SCIENTIA
Series A: Mathematical Sciences, Vol. 9 (2003), 45–51
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2003

Abel summability and angular convergence

Ricardo Estrada

ABSTRACT. We construct an example of a series that is Abel summable but whose associated power series does not converge on angular sectors. We also give some related results.

1. Introduction

A basic result in complex variables is Abel's theorem [10], that says that if the numerical series $\sum_{n=0}^{\infty} a_n$ converges then the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for |z| < 1, the function f(z) es analytic in |z| < 1 and

(1.1)
$$\lim_{\substack{z \to 1 \\ \text{Ang.}}} f(z) = \sum_{n=0}^{\infty} a_n \, .$$

The notation Ang. in the limit means in an angular way, that is, the limit exists as $z \to 1$ in any angular sector, $\pi/2 + \varepsilon < \arg(z-1) < 3\pi/2 - \varepsilon$, for $\varepsilon > 0$. Some authors use the term non-tangential instead of angular.

Motivated by Abel's theorem, one can define the concept of Abel summability. Indeed, if $\sum_{n=0}^{\infty} a_n$ is a *divergent* series, one can consider the auxiliary series $f(x) = \sum_{n=0}^{\infty} a_n x^n$. If this auxiliary series converges for $0 \leq x < 1$, and if

(1.2)
$$\lim_{x \to 1^{-}} f(x) = S,$$

then one says that the series $\sum_{n=0}^{\infty} a_n$ is Abel summable to the value S and writes

(1.3)
$$\sum_{n=0}^{\infty} a_n = S \quad (A)$$

For instance, the series $\sum_{n=0}^{\infty} (-1)^n$ is divergent, but $\sum_{n=0}^{\infty} (-1)^n x^n$ converges for $0 \leq x < 1$ to the sum 1/(1+x), whose limit when $x \to 1^-$ is 1/2; thus

(1.4)
$$\sum_{n=0}^{\infty} (-1)^n = \frac{1}{2} \quad (A)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 30B30. Key words and phrases. Abel summability, angular limit.

RICARDO ESTRADA

Many examples of sums in the Abel sense of divergent series can be found in [5].

Observe that according to Abel's theorem, every convergent series is (A) summable, to the same limit. The technical term is regularity: Abel summability is a regular summation method since it sums convergent series to their sum.

We now come to the question we would like to study. Suppose that $\sum_{n=0}^{\infty} a_n = S$ (A). Then it is easy to see that the auxiliary series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ not only converges for $0 \leq z < 1$ but also in the disc |z| < 1 and, in fact, f(z) is analytic in the disc. Abel summability to S means that $f(z) \to S$ as $z \to 1^-$, when z is a real number, namely, along the radius of the disc that goes through z = 1. The question is, does f(z) converge to S when $z \to 1$ in an angular fashion?

The aim of this article is to show how one can construct an extreme counterexample to this question. Namely, in Section 2 we show a procedure that produces a series $\sum_{n=0}^{\infty} a_n$ that is Abel summable to S but such that in no sector $\pi - \varepsilon < \arg(z-1) < \pi + \varepsilon$, no matter how small $\varepsilon > 0$ is, it is true that $f(z) \to S$ as $z \to 1$.

In Section 3, the last section, we consider several related results, that show that it is not always possible to construct counterexamples if f satisfies some additional conditions.

As suggested by a referee, it would be interesting to study if counterexamples of this kind are "exceptional" in the sense that they occur only in a small set of boundary points, whether a set of zero measure or of zero capacity; this is the usual situation in several questions related to the existence of angular limits [9].

