, note that if ϕ is an anti-subadditive

relation on X(+) to Z(+), then ϕ is a subadditive relation on X(+) to Z(⊕). And, if
ψ is an anti-additivity function on W (+) to Y (+), then ψ is an additive function on
W (⊕) to Y (+). Moreover, because of (4), we have

G(z1 ⊕ z2) ∩Q = G(z2 + z1) ∩Q ⊂ G(z2) +G(z1) = G(z1)⊕G(z2)

for all z1, z2 ∈ Z. Therefore, the additive case of the theorem can be applied to get
the subadditivity of F . �

Remark 6.1. Because of ψ−1 ◦ F = G ◦ ϕ, we also have

ψ−1
[
R

F

]
= ψ−1

[
F [X]

]
= G

[
ϕ[X]

]
= G

[
Rϕ

]
.

Hence, by noticing that

ψ−1
[
R

F

]
⊂ ψ−1

[
Y

]
= Dψ and G

[
Rϕ

]
⊂ G

[
Z

]
= R

G
,

we can infer that
ψ−1

[
R

F
\ P

]
⊂ ψ−1

[
R

F

]
⊂ Dψ ∩RG

.

Therefore, if in particular Dψ ∩RG
⊂ Q, then the inclusion ψ−1

[
R

F
\ P

]
⊂ Q holds.
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From the particular case of Theorem 6.1 for X = Z, Y = W , P = Q and F = G
we can immediately get

Corollary 6.1. Let F be a relation on one groupoid X to another Y . Suppose
that there exist a subadditive (anti-subadditive) relation ϕ on X to X, an additive
(anti-additive) function ψ on Y to Y , and P is a subset of Y such that:

(1) ψ−1 ◦ F = F ◦ ϕ;
(2) R

F
\ P ⊂ Dψ−1 and ψ−1

[
R

F
\ P

]
⊂ P ;

(3) F (x1 + x2) ∩ P ⊂ F (x1) + F (x2) for all x1, x2 ∈ X.
Then F is subadditive.

Now, as an useful consequence Corollary 6.1, we can also state

Corollary 6.2. Let F be a symmetric-valued relation on a groupoid X to a group
Y . Suppose that either X or Y is commutative, and there exists a subset P of Y , such
that Y = −P ∪ P and

F (x1 + x2) ∩ P ⊂ F (x1) + F (x2)

for all x1, x2 ∈ X. Then F is subadditive.

Proof. Now, −F (x) = F (x) for all x ∈ X. Therefore, by taking

ϕ(x) = x for all x ∈ X and ψ(y) = −y for all y ∈ Y,

we evidently have ψ−1 ◦ F = F ◦ ϕ. On the other hand, now Dψ−1 = Y . Therefore,
R

F
\ P ⊂ Dψ−1 trivially holds. Moreover, since Y = −P ∪ P , it is clear that ψ−1

[
Y \

P
]
⊂ P also holds. Therefore, depending on the commutativity of Y or X the additive

or the anti-additive case of Corollary 6.1 can be applied. �

Remark 6.2. Recall that, by Remark 4.5, the relation F is symmetric-valued if
and only if its inverse F−1 is even.

From the anti-additive case of Corollary 6.1, we can also easily get the following
statement

Corollary 6.3. Let F be an odd relation on one group X to another Y . Suppose
that there exists a subset P of Y , such that Y = −P ∪ P and

F (x1 + x2) ∩ P ⊂ F (x1) + F (x2)

for all x1, x2 ∈ X. Then F is subadditive.

Now, by using this corollary, we can also prove the following one

Corollary 6.4. Let F be an odd relation of one group X into another such that
F−1(0) ⊂ {0}. Suppose that there exists a subset P of Y , such that Y = −P ∪{0}∪P
and

F (x1 + x2) ∩ P ⊂ F (x1) + F (x2)

for all x1, x2 ∈ X. Then F is subadditive.
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Proof. If x1, x2 ∈ X and 0 ∈ F (x1 + x2), then x1 + x2 ∈ F−1(0) ⊂ {0}.
Therefore, x1 + x2 = 0, and thus, −x1 = x2. Hence, by taking y ∈ F (x1), we can
already infer that

0 = y − y ∈ F (x1)− F (x1) = F (x1) + F (−x1) = F (x1) + F (x2).

Therefore, under the notation P ′ = P ∪ {0}, we have not only Y = −P ′ ∪ P ′, but
also F (x1 + x2) ∩ P ′ ⊂ F (x1) + F (x2) for all x1, x2 ∈ X. Thus, Corollary 6.3 can be
applied. �

Remark 6.3. Note that if, in particular, Y = R =] − ∞,+∞[, then we may
naturally take P = R+ =]0,+∞[.

