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A Schottky description of a Theorem of
Conder-Maclahlan-Vasiljevic-Wilson

Rubén A. Hidalgo

Abstract. In a recently paper of Conder-Maclahlan-Vasiljevic-Wilson [7]it has
been proved that for every positive integer g > 2 there exists a closed non-orientable
surface of algebraic genus g with at least 4(g + 1) automorphisms if g is even, or
at least 8(g − 1) automorphisms if g is odd. The main purpose of this note is to
provide explicitly such kind of situations in terms of Schottky groups. We also
provide a construction of closed non-orientable surfaces of algebraic genus g, for
infinite many values of integers g > 2, so that they admit a group of automorphisms
of order 12(g − 1) which can be reflected by Schottky groups.

1. Introduction

For us a compact Klein surface of algebraic genus g > 2 will mean a pair (S, τ),
where S is a closed Riemann surface of genus g > 2 and τ : S → S is an anticonformal
automorphism of S of order 2. In case that τ has no fixed points we say that it is
an imaginary reflection; otherwise, we say that τ is a reflection. A compact Klein
surface may also be seen as the quotient R = S/τ . The surface S is called the complex
double of R. Clearly, R is a closed surface of topological genus p if and only if τ is
an imaginary reflection and S has genus g = p − 1. Generalities on Klein surfaces
can be found, for instance, in [4]. If S is a closed Riemann surface, then we will
denote by Aut+(S) its group of conformal automorphisms and by Aut(S) its group of
conformal and anticonformal automorphisms. The group Aut(S, τ) of automorphisms
of a compact Klein surface (S, τ) is by definition the subgroup of Aut(S) consisting of
the those automorphisms that commutes with τ . If we set Aut+(S, τ) = Aut(S, τ) ∩
Aut+(S), then we have that Aut(S, τ) is generated by τ and Aut+(S, τ). Generalities
on automorphisms on compact Klein surfaces may be found, for instance, in [21, 24].
If the genus of S is g > 2, then we have Hurwitz’s bound |Aut+(S)| 6 84(g − 1) [14].
It is well known that Hurwitz’s bound is attained by an infinite number of values of
g [20] and also that is not the case for infinite many other values of g. In particular,
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the above asserts that for a compact Klein surface (S, τ) of algebraic genus g > 2
we have that |Aut+(S, τ)| 6 84(g − 1). If τ is a reflection, then it is known that
|Aut+(S, τ)| 6 12(g − 1) [21]. This bound is attained for infinitely many values of g
(also not attained for infinitely many other values of g). If τ is an imaginary reflection,
then there are infinitely many values of g > 2 for which there is a closed Klein surface
(S, τ) of algebraic genus g for which |Aut+(S, τ)| = 84(g − 1) [24]. If we set

v(g) = Max|Aut+(S, τ)|,
where (S, τ) runs over all closed non-orientable Klein surfaces of algebraic genus g > 2
(Max means maximum), then the results in [7] asserts that

v(g) > u(g) =
{

4(g + 1) g even
8(g − 1) g odd

and that there are infinitely many values of g > 2 for which we have equality in both
cases (with the possible exception of g ≡ 2 mod 12). The main porpoise of this note is
to provide explicit examples of closed non-orientable Klein surfaces (S, τ), of algebraic
genus g > 2, for which there is a subgroup H of |Aut+(S, τ)| with order at least v(g) and
so that the action of H can be reflected by a suitable Schottky uniformization of (S, τ).
Of course theorem 3.2 in this note may be also obtained from the results of [7] and we
do not claim in here that the result is new. Our idea is to give a different approach, the
explicit construction of Schottky groups reflecting the action of the involved groups,
and that is the novelty of this note. We also provide a construction of closed non-
orientable surfaces of algebraic genus g, for infinite many values of integers g > 2, so
that they admit a group of automorphisms of order 12(g − 1) which can be reflected
by Schottky groups (see theorem 3.3).