2. The counterexample

Interestingly, to construct our counterexample it is enough to build a simpler example, namely, one of a series $\sum_{n=0}^{\infty} a_n$ that is Abel summable to S but such that there exists *some* sector $\frac{\pi}{2} + \varepsilon < \arg(z-1) < \frac{3\pi}{2} - \varepsilon$ where it is not true that $f(z) \to S$ as $z \to 1$. This simpler example is easy: take

(2.1)
$$f(z) = e^{-(1-z)^{-\alpha}},$$

where $\alpha > 0$ and where the branch of $\omega^{-\alpha} = (1-z)^{-\alpha}$ is the one defined for $\omega \in \mathbb{C} \setminus (-\infty, 0]$ which has the value 1 at $\omega = 1$. The series $\sum_{n=0}^{\infty} a_n$ is the one obtained by setting z = 1 in the power series expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Then f(z) is analytic in |z| < 1 and $f(z) \to 0$ as $z \to 1$ in the sector $\pi - \frac{\pi}{2\alpha} < \arg(z-1) < \pi + \frac{\pi}{2\alpha}$ but $f(z) \to 0$ as $z \to 1$ in any sector $\pi - \varepsilon < \arg(z-1) < \pi + \varepsilon$ if $\varepsilon > \frac{\pi}{2\alpha}$. Hence, the bigger the value of α , the sector where $f(z) \to 0$ as $z \to 1$ gets smaller. In particular, if $\alpha > 1$, the series is (A) summable but there is no angular convergence.

Let us now go to the extreme counterexample. If $0 \leq \delta < \pi/2$ let \mathcal{X}_{δ} be the space of analytic functions in |z| < 1 whose limit as $z \to 1$ exists in the closed sector $\pi - \delta \leq \arg(z - 1) \leq \pi + \delta$. Observe that \mathcal{X}_0 is the space of analytic functions in |z| < 1 whose limit as $z \to 1$ along the radius exists. The extreme counterexample is a function $f \in \mathcal{X}_0$ that does not belong to \mathcal{X}_{δ} for any $\delta > 0$.

In the space \mathcal{X}_{δ} we introduce a topology by giving the following family of seminorms (norms, actually)

(2.2)
$$||f||_{\delta,r} = \sup \{|f(z)| : z \in S_{\delta,r}\},\$$

where if 0 < r < 1 the set $S_{\delta,r}$ is the union of the disc $\{z \in \mathbb{C} : |z| \leq r\}$ and the sectorial set $\{z \in \mathbb{C} : \pi - \delta \leq \arg(z-1) \leq \pi + \delta, |z| \geq r, \Re e z > 0\}$; sets of this type are called Stoltz angles.

With these seminorms \mathcal{X}_{δ} becomes a locally convex topological vector space. Since $\| \|_{\delta,r} \leq \| \|_{\delta,s}$ for 0 < r < s < 1, it follows that if $\{r_n\}_{n=1}^{\infty}$ is an increasing sequence that converges to 1, $r_n \nearrow 1$, then the seminorms $\| \|_{\delta,r_n}$ generate the topology of \mathcal{X}_{δ} , thus \mathcal{X}_{δ} is a metrizable vector space [11]. It is easy to see that \mathcal{X}_{δ} is complete, since if $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then

(2.3)
$$\lim_{n,m\to\infty} \|f_n - f_m\|_{\delta,r} = 0,$$

for all r, with 0 < r < 1, and consequently the sequence $\{f_n(z)\}_{n=1}^{\infty}$ is a Cauchy sequence for all $z \in \{\omega \in \mathbb{C} : |\omega| < 1\} \cup \{1\}$. Let

(2.4)
$$f(z) = \lim_{n \to \infty} f_n(z) , \quad z \in \{\omega \in \mathbb{C} : |\omega| < 1\} \cup \{1\}$$

Using (2.3) we deduce that $\{f_n\}$ converges uniformly to f in each set $S_{\delta,r}$ and therefore in each compact set contained in the disc $\{\omega \in \mathbb{C} : |\omega| < 1\}$. If we now employ the well-known Weierstrass theorem on the analyticity of a limit, uniform over compacts, of a sequence of analytic functions, we conclude that f is analytic in the disc $\{\omega \in \mathbb{C} :$ $|\omega| < 1\}$. Finally, the uniform convergence of the f_n 's to f in $S_{\delta,r}$ gives the continuity of f in $S_{\delta,r}$, and this, in turn, guarantees that $f \in \mathcal{X}_{\delta}$. Consequently, \mathcal{X}_{δ} is a Fréchet space, that is, a complete metric vector space.