7. Some general conditions for the superadditivity of relations

Analogously to Theorem 6.1, we can also prove the following statement

Theorem 7.1. Let F be a relation on a groupoid X to a group Y , such that
R

F
+ R

F
⊂ R

F
. Suppose that there exists a relation G on a groupoid Z to a group

W , a superadditive (anti-superadditive) relation ϕ on X to Z, an odd additive (anti-
additive) function ψ on W onto Y , and moreover subsets P of Y and Q of W such
that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ Q;

(3)
(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2) for all x1, x2 ∈ X;

(4)
(
G(z1) +G(z2)

)
∩Q ⊂ G(z1 + z2) for all z1, z2 ∈ Z

Then F is superadditive.

Proof. Suppose that x1, x2 ∈ X and y ∈ F (x1) + F (x2). If y ∈ P , then y ∈(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2). Therefore, we may assume that y /∈ P . In this

case, because of F (x1) + F (x2) ⊂ R
F

+R
F
⊂ R

F
, it is clear that

y ∈
(
F (x1) + F (x2)

)
∩ (Y \ P ) =

(
F (x1) + F (x2)

)
∩ (R

F
\ P ) ⊂ Y = Rψ.

Moreover, if ϕ is superadditive and ψ is additive, then by using Theorems 3.2 and 5.4
and 5.2, we can see that

ψ−1(y) ⊂ ψ−1
[(
F (x1) + F (x2)

)
∩ (R

F
\ P )

]
=

ψ−1
[
F (x1) + F (x2)

]
∩ ψ−1

[
R

F
\ P

]
⊂ ψ−1

[
F (x1) + F (x2)

]
∩Q =(

ψ−1
[
F (x1)

]
+ ψ−1

[
F (x2)

])
∩Q =

(
G

[
ϕ(x1)

]
+G

[
ϕ(x2)

])
∩Q ⊂

G
[
ϕ(x1) + ϕ(x2)

]
⊂ G

[
ϕ(x1 + x2)

]
= ψ−1

[
F (x1 + x2)

]
.

Hence, by Remark 2.1 and Corollary 3.1, it is clear that

y ∈ ψ
[
ψ−1(y)

]
⊂ ψ

[
ψ−1

[
F (x1 + x2)

]]
⊂ F (x1 + x2).

Therefore, F (x1) + F (x2) ⊂ F (x1 + x2), and thus, F is superadditive.
The anti-additive case of the theorem, can again be easily derived from its additive

case by using the duals of Z and W . �

From Theorem 7.1 we can immediately get the following corollary.
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Corollary 7.1. Let F be a relation on a groupoid X to a group Y , such that
R

F
+R

F
⊂ R

F
. Suppose that there exists a superadditive (anti-superadditive) relation

ϕ on X to X, an odd additive (anti-additive) function ψ on Y onto Y , and a subset
P of Y such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ P ;

(3)
(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2) for all x1, x2 ∈ X.

Then F is superadditive.

Now, as a useful consequence of Corollary 7.1 we can also state the following

Corollary 7.2. Let F be a symmetric-valued relation on a groupoid X to a group
Y such that R

F
+ R

F
⊂ R

F
. Suppose that either X or Y is commutative, and there

exists a subset P of Y , such that Y = −P ∪ P and(
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2)

for all x1, x2 ∈ X. Then F is superadditive.

From the anti-additive case of Corollary 7.1, we get the following

Corollary 7.3. Let F be an odd relation on one group X to another Y , such
that R

F
+R

F
⊂ R

F
. Suppose that there exists a subset P of Y , such that Y = −P ∪P

and (
F (x1) + F (x2)

)
∩ P ⊂ F (x1 + x2)

for all x1, x2 ∈ X. Then F is superadditive.

8. Some further conditions for the superadditivity of relations

Analogously to Theorem 7.1, we obtain the following statement.

Theorem 8.1. Let F be a relation on a groupoid X to a group Y . Suppose that
there exists a relation G on a groupoid Z to a group W , a superadditive relation ϕ on
X to Z, an odd additive function ψ on W onto Y , and moreover subsets P of Y and
Q of W such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ Q;

(3) F (x1) ∩ P + F (x2) ⊂ F (x1 + x2) for all x1, x2 ∈ X;
(4) G(z1) ∩Q+G(z2) ⊂ G(z1 + z2) for all z1, z2 ∈ Z.

Then F is superadditive.

Proof. Suppose that x1, x2 ∈ X and y ∈ F (x1) + F (x2). Then, there exist
y1 ∈ F (x1) and y2 ∈ F (x2), such that y = y1 + y2. If y1 ∈ P , then y = y1 + y2 ∈
F (x1) ∩ P + F (x2) ⊂ F (x1 + x2). Therefore, we may assume that y1 /∈ P . In this
case, because of F (x1) ⊂ R

F
, it is clear that

y = y1 + y2 ∈ F (x1) ∩ (Y \ P ) + F (x2) = F (x1) ∩ (R
F
\ P ) + F (x2) ⊂ Y = Rψ.