2. Schottky Uniformizations

The reader can find a good reference on the theory of Kleinian groups and Möbius
transformations in [23].

A Schottky group of genus g is by definitions a Kleinian group G generated by
loxodromic transformations, say α1, . . . , αg, so that there are 2g disjoint simple loops,
say C1, C

′
1, . . . , Cg, C

′
g, all of them bounding a domain of connectivity 2g, say D ⊂ Ĉ,

such that
(1) αj(Cj) = C ′j , for j = 1, ..., g; and
(2) αj(D) ∩ D = ∅, for j = 1, . . . , g.

In the above, the set of loops, C1, . . . , C
′
g are called defining loops for the Schottky

generators α1, . . . , αg. It is well known that the region of discontinuity Ω of a Schottky
group G of genus g is connected and dense in Ĉ, and that S = Ω/G is a closed Riemann
surface of genus g. We say that the surface S is uniformized by the Schottky group
G. Moreover, if C1, . . . , C

′
g is a collection of defining loops for G and we denote by Vj

the projection of Cj on S, then V1, . . . , Vg is a set of pairwise disjoint homologically
independent simple loops. A Schottky group of genus g is a free group of rank g so that
every element of G, different of the identity, is loxodromic (we say that G is purely
loxodromic) [23]. These properties characterize Schottky groups within the class of
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Kleinian groups of the second kind (discrete groups of Möbius transformations with
non-empty region of discontinuity) [22, 6]. As a consequence of the results of [1]
we have that Schottky groups can be also characterized as those geometrically finite
purely loxodromic Kleinian group with connected region of discontinuity. Retrosection
theorem [5, 17] asserts that every closed Riemann surface S of genus g > 1 can be
uniformized by a Schottky group of rank g. A Schottky uniformization of a closed
Riemann surface S is a triple (Ω, G, P : Ω → S), where G is a Schottky group with
region of discontinuity Ω and P : Ω → S is a Galois covering with G as covering group.
A real Schottky group G of genus g is by definition a Schottky group of genus g that
keeps invariant some circle CG ⊂ Ĉ. In this case, the limit set of G is contained in CG

and the reflection τG on CG commutes with every element of G. If g > 2, then, as the
limit set is infinite, we have that CG is unique. If Ω is the region of discontinuity of
the real Schottky group G, with invariant circle CG and τG the reflection on CG, then
we have that S = Ω/G is a closed Riemann surface admitting a reflection τ which is
induced by τG. We say that the compact (bordered) Klein surface (S, τ) is uniformized
by G. A result due to Köbe [18] asserts that each compact bordered Klein surface (S, τ)
can be uniformized by a suitable real Schottky group G. A Schottky uniformization of
a Klein surface (S, τ) is by definition a Schottky uniformization of S for which τ lifts.
As a consequence of Köebes uniformization theorem [18], if (S, τ) is a compact Klein
surface with τ a reflection, then there is a Schottky uniformization of it. If (S, τ) is a
compact Klein surface with τ an imaginary reflection, then the existence of a Schottky
uniformization of it is granted by quasiconformal deformation theory and the fact that
the topological action of an imaginary reflection is rigid.

3. Schottky Type Automorphisms

Let us consider a closed Riemann surface S of genus g > 2 and a subgroup H
of Aut(S). We say that H is of Schottky type if it is possible to find a Schottky
uniformization of S, say (Ω, G, P : Ω → S), for which the group H lifts: for each h ∈ H

