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Fourth coefficient estimate in the class of univalent functions
with quasiconformal extensions

Larisa L. Gromova

Abstract. We denote by S(k) the class of all univalent conformal maps f defined
in the unit disk ∆ normalized by f(z) = z +

P∞
n=2 anzn, such that all f admit

k-quasiconformal homeomorphic extension to the whole Riemann sphere Ĉ, and
f(∞) = ∞. In our note we give a new estimate for |a4| in S(k) making use of the
Area Principle.

Let us denote by Σ the class of functions

F (ζ) = ζ + α0 +
α1

ζ
+ . . . ,

which are regular and univalent in the exterior part of the unit disk ∆′ = {ζ : |ζ| > 1}
except for the simple pole at infinity and its subclass Σ0 is given by an additional
restriction 0 6∈ F (∆′). Let Σ(k) stand for the subclass of functions F ∈ Σ that
admit k-quasiconformal homeomorphic extensions to the unit disk ∆, and Σ0(k) be
obtained from Σ(k) applying the restriction F (0) = 0. By S(k) we denote the class
of all univalent conformal maps f defined in the unit disk ∆ normalized by f(z) =
z +

∑∞
n=2 anzn, such that all f admit k-quasiconformal homeomorphic extensions to

the whole Riemann sphere Ĉ, and f(∞) = ∞. Obviously, f ∈ S(k) if and only if
1/f(1/ζ) ∈ Σ0(k). During the long history of univalent functions the Bieberbach
Conjecture [1] |an| 6 n, f ∈ S, has been the most intriguing one. It has been proved
by L. de Branges in 1984 [2, 3]. In spite of many works about coefficient estimates
in the class S, there are some difficult problems that still unsolved, in particular, the
problem of estimating |an|, n > 2, for the subclass S(k) that we will deal with for
n = 4. We remark here that the only known complete sharp estimate is |a2| 6 2k,
0 6 k < 1. Some achievements in this estimate are as follows. S. L. Krushkal and
R. Kühnau [6] gave the estimate

|a4| 6 2
3
k + O(k4) <

2
3
k +

14
3

k4,
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as k → 0 in the class S(k). In [4] it was shown that

|a4| 6
{

2
3k + 4√

3
k2 + 10

3 k3, for 0 6 k <
√

7
15 ,

2
3k + 10

3 k3, for
√

7
15 6 k < 1,

that leads to |a4| 6 4 as k → 1. In 1995 S. L. Krushkal [7] obtained the sharp estimate

|an| 6 2k

n− 1
, f ∈ S(k),

under the restriction
0 < k 6 1

n2 + 1
, n > 2,

that implies |a4| 6 2k/3 for 0 < k 6 1/17 = 0.0588 . . . . V. G. Sheretov [9] gave some
general conditions for the coefficients of p-symmetric univalent functions from S(k)
and Σ0(k).

In our note we use the Area Principle (see, e.g., [8]) to give a estimate for |a4| for
functions from S(k). Our result is the following theorem.

Theorem 0.1. In the class S(k) we have

|a4| 6 2
3
k +

2
3
kγ(x∗), for 0.15 6 k 6

√
7

15 ,

where x∗ is a unique root of the equation

3(0.22− k2)x2 − 3.68x + 6k2 + 1.62 = 0, x∗ ∈ (0, 1),

and the function γ(x) is given as

γ(x) = (0.22− k2)x3 − 1.84x2 + (6k2 + 1.62)x.

Proof. Let us follow a method by V. Ya. Gutlyanskĭı [5]. If F (ζ) ∈ Σ(k), and
Q(w) 6= const is a function which is regular in the domain Dρ(F ) = F (∆′

ρ), where
∆′

ρ = {ζ : 1 < ρ 6 |ζ|}, then one obtains the Laurent series of the function Q(F (ζ))
in the annulus 1 < |ζ| < ρ as

Q(F (ζ)) =
∞∑

n=1

ωnζ−n +
∞∑

n=0

γnζn.

Using the Area Principle we obtain

(0.1)
∞∑

n=1

n|ωn|2 6 k2
∞∑

n=1

n|γn|2.

For arbitrary constants xp, x
′
p, p = 1, 2, . . ., such that

0 <

∞∑
p=1

|xp|2
p

< ∞, 0 <

∞∑
p=1

|x′p|2
p

< ∞,

the inequality (0.1) implies

(0.2)
∞∑

q=1

q
∣∣∣
∞∑

p=1

ωp,qxpx
′
q

∣∣∣
2

6 k2
∞∑

p=1

|xp|2
p

∞∑
q=1

|x′q|2
q

,
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where ωp,q are the Grunsky coefficients. We assume xp = x′q in (0.2), and consider
the subclass Σ2(k) of odd functions F from Σ(k). For our convenience we leave the
notations ωp,q, and from (0.2) it follows that

(0.3)
∞∑

q=1

(2q − 1)|
∞∑

p=1

ω2p−1,2q−1xp|2 6 k2
∞∑

p=1

|xp|2
2p− 1

.