Moreover, by using Theorems 5.4, 3.2, and 5.3, we can see that

ψ−1(y) ⊂ ψ−1
[
F (x1) ∩ (R

F
\ P ) + F (x2)

]
= ψ−1

[
F (x1) ∩ (R

F
\ P )

]
+ ψ−1

[
F (x2)

]
=
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ψ−1
[
F (x1)

]
∩ ψ−1

[
R

F
\ P

]
+ ψ−1

[
F (x2)

]
⊂ G

[
ϕ(x2)

]
∩Q+G

[
ϕ(x1)

]
⊂

G
[
ϕ(x1) + ϕ(x2)

]
⊂ G

[
ϕ(x1 + x2)

]
= ψ−1

[
F (x1 + x2)

]
.

Hence, by Remark 2.1 and Corollary 3.1, it is clear that

y ∈ ψ
[
ψ−1(y)

]
⊂ ψ

[
ψ−1

[
F (x1 + x2)

]]
⊂ F (x1 + x2).

Therefore, F (x1) + F (x2) ⊂ F (x1 + x2), and thus F is superadditive. �

From Theorem 8.1 we can immediately get the following corollary.

Corollary 8.1. Let F be a relation on a groupoid X to a group Y . Suppose that
there exists a superadditive relation ϕ on X to X, an odd additive function ψ on Y
onto Y , and a subset P of Y such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ P ;

(3) F (x1) ∩ P + F (x2) ⊂ F (x1 + x2) for all x1, x2 ∈ X.
Then F is superadditive.

Hence, it is clear that in particular we also have

Corollary 8.2. Let F be a symmetric-valued relation on a groupoid X to a
commutative group Y . Suppose that there exists a subset P of Y , such that Y =
−P ∪ P and

F (x1) ∩ P + F (x2) ⊂ F (x1 + x2)
for all x1, x2 ∈ X. Then F is superadditive.

Moreover, from Theorem 8.1, we easily get the following statement

Theorem 8.2. Let F be a relation on a groupoid X to a group Y . Suppose that
there exists a relation G on a groupoid Z to a group W , an anti-superadditive relation
ϕ on X to Z, an odd anti-additive function ψ on W onto Y , and moreover subsets P
of Y and Q of W , such that:

(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ Q;

(3) F (x1) ∩ P + F (x2) ⊂ F (x1 + x2) for all x1, x2 ∈ X;
(4) G(z1) +G(z2) ∩Q ⊂ G(z1 + z2) for all z1, z2 ∈ Z.

Then F is superadditive.

Proof. In this case, ϕ is a superadditive relation on X(+) to Z(⊕) and ψ is a
odd additive function on W (⊕) onto Y (+). Moreover, we have

G(z1) ∩Q⊕G(z2) = G(z2) +G(z1) ∩Q ⊂ G(z2 + z1) = G(z1 ⊕ z2)

for all z1, z2 ∈ Z. Therefore, Theorem 8.1 can be applied to get the superadditivity of
F . �

From Theorem 8.2 we can immediately get the following corollary.

Corollary 8.3. Let F be a relation on a groupoid X to a group Y . Suppose that
there exists an anti-superadditive relation ϕ on X to X, an odd anti-additive function
ψ on Y onto Y , and moreover subsets P and Q of Y , such that:
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(1) ψ−1 ◦ F = G ◦ ϕ;
(2) ψ−1

[
R

F
\ P

]
⊂ Q;

(3) (F (x1) ∩ P + F (x2))∪ (F (x1) + F (x2) ∩Q) ⊂ F (x1 +x2) for all x1, x2 ∈ X.
Then F is superadditive.

Hence, it is clear that in particular we also have

Corollary 8.4. Let F be an odd relation on one group X to another Y . Suppose
that there exists a subset P of Y such that Y = −P ∪ P and

(F (x1) ∩ P + F (x2)) ∪ (F (x1) + F (x2) ∩ P ) ⊂ F (x1 + x2)

for all x1, x2 ∈ X. Then F is superadditive.

Remark 8.1. To obtain some further conditions for the superadditivity of F , we
can note that in Theorem 8.1, instead of conditions (3) and (4), we may assume that

(3’) F (x1) + F (x2) ∩ P ⊂ F (x1 + x2) for all x1, x2 ∈ X;
(4’) G(z1) +G(z2) ∩Q ⊂ G(z1 + z2) for all z1, z2 ∈ Z.
Namely, if ϕ and ψ are as in Theorem 8.1, then ϕ is also a superadditive relation on

X(⊕) to Z(⊕) and ψ is also an odd additive function on W (⊕) onto Y (⊕). Moreover,
if (3’) and (4’) hold, then we have

(3”) F (x1) ∩ P ⊕ F (x2) ⊂ F (x1 ⊕ x2) for all x1, x2 ∈ X;
(4”) G(z1) ∩Q⊕G(z2) ⊂ G(z1 ⊕ z2) for all z1, z2 ∈ Z.
Therefore, Theorem 7.1 can be applied with X(⊕), Y (⊕), Z(⊕), and W (⊕) in

place of X(+), Y (+), Z(+), and W (+), respectively.
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