there is an automorphism ĥ : Ω → Ω satisfying Pĥ = hP . If we have a closed Riemann
surface S of genus g > 2 and H a subgroup of Aut(S) which is of Schottky type, then we
have the existence of a Schottky uniformization of S, say (Ω, G, P : Ω → S), for which H
lifts. Since the region of discontinuity of the Schottky group G is known to be a domain
of type OAD [3], we have that each lifting ĥ, for h ∈ H, is in fact the restriction of an
extended Möbius transformation. Let us denote by K the group of (extended) Möbius
transformations formed by all possible liftings of the elements of H by the covering
P : Ω → S. It follows that K is a group of (extended) Möbius transformations which
contains the Schottky group G as a normal subgroup of finite index; the index equal to
the order of H. In particular, K is a finitely generated (extended) Kleinian group (by
Ahlfors’ finiteness theorem [2]) with Ω as region of discontinuity (in particular, K is a
finitely generated function group [23]), K/G = H and Ω/K = S/H. If we denote by
H+ (respectively, K+) the index two subgroup of H (respectively, K) consisting of its
conformal automorphisms, then S/H+ = Ω/K+ cannot have signature (0, 3; n1, n2, n3)
(the Riemann sphere with exactly three branched values). In fact, due to a result of I.
Kra [19] a function group uniformizing an orbifold of signature (0, 3;n1, n2, n3) must



56 RUBÉN A. HIDALGO

be a (triangular) Fuchsian group of the first kind, in particular, with disconnected
region of discontinuity, a contradiction. It follows from this and Riemann-Hurwitz’s
formula that |H+| 6 12(g − 1) and if the equality holds, then S/H+ is a the Riemann
sphere with exactly 4 branch values of orders 2, 2, 2, 3. Moreover, it has been shown
in [13] that if H+ is a group of Schottky type of conformal automorphisms of a closed
Riemann surface of genus g > 2 of order bigger than 4(g + 1), then its order is of the
form 4n(g−1)/(n−2), for some n > 3. In that case, the quotient S/H+ is the Riemann
sphere with with exactly 4 branch values of orders 2, 2, 2 and n. In particular, if H+

has order bigger than 8(g − 1), then it must have order exactly 12(g − 1).

3.1. Schottky Type Automorphisms of Compact Klein Surfaces. Given
a compact Klein surface (S, τ) and H a subgroup of Aut(S, τ), we say that H is of
Klein-Schottky type if there is a Schottky uniformization of (S, τ) for which H lifts,
in other words, H is of Klein-Schottky type if and only if H̃ = 〈H, τ〉 is of Schottky
type. As a consequence, if the algebraic genus of (S, τ) is g > 2, then H̃ has order at
most 24(g − 1), in particular, H̃+ has order at most 12(g − 1). In the case that τ is a
reflection, the following is a re-interpretation of Köebes uniformization theorem of real
surfaces [18].

Theorem 3.1 (Koebe’s Real Uniformization). If (S, τ) is a bordered Klein surface
(τ is a reflection), then Aut(S) is of Klein-Schottky type.

Remark 3.1. As for a closed Klein surface (S, τ), of algebraic genus g > 2, there
are examples for which |Aut+(S, τ)| > 12(g − 1), the above result is not longer true in
this class. In [8] we have found some necessary conditions in order for a cyclic group
of automorphisms to be of Klein-Schottky type.

In [13] we have constructed infinitely many values of g > 2 for which there is a
closed Riemann surface of genus g with a group of conformal automorphisms of Schot-
tky type with maximum possible order 12(g − 1). Necessary conditions for K to be of
Schottky type are given in [9] for the case that K only contains conformal automor-
phisms and in [8] for the case that K contains anticonformal automorphisms. For the
conformal situation we have that such necessary conditions in [9] are also sufficient for
cyclic groups [9], Abelian groups [10], dihedral groups [11], the alternating groups A4,
A5 and the symmetric group S4 [12]. In [8] was considered the anticonformal cyclic
case. In the case (S, τ) is a closed Klein surfaces of algebraic genus g > 2, as already
observed, we may have subgroups H of Aut+(S, τ) with order bigger than 12(g−1), in
particular, not of Klein-Schottky type. Moreover, it may happen that the order of H
is less than 12(g− 1) and still not of Klein-Schottky type. As said in the introduction,
the following can be obtained as consequences of the results in [7]. But our approach
is different and is given in terms of explicit constructions of Schottky groups.