Observe now that in any complete metric space \mathcal{Y} , Baire's theorem holds [6]. Baire's theorem says that \mathcal{Y} is of the *second category*, i.e., if $\{\mathcal{Y}_n\}$ is a sequence of subsets of \mathcal{Y} with $\bigcup_{n=1}^{\infty} \mathcal{Y}_n = \mathcal{Y}$ then at least one of the \mathcal{Y}_n 's is not nowhere-dense, that is, the interior of its closure is non-empty; those spaces that can be written as a countable union of nowhere-dense sets are called of the *first category*. Thus, in a Fréchet space \mathcal{X} , if $\{\mathcal{V}_n\}$ is a sequence of vector subspaces of \mathcal{X} of the first category, then not only $\mathcal{V}_n \neq \mathcal{X} \forall n$, but also $\bigcup_{n=1}^{\infty} \mathcal{V}_n \neq \mathcal{X}$.

Let us apply these ideas to the space \mathcal{X}_{δ} . If $\delta' > \delta$ then $\mathcal{X}_{\delta'}$ is a vector subspace of \mathcal{X}_{δ} and, as we shall see in a moment, of the first category in \mathcal{X}_{δ} . Let $r \in (0, 1)$ be fixed and let

(2.5)
$$V = \left\{ f \in \mathcal{X}_{\delta'} : \|f\|_{\delta',r} \leqslant 1 \right\} \,.$$

Let W be the closure of V in \mathcal{X}_{δ} . Observe that convergence in the space \mathcal{X}_{δ} implies pointwise convergence in |z| < 1 and at z = 1. Therefore, if $f \in W$ then $|f(z)| \leq 1$ for $z \in S_{\delta',r}$. The simpler example shows that for each $s \in (0,1)$ and each $\varepsilon > 0$ there exists $g \in \mathcal{X}_{\delta}$ with $\|g\|_{\delta,s} < \varepsilon$ but with $\sup \{|f(z)| : z \in S_{\delta',r}\} > 1$, and, consequently, $g \notin W$. We deduce that 0 is not an interior point of W in \mathcal{X}_{δ} , since no neighborhood of 0 in \mathcal{X}_{δ} is contained in W. By translation, we conclude that the interior of W is empty. In other words, V is a nowhere-dense subset of \mathcal{X}_{δ} and since $\mathcal{X}_{\delta'} = \bigcup_{n=1}^{\infty} nV$, we obtain that $\mathcal{X}_{\delta'}$ is of the first category in \mathcal{X}_{δ} .

RICARDO ESTRADA

Moreover, if $\{\delta_n\}_{n=1}^{\infty}$ is a decreasing sequence with $\delta_n \searrow \delta$, then Baire's theorem allows us to conclude that $\bigcup_{\delta' > \delta} \mathcal{X}_{\delta'} = \bigcup_{n=1}^{\infty} \mathcal{X}_{\delta_n} \neq \mathcal{X}_{\delta}$. We have proved the ensuing result.

THEOREM 2.1. There exist analytic functions in |z| < 1 such that f(z) has a limit as $z \to 1$ in the sector $\pi - \delta \leq \arg(z-1) \leq \pi + \delta$ but not in any sector $\pi - \delta' \leq \arg(z - 1) \leq \pi + \delta' \text{ for } \delta' > \delta.$

The extreme counterexample corresponds to the case $\delta = 0$.

THEOREM 2.2. There exist series $\sum_{n=0}^{\infty} a_n$ that are Abel summable but such that the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ does not have a limit as $z \to 1$ in any sector $\pi - \varepsilon \leq 1$ $\arg(z-1) \leq \pi + \varepsilon \text{ for any } \varepsilon > 0.$

3. Other results

In this section we consider some related results.

