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Valparáıso, Chile
ISSN 0716-8446
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Wallis’s Formula and the Arc Length of Clovers

James R. Schatz

Abstract. A family of infinite product formulas that generalize Wallis’s formula
is presented in this note along with a geometric interpretation of the formulas in

terms of arc length.

1. Introduction

One of the most beautiful equations in mathematical analysis is Wallis’s formula,

(1.1)
π

2
=

∞∏
n=1

2n

2n− 1
· 2n

2n+ 1
.

Many methods of proving this result have been devised since John Wallis discovered
the formula in 1655. Every proof of this famous assertion must be based on a formal
definition the constant π. Wallis defined π as the area of the unit circle and his
discovery of equation (1.1) started with the expression

π

4
=

∫ 1

0

√
1− x2 dx.

In this note we will define π as the arc length of the unit semi-circle. From this
definition and the basic theorems on arc length one can prove that

(1.2)
π

2
=

∫ 1

0

1√
1− x2

dx.

The purpose of this note is to provide a simple, direct proof of Wallis’s formula based
on equation (1.2) and to show that this method leads to an interesting generalization
of Wallis’s formula. For each integer m ⩾ 1 we prove that
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(1.3)

∫ 1

0

1√
1− xm

dx =
2

m

∞∏
n=1

( 2nm−m+ 2

2nm− 2m+ 2

)( 2n

2n+ 1

)
.

But wait, there’s more! There is a very nice geometric interpretation of this formula
that also generalizes the geometric content of Wallis’s formula. It turns out that

(1.4)
ϖm

2
=

∫ 1

0

1√
1− xm

dx,

where ϖm is the arc length of a leaf in the m-clover defined by the polar equation

(1.5) rm/2 = cos(m2 θ).

The points in the plane with polar coordinates (r, θ) satisfying (1.5) form a clover with
m leaves when m is odd and m/2 leaves when m is even.

An equivalent form of formula (1.3) was discovered by Hyde [4] and the expression
(1.4) for the arc length of the principal leaf in the m-clover is given by Cox and
Shurman in [2]. The alternative approach to formula (1