Theorem 3.2.

(1) For each g > 2 we may find a closed Riemann surface S of genus g > 2 with a
Schottky type subgroup H of Aut+(S) of order 2(g + 1). If g > 3 is odd, then
H can be found with order 8(g − 1). Moreover, the surface may be chosen so
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that it admits a reflection τ , commuting with each automorphism of H so that
H̃ = 〈H, τ〉 is of Schottky type and so that S/τ is orientable.

(2) For each g > 2 there is a bordered Klein surface (S, τ) of algebraic genus g
with a Klein-Schottky type group H < Aut+(S, τ) of order 4(g + 1). If g > 3
is odd, then there is a bordered Klein surface (S, τ) of algebraic genus g with
a Klein-Schottky type group H < Aut+(S, τ) of order 8(g− 1). Moreover, for
each of these bordered Klein surfaces S/τ is orientable.

(3) For each integer g > 2 we have a closed Klein surface (S, τ) of algebraic
genus g with a Klein-Schottky type group H < Aut+(S, τ) of order 4(g + 1).
If g > 3 is odd, we have a closed Klein surface (S, τ) of algebraic genus g with
a Klein-Schottky type group H < Aut+(S, τ) of order 8(g − 1).

Remark 3.2. In the above, part (2) is just consequence of part (1).

There are infinitely many integers g > 2 for which there is a bordered Klein sur-
face of algebraic genus g with group of automorphisms of order 12(g − 1), then of
Klein-Schottky type as consequence of Köbe’s theorem 3.1. In the case of closed non-
orientable Klein surfaces we have the following.

Theorem 3.3. There are infinitely many integers g > 2 for which there is a closed
Klein surface (S, τ) of algebraic genus g with a Schottky type group H < Aut+(S, τ) of
order 12(g − 1).

The above is proved by giving explicit construction of Schottky uniformizations.
We provide an explicit example in genus g = 2 of a situation as in the above theorem
3.3, which will be needed later in the general construction.

Example 3.1. Let us consider the real line L1, the line L2 defined by 0 and eπi/3,
the unit circle C and a circle Σ orthogonal to both C and L1 (with center in the positive
real line) and disjoint from L2. Let τ1, τ2, τ3 and τ4 the reflections on L1, L2, C and
Σ, respectively. If K0 = 〈τ1, τ2, τ3, τ4〉, then K0 is a Kleinian group with connected
region of discontinuity Ω so that Ω/K0 is a closed disc with exactly 4 branch values
in its borders, of orders 2, 2, 2, 3. Let W = τ2τ1, η1 = τ4τ3τ1, η2 = Wη1W

−1 and
η3 = W−1η1W . Then the group K1 = 〈η1, η2, η3〉 is a normal subgroup of K0 of index
12 and Ω/K1 is a closed non-orientable surface of topological genus p = 3. The index
two normal subgroup K+

1 , generated by A = η2η1 and B = η3η1, is a Schottky group
of genus two and normal in K0. In this way, we have produced an example of a closed
non-orientable Klein surface (S, τ) of algebraic genus 2, say S = Ω/K+

1 and τ induced
by any of the elements of K1−K+

1 , with the Schottky type group K+
0 /K+

1 < Aut+(S, τ)
of order 12 (the Schottky bound in g = 2).

4. Proof of Theorem 3.2

4.1. Case of order 4(g + 1). Let p > 3 and g = p − 1. Consider the real line
L1, the line L2 defined by 0 and eπi/p, the unit circle C and a circle Σ orthogonal to
both C and L1 (with center in the positive real line) and disjoint from L2. Let τ1,
τ2, τ3 and τ4 the reflections on L1, L2, C and Σ, respectively. If K0 = 〈τ1, τ2, τ3, τ4〉,
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then K0 is a Kleinian group with connected region of discontinuity Ω so that Ω/K0 is
a closed disc with exactly 4 branch values in its borders, of orders 2, 2, 2, p. We have
already considered the case p = 3 in example 3.1. The group K0 satisfies the following
relations:

τ2
1 = τ2

2 = τ2
3 = τ2

4 = 1

(τ2τ1)p = (τ3τ1)2 = (τ4τ1)2 = (τ3τ2)2 = (τ3τ4)2 = 1.