First, we assume x1 = 1, xp = 0, p = 2, . . . , and choose x1 = l, x2 = 2, xp = 0, p =
3, . . . . Then we have

(0.4) |ω1,1|2 + 3|ω1,3|2 6 k2,

(0.5) |ω1,1l + 2ω1,3|2 + 3|ω1,3l + 2ω3,3|2 6 k2(|l|2 +
4
3
).

One easily sees (e.g.,[8]) that

ω3,3 =
a4

2
− 4ω1,1ω1,3 − 5

ω3
1,1

3
, ω1,1 =

a2

2
.

Substituting ω3,3 in (0.5) we have

(0.6) 3|a4 − (8ω1,1 − l)ω1,3 − 10
3

ω3
1,1|2 + |ω1,1l + 2ω1,3|2 6 k2(|l|2 +

4
3
).

Without loss of generality, we assume a4 > 0. Changing in the left-hand side the
absolute value by the real part we get

a4 6 2
3
k +

1
4
|l|2(k − 1

k
|ω1,1|2)− 1

k
|ω1,3|2 + Re {(8ω1,1 − l − 1

k
ω̄1,1 l̄)ω1,3 +

10
3

ω3
1,1}.

We introduce the following notations (see, e.g., [8])

ω1,1 = kxeiϕ, (x =
|a2|
2k

), (0 6 x 6 1), l =
8kx

1 + x
e−iϕ/2 cos

3
2
ϕ, y = | sin 3

2
ϕ|.

Then,

|a4| 6 2
3
k + 16

k3x2

(1 + x)2
(1− x2)− 16

k3x2

(1 + x)2
y2(1− x2)− 1

k
|ω1,3|2

+ Re [(8kxeiϕ − 8kxe−iϕ/2 cos
3
2
x)ω1,3 +

10
3

k3x3e3iϕ]

6 2
3
k + 16k3x2 1− x

1 + x
− (

20
3

k3x3 + 16
k3x2(1− x)

1 + x
)y2

− 1
k
|ω1,3|2 + 8kx|ω1,3|y +

10
3

k3x3.

Now we set the function q(y) by

q(y) = −(
20
3

k3x3 + 16
k3x2(1− x)

1 + x
)y2 + 8kx|ω1,3|y.

It is easily seen that
max

06y61
q(y) = q(y0),
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where

y0 =
kx|ω1,3|

5
3k3x3 + 4k3x2(1−x)

1+x

,

|ω1,3|2 6 1−x2

3 k2 (see (0.4) ).
So the estimate of |a4| is of the form

|a4| 6 2
3
k + 16k3x2 1− x

1 + x
+

10
3

k3x3 +
1
3
kx

19 + 14x− 5x2

12− 7x + 5x2
(1− x), x ∈ (0, 1).

We note that
2x

1 + x
6 1 + x

x
,

19 + 14x− 5x2

12− 7x + 5x2
6 3.24− 0.44x, 0 6 x 6 1.

Then,

|a4| 6 2
3
k +

2
3
k[(6k2 + 1.62)x− 1.84x2 + (0.22− k2)x3] =

2
3
k +

2
3
kγ(x).

Calculating γ′(x),we have

γ′(x) = 3(0.22− k2)x2 − 3.68x + 6k2 + 1.62.

Then, the equation γ′(x) = 0 has a unique solution x∗ in (0,1), and correspondingly,
γ(x) has a unique maximum in (0,1) for k2 < 0.22:

max
06x61

γ(x) = γ(x∗).

It is easily seen that
0 < x < 1, γ(0) = 0, γ(1) = 5k2,

what completes theorem. ¤

Remarks.

(1) Some achievements in our estimate are as follows. R. Kühnau [4] gave the
estimate

|a4| 6 2
3
k +

4√
3
k2 +

10
3

k3, 0 < k <

√
7

15
.

Assuming x∗ = x∗(k) we have γ(x) = γ(x∗(k)) = γ1(k) and the function
2
3kγ1(k) increases.

We note that

ψ(k) =
4√
3
k2 +

10
3

k3, ψ(0.15) >
2
3
kγ1(

√
7

15
).

Then,

ψ(k) >
2
3
kγ1(k), k ∈ [0.15;

√
7

15
].

By more precise calculations, the segment [0.15;
√

7
15 ] could be improved up

to [0.1013,
√

7
15 ].
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(2) Let x = |a2|
2k . Then

|a4| 6 2
3
k +

2
3
k[(6k2 + 1.62)

|a2|
2k

− 1.84
|a2|2
4k2

+ (0.22− k2)
|a2|3
8k3

].

Therefore, we obtaine the sharp estimate under the restriction a2 = 0, and
the extremal function is

f(z) = z(1− kηz)−2/3, 0 < k < 1, |η| = 1.

(3) If k2 > 0.22, we have the estimate [4] |a4| 6 2
3k + 10

3 k3.
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