We would like to point out, first of all, that it is not possible to construct a counterexample as the one of the previous section if we also ask the function f to be bounded. Indeed, according to a classical result, Montel's theorem [8] (see also [10, pg. 170]), if g is analytic and bounded in the semi-strip $\Re e \, z > 0$, $a < \Im m \, z < b$, and if there exists some value y_0 for which the limit

(3.1)
$$\lim_{x \to \infty} g\left(x + iy_0\right) = L,$$

exists, then

$$\lim g(x+iy) = L,$$

for all $y \in (a, b)$ and, in fact, the convergence is uniform in $[a + \varepsilon, b - \varepsilon]$ for all $\varepsilon > 0$. Using a conformal mapping we deduce the impossibility of such a counterexample.

LEMMA 3.1. Let f be analytic and bounded in $S_{\delta,r}$ for some $r < 1, \delta > 0$. Suppose $f \in \mathcal{X}_{\varepsilon}$ for some $\varepsilon \ge 0$. Then $f \in \mathcal{X}_{\rho}$ for all $\rho < \delta$. In particular, if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic and bounded in $S_{\delta,r}$ and if

(3.3)
$$\sum_{n=0}^{\infty} a_n = L \quad (A)$$

then $f(z) \to L$ as $z \to 1$ in any sector $\pi - \rho \leq \arg(z-1) \leq \pi + \rho$ for $\rho < \delta$.

Notice that the Lemma guarantees that $f \in \mathcal{X}_{\rho}$ for $\rho < \delta$, but it does not say that f belongs to \mathcal{X}_{δ} . In general this is not true: the function $f(z) = \exp\left(-(1-z)^{-\alpha}\right)$ introduced before is an example for $\delta = \frac{\pi}{2\alpha}$, since $f(z) \to 0$ as $z \to 1$ in $\pi - \rho \leq \arg(z-1) \leq \pi + \rho$ if $\rho < \delta$, but when $|\arg(z-1) - \pi| = \delta$ the function f(z) oscillates as $z \to 1$.

48

Another classical result [10, pg. 179] says that if h is analytic and bounded in a semi-strip Ω : $\Re e \, z > 0$, $a < \Im m \, z < b$, and if the limits

(3.4)
$$\lim_{x \to \infty} h(x+ia) = L_a, \quad \lim_{x \to \infty} h(x+ib) = L_b,$$

exist, then $L_a = L_b = L$ and

(3.5)
$$\lim_{x \to \infty} h\left(x + iy\right) = L, \quad \forall y \in [a, b].$$

The values of h along the boundary lines, x + ia and x + ib used in (3.4) are defined as we now explain. Observe that since h is analytic and *bounded* in Ω , then [1, 9] the angular boundary values

(3.6)
$$h\left(\xi\right) = \lim_{\substack{z \to \xi, z \in \Omega \\ \text{Ang.}}} h\left(z\right)$$

exist almost everywhere in the boundary $\partial\Omega$, and thus h(x+ia) and h(x+ib) are defined almost everywhere in x > 0 as angular boundary values.

Using an appropriate conformal mapping we deduce that if f is analytic in |z| < 1, bounded in $S_{\delta,r}$ for some r < 1, $\delta > 0$, and if f(z) has a limit when $z \to 1$ along the lines $\arg(z-1) = \pi - \delta$ and $\arg(z-1) = \pi + \delta$, then $f \in \mathcal{X}_{\delta}$.

However, it is more interesting to use a conformal mapping that sends the unit disc onto the semi-strip, with the point $z = e^{i\theta_0}$ corresponding to $\omega = \infty$, so that the lines $\Im m \, \omega = a$, $\Im m \, \omega = b$ correspond to arcs of the unit circle that end to the right and left of $z = e^{i\theta}$, respectively: we then deduce that if f is analytic and bounded in |z| < 1, and if $\varphi(\theta) = f(e^{i\theta})$, then φ cannot have a jump discontinuity at $\theta = \theta_0$. Other types of discontinuity are possible, but not those of jump type, for functions like φ that are boundary values of bounded analytic functions.