Set W = τ2τ1, R = τ4τ3, T = τ3τ1 and η = τ4τ1τ3. The transformation η is an
imaginary reflection keeping invariant the circle Σ. In this way, K0 also has generators:

W,T,R, η

with relations:

W p = T 2 = R2 = η2 = 1

(WT )2 = (RT )2 = (ηT )2 = (ηR)2 = RWRηWη = 1.

Set η1 = η, ηj+1 = WηjW
−1, for j = 1, ..., p − 1. We see that ηj is an imaginary

reflection keeping invariant the circle W j−1(Σ). The group K1 generated by the invo-
lutions η1,..., ηp is normal subgroup of K0 and index 4p, in fact, K0/K1

∼= Z/2Z×Dp,
where Dp denotes the dihedral group of order 2p. The index two normal subgroup G of
K1, consisting of its conformal automorphisms, is a Schottky group of genus g = p− 1
generated by the transformations

A1 = ηη2, A2 = ηη3, ..., Ap−1 = ηηp,

with a fundamental system of loops given by the circles

Σ1 = W (Σ), Σ′1 = η(Σ1), ..., Σp−1 = W p−1(Σ) and Σ′p−1 = η(Σp−1).

We have a closed Riemann surface S = Ω/G together an imaginary reflection
τ : S → S induced by η1. The closed non-orientable Klein surface (S, τ) has algebraic
genus g = p−1 and the group of conformal automorphisms H = K+

0 /K+
1 < Aut+(S, τ),

of order 4p, is of Schottky type. This gives us half of part (3) of the theorem. To
obtain the half of part (1) of the theorem, we just need to observe that the reflection
τ3 descends to a reflection τ̂ : S → S which commutes with all the automorphisms in
H, in particular, H < Aut+(S, τ̂).

Remark 4.1. If in the above construction we set S1 = TR, Sj+1 = WSjW
−1, for

j = 1, ..., p − 1, then we have that each conformal involution Sj keeps invariant the
circle W j−1(Σ) and, in particular, the group K2 is free generated (in the combination
theorems sense [23]) by S1,..., Sp. The group K2 is a Whittaker group [16] of genus
g = p − 1. Since SjS1 = ηjη, for each j = 2, ..., p, we see that G is a hyperelliptic
Schottky group [16]. In particular, the Riemann surface S obtained in the above
construction is a hyperelliptic Riemann surface with hyperelliptic involution induced
by TR.



A SCHOTTKY DESCRIPTION 59

4.2. Case of order 8(g − 1), where g > 3 odd. As before, we consider p > 4
even and set g = p − 1. Consider the real line L1, the line L2 defined by 0 and eπi/4,
the unit circle C and a circle Σ orthogonal to both C and L1 (with center in the positive
real line) and disjoint from L2. Let τ1, τ2, τ3 and τ4 the reflections on L1, L2, C and
Σ, respectively. If K0 = 〈τ1, τ2, τ3, τ4〉, then K0 is a Kleinian group with connected
region of discontinuity Ω so that Ω/K0 is a closed disc with exactly 4 branch values
in its borders, of orders 2, 2, 2, 4. Set W = τ2τ1, T = τ3τ1 and J = τ1τ4. The index
two normal subgroup K = K+

0 , consisting of the conformal automorphisms in K0, is
a geometrically finite Kleinian group generated by the transformations T , W and J .
This group is in fact isomorphic to the direct product of a dihedral group of order
four (the Klein group) and a dihedral group of order 8, amalgamated over Z/2Z by
use of Maskit’s combination theorems. Since K0 has no parabolic transformations, we
have then that all non-loxodromic transformations are conjugated to either W , W 2,
W 3, J , T , WT or JT . We have that K0 = 〈K, τ3〉 and that τ3 commutes with every
transformation of K. Let us write g = 2q + 1 with q an integer greater or equal to 1,
and consider the direct product group M = P ×Q, where P is generated by

x, w, j, t,

with relations:
xq = w4 = j2 = t2 = (wt)2 = (jt)2 = 1,

wxw−1 = x−1, tx = xt, jxj = x−1, jwj = xw,

and
Q = 〈u : u2 = 1〉.

It is not hard to see that P is a finite group of order 8(g − 1), so M has order
16(g − 1). The homomorphism ρ : K0 → M , defined by

ρ(W ) = w, ρ(J) = j, ρ(T ) = t, ρ(τ3) = u,

is surjective since ρ(JWJW−1) = x. Let G be the kernel of such a homomorphism. We
can see that necessarily G¢K and that G has index 8(g−1) in K. As observed above,
the elliptic elements of K are conjugated to either W , W 2, W 3, J , T , WT or JT . None
of these transformations belongs to G and, as a consequence, G is torsion-free. As K
has no parabolic transformations, we have that G is purely loxodromic. It follows that
G is geometrically finite, purely loxodromic, Kleinian group with connected region of
discontinuity, then a Schottky group. Let us denote by Ω the region of discontinuity of
G (which is the same as for K), by H = K/G. We have the regular coverings

πK : Ω → R = Ω/K

πG : Ω → S = Ω/G

πS : S → R

so that πSπG = πK . As R = S/H is the Riemann sphere with exactly 4 branch values
of orders 2, 2, 2 and 4, and H is a group of order 8(g − 1), we have from Riemann-
Hurwitz’s formula that S has genus g. In particular, G is a Schottky group of genus g.
The reflection τ3 induces on the surface S = Ω/G a reflection τ which commutes with
every element of K/G. This shows the second half of part (1). To get the second half
of part (3), we need to observe that on the closed Riemann surface S the imaginary
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reflection τ̂ induced by W 2τ3 commutes with every automorphism of H (this is simply
consequence of the fact that w2 commutes with every element in P ). It follows that
(S, τ̂) is a closed Klein surface of algebraic genus g with a Klein-Schottky type group
H < Aut+(S, τ̂) of order 8(g − 1).

Remark 4.2. In this case we have that the closed Riemann surface S has two
anticonformal involutions: (i) a reflection τ and (ii) an imaginary reflection τ̂ , satisfying
the equality Aut+(S, τ) = Aut+(S, τ̂).

5. Proof of Theorem 3.3

A non-elementary Kleinian group K is called real if its limit set Λ(K) is contained
in some circle C (the image of the unit circle by some Möbius transformation). In
particular, the reflection τ on C commutes with each element of K. The fact that
K is non-elementary asserts that Λ(K) has infinitely many points and, in particular,
the circle C and τ are uniquely determined. Set K0 = 〈K, τ〉 and Ω the region of
discontinuity of K (then also the region of discontinuity of K0).

Lemma 5.1. Assume we have a Schottky group G < K of genus γ > 2 as normal
subgroup of K and index q(γ − 1). Assume also that we have a set of free generators
A1,..., Aγ of G so that, for j = 1, ..., γ, xAjx

−1 is a word in these generators of odd
length for every x ∈ K. Set Ĝ the group generated by the glide-reflections B1 = τA1,...,
Bγ = τAγ . Then

(i) Ĝ is a free group of rank γ, freely generated by B1,..., Bγ ;
(ii) Ĝ is a normal subgroup of K0 of index 2q(γ − 1);
(iii) S = Ω/Ĝ is a closed non-orientable Klein surface of topological genus p = 2γ;
(iv) The surface S has a group H = K0/Ĝ of automorphisms of Schottky type and

order q(p− 2).