The hypothesis that f is bounded cannot be eliminated. Consider for instance the function

(3.7)
$$f(z) = \int_0^{Tz} e^{-\omega^2} d\omega,$$

where T is a conformal mapping that sends the unit disc to the upper half-plane, in such a way that T(-1) = 0, $T(1) = \infty$, and additionally $\lim_{\theta \to 0^{\pm}} T(e^{i\theta}) = \mp \infty$. Then $\varphi(\theta) = f(e^{i\theta})$ has a jump discontinuity at $\theta = 0$, since $\varphi(0^{\pm}) = \pm \sqrt{\pi}/2$.

Nevertheless, there is a more general hypothesis that permits one to conclude that there are no jump discontinuities. Instead of assuming f bounded, we just ask that the limit of $f(re^{i\theta})$ as $r \to 1^-$ exists in the *distributional* sense. It is convenient to point out that if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ then f has distributional boundary values in |z| = 1if and only if $a_n = O(|n|^{\alpha})$, $n \to \infty$ for some α and this, in turn, is equivalent to the estimate $f(re^{i\theta}) = O((1-r)^{-\beta})$, $r \to 1^-$ uniformly in θ for some β [2]. Also, in this case $\varphi(\theta) = f(e^{i\theta})$ is a distribution, so that the lateral limits $\varphi(\theta_0^{\pm})$ can be considered in the distributional sense of Lojasiewicz [7] (see also [4]).

THEOREM 3.1. Let f be analytic in |z| < 1, with distributional limits as $|z| \to 1$. Let $\varphi(\theta) = f(e^{i\theta})$. Let $\theta_0 \in \mathbb{R}$ be such that the lateral limits $\varphi(\theta_0^{\pm})$ exist distributionally. Then $\varphi(\theta_0^{\pm}) = \varphi(\theta_0^{\pm})$ and the distributional point value $\varphi(\theta_0)$ exists. PROOF. We may suppose that $\theta_0 = 0$. If the distributional lateral limits exist, then there exists $N \in \mathbb{N}$ and constants $a_0, \ldots, a_N \in \mathbb{C}$ such that

(3.8)
$$\varphi(\varepsilon\theta) = \varphi(\theta^+) H(\varepsilon) + \varphi(\theta^-) H(-\varepsilon) + \sum_{j=0}^N a_j \delta^{(j)}(\varepsilon\theta) + o(1) ,$$

as $\varepsilon \to 0^+$, where $H(\varepsilon) = 1$, $\varepsilon > 0$, $H(\varepsilon) = 0$, $\varepsilon < 0$, is the Heaviside function.

Suppose first that $a_0 = \cdots = a_N = 0$. Since f is analytic, then $f(re^{i\theta}) = \langle \varphi(\tau), P_r(\theta - \tau) \rangle$, where P_r is the Poisson kernel [3, Seccin 3.11]. Hence, if l_{α} is the line arg $(z-1) = \alpha$, $\frac{\pi}{2} < \alpha < \frac{3\pi}{2}$, (3.8) shows that $f(z) \to \lambda \varphi(\theta^+) + (1-\lambda) \varphi(\theta^-)$ as $z \to 1$ along l_{α} , where $\lambda = \frac{3}{2} - \frac{\alpha}{\pi}$. But f is bounded in the sector between the lines l_{α_1} and l_{α_2} , and tends to limits $\lambda_i \varphi(\theta^+) + (1-\lambda_i) \varphi(\theta^-)$, i = 1, 2, along them. However, these limits must coincide, and if $\lambda_1 \neq \lambda_2$ this is possible only if $\varphi(\theta^+) = \varphi(\theta^-)$.

In the general case, when (3.8) holds, we integrate N times, after substraction of the corresponding constant, to obtain a primitive of order N of φ which is also a distributional boundary value and whose jump is precisely a_N . From what we already proved, $a_N = 0$. The result follows.

A somewhat weaker version of the theorem is the following.

COROLLARY 3.1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$, analytic in |z| < 1. Suppose that f is bounded in $S_{\delta,r}$ for some r < 1, $\delta > 0$. If $f(z) \to S_{\pm}$ distributionally as $z \to 1$ along the lines $\arg(z-1) = \pi \pm \delta$, then $S_+ = S_- = S$ and $\sum_{n=0}^{\infty} a_n$ is Abel summable to S.

Using these ideas we can introduce an extended notion of Abel summability. Let $\sum_{n=0}^{\infty} a_n$ be a series and construct the auxiliary series $f(z) = \sum_{n=0}^{\infty} a_n z^n$, which we will suppose convergent for |z| < 1. Suppose now that the lateral limit $f(1^-) = \lim_{x \to 1^-} f(x) = S$ exists in the distributional sense of Lojasiewicz. Then we say that $\sum_{n=0}^{\infty} a_n$ is Abel-distributionally summable to S, and write

(3.9)
$$\sum_{n=0}^{\infty} a_n = S \quad (\text{A-dist.})$$

Naturally, Abel summability implies Abel-distributional summability . Nevertheless, the reciprocal does not hold: if $\sum_{n=0}^{\infty} a_n$ is the series obtained by setting z = 1 in the Taylor series $\sum_{n=0}^{\infty} a_n z^n = \operatorname{sen} (z-1)^{-1}$, then $\sum_{n=0}^{\infty} a_n = 0$ (A-dist.) since $\lim_{x\to 1^-} \operatorname{sen} (x-1)^{-1} = 0$ distributionally, but since the limit does not exist in the ordinary sense, the series is not (A) summable. However, we have:

THEOREM 3.2. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in |z| < 1. Suppose that f is bounded in $S_{\delta,r}$ for some r < 1, $\delta > 0$. If $\sum_{n=0}^{\infty} a_n$ is Abel-distributionally summable, then it is Abel summable.

PROOF. If $\sum_{n=0}^{\infty} a_n$ is (A-dist.) summable, there exists $n \in \mathbb{N}$ such that

(3.10)
$$F(x) = \frac{1}{n! (1-x)^n} \int_x^1 (t-x)^n f(t) dt$$

has an ordinary limit S as $x \to 1^-$. But F(z) is also bounded in $S_{\delta,r}$, therefore Montel's theorem guarantees that $F(z) \to S$ as $z \to 1$ in any sector $\pi - \rho \leq \arg(z-1) \leq \pi + \rho$ para $\rho < \delta$. The Corollary permits us to conclude that $\sum_{n=0}^{\infty} a_n$ is Abel summable to S, since $F(z) \to S$ as $z \to 1$ along $\arg(z-1) = \pi \pm \rho$ means that $f(z) \to S$ distributionally as $z \to 1$ along these lines.

References

- [1] Conway, J.B., Functions of One Complex Variable II, Springer, New York, 1995.
- [2] Estrada, R. and Kanwal, R.P., Distributional boundary values of analytic and harmonic functions, J. Math. Anal. Appl., 89 (1982), 262-289.
- [3] Estrada, R. and Kanwal, R.P., Singular Integral Equations, Birkhäuser, Boston, 2000.
- [4] Estrada, R. and Kanwal, R.P., A distributional approach to Asymptotics. Theory and Applications, second edition, Birkhäuser, Boston, 2002.
- [5] Hardy, G.H., Divergent Series, Clarendon Press, Oxford, 1949.
- [6] Kelley, J.L., General Topology, Van Nostrand, New York, 1955.
- [7] Lojasiewicz, S., Sur la valeur et la limite d'une distribution en un point, Studia Math., 16 (1957), 1-36.
- [8] Montel, P., Sur les familles de functions analytiques qui admettent des valeurs exceptionnelles dans un domaine, Ann. Ec. Normale 23 (1912), 487-535.
- [9] Pommerenke, C., Boundary Behaviour of Conformal Maps, Springer Verlag, Berlin, 1992.
- [10] Titchmarsh, E.C., The Theory of Functions, second edition, Oxford University Press, Oxford, 1979.
- [11] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

Received 14 01 2003, revised 20 02 2003

MATHEMATICS DEPARTMENT LOUISIANA STATE UNIVERSITY BATON ROUGE, LA 70803 U.S.A.

E-mail address: restrada@math.lsu.edu