Proof. Let us consider an element t ∈ K0, then t = τx, for some x ∈ K. We then
have that tBjt

−1 = τxτAjx
−1τ = τxAjx

−1. But, by our hypothesis, we know that
xAjx

−1 is a word on odd length in A1,..., Aγ , say W (A1, ..., Aγ). Then we have that
W (B1, ..., Bγ) = τW (A1, ..., Aγ). In particular, tBjt

−1 = W (B1, ..., Bγ), obtaining the
normality of Ĝ in K0. In this way, normality of Ĝ in K0 asserts that Ω is also the region
of discontinuity of Ĝ. The Schottky group G is a Schottky group keeping the circle C
invariant. It follows that G is classical Schottky group for the set of generators A1,...,
Aγ . In particular, a fundamental domain of Ĝ is given by a collection of 2γ pairwise
disjoint circles, say C1, C ′1,..., Cγ , C ′γ , each one orthogonal to C, bounding a common
domain D of connectivity 2γ, so that Aj(Cj) = C ′j and Aj(D) ∩D = ∅. Then we also
have Bj(Cj) = C ′j and Bj(D) ∩ D = ∅. As for the case of Schottky group, one has
that Ĝ is a free group of rank γ, freely generated by B1,..., Bγ . In this way we see that
S = Ω/Ĝ is a closed non-orientable Klein surface of topological genus p = 2γ admitting
the group H = K0/Ĝ as group of automorphisms of Schottky type. The order of H is
equal to the index of Ĝ in K0 which is equal to the index of G in K, in consequence,
2q(γ − 1) = q(p− 2). ¤
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Lemma 5.2. Let us consider the Schottky group G and the free group Ĝ, freely
generated by the transformations B1,..., Bγ , as in lemma 5.1. Choose a positive odd
integer n > 3 and consider the normal subgroup of Ĝ

Ĝn = 〈tn, [u, v] : t, u, v ∈ Ĝ〉,
where [u, v] = uvu−1v−1. We have that

(i) Ĝn is a normal subgroup of K0;
(ii) Ĝn has index nγ in Ĝ and index 2q(γ − 1)nγ in K0;
(iii) Ĝn is a free group of rank m = nγ(γ − 1) + 1;
(iv) S = Ω/Ĝn is a closed non-orientable Klein surface of topological genus 2m;
(v) The Klein surface S admits the group of automorphisms H = K0/Ĝn, which

is of Schottky type and of order (2m− 2).

Proof. The normality of Ĝn in K0 is clear. Since

Ĝ/Ĝn
∼=

γ⊕ Z/nZ,

we have that Ĝn has index nγ in Ĝ and index 2q(γ − 1)nγ in K0. Since a subgroup
of a free group of rank l and index a is a free group of rank a(l − 1) + 1, it follows
that Ĝn is a free group of rank m = nγ(γ − 1) + 1. We choose a set of free generators
of Ĝn, say C1,..., Cm. Some of these generators must be glide-reflections; if not, all
of them will be loxodromic and Ĝn will be a Schottky group, in particular, containing
only orientation preserving transformations, a contradiction to the fact that Bn

1 ∈ Ĝn.
We may assume that C1,..., Cr are glide reflections and Cr+1,..., Cm are loxodromic.
It follows that Ĝn uniformizes a closed non-orientable surface S homeomorphic to

(
2r

# RP 2

)
#

(
m−r

# (S1 × S1)
)

,

where S1 denotes the unit circle and, in particular, that S is a closed non-orientable
Klein surface of genus 2m. The Klein surface S admits the group of automorphisms
H = K0/Ĝn which is of Schottky type by the construction. The order of H is

|H| = [K0 : Ĝn] = 2q(γ − 1)nγ = 2q(m− 1) = q(2m− 2),

as required. ¤

5.1. Proof of Theorem 3.3. Let us start with the group K0 = 〈τ1, τ2, τ3, τ4〉 as
in the example 3.1 given at the end of section 2. In this case, we may apply the above
two lemmas with τ = τ3 and K = K+

0 .
Step 1. Let us construct a Schottky group G, of genus γ = 3, satisfying the

following:

(i) G is a normal subgroup of K+
0 ;

(ii) G has index 12 in K+
0 .

(iii) There is a set of free generators A1, ..., A3 for G so that, for every x ∈
{τ1, τ2, τ4}, we have that xAjx

−1 a word of odd length in these generators.
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Set A1 = (τ4τ2)3, A2 = WA1W
−1, A3 = W−1A1W , where (as before) W = τ2τ1.

The group G generated by these three transformations is a Schottky group of genus
3 with fundamental domain bounded by the circles τ3(W (Σ)), τ3(W−1(Σ)) and their
translates by W and W−1. In this case, we have the following relations:





τ1A1τ1 = A−1
3 ; τ1A2τ1 = A−1

2 ;
τ2A1τ2 = A−1

1 ; τ2A2τ2 = A−1
3 ;

τ4A1τ4 = A−1
1 ; τ4A2τ4 = A1A2A3; τ4A3τ4 = A−1

3

As a consequence, we have that G satisfies (i) and (iii). The quotient K0/G turns
out to be a group of order 24, giving (ii).

Step 2. By step 1, the group G satisfies the properties needed by lemma 1, respect
to K = 〈K0, τ〉. In particular, if Ω denotes the region of discontinuity of K0, then Ω/Ĝ
is a genus 6 closed non-orientable Klein surface with a group of automorphisms of
Schottky type of maximum possible order 48.

Step 3. Once we have the free group Ĝ, freely generated by the glide-reflections
B1, B2 and B3, we may use lemma 2 for each odd positive integer n > 3 to get a
group Ĝn. We have that Ĝn is a normal subgroup of K0 has index n3 in Ĝ and index
48n3 in K0. It follows that Ĝn is a free group of rank m = 2n3 + 1. The closed Klein
surface that Ĝn uniformizes has topological genus pn = 2(2n3 + 1) and a group of
automorphisms of Schottky type H = K0/Ĝn of order

|H| = [K0 : Ĝn] = 48n3 = 12(gn − 1),

where pn = gn + 1. If we denote by Gn = Ĝ+
n the index two subgroup of orientation

preserving transformations in Ĝn, then we obtain that Gn is a Schottky group of genus
gn, uniformizing a closed Riemann surface Sn. On the surface Sn, of genus gn, we have
an imaginary reflection τn : Sn → Sn, induced by Ĝn − Gn. The quotient Sn/τn is
uniformized by Ĝn and we have that K+

0 /Gn is a conformal group of Schottky type
and order 12(gn − 1) as desired. 2

Remark 5.1. Lemmas 5.1 and 5.2 and arguments similar to the constructions
done above permit to construct infinite sequences of values of g > 2 for which there is a
closed Klein surface (S, τ) of algebraic genus g with a Schottky type group of conformal
automorphisms H < Aut+(S, τ) of order q(g − 1), for certain admissible values of q.
For instance, for q = 6, let us consider a Fuchsian group K = 〈A,B : A3 = B2 = 1〉
so that H2/K is an open disc with exactly two branch values in its interior of orders
2 and 3. Let τ the reflection on the boundary circle of H2 = {z ∈ C : |z| < 1}. Take
the normal subgroup of K given by G = 〈〈(AB)3〉〉 = 〈A1, A2, A3〉, where A1 = (AB)3,
A2 = AA1A

−1 = A−1BABABA−1 and A3 = A−1A1A = (BA)3. We have that G is
a Schottky group of genus 3 and K/G ∼= A4, the alternating group of order 12. In
this case, we have BA1B = A3, BA2B = A−1

1 A−1
2 A−1

3 . It follows that we have the
conditions of lemma 1 and, in this way, we get an infinite sequence of values of g > 2
for which there is a closed Klein surface of algebraic genus g admitting a Schottky type
group of conformal automorphisms of order 6(g − 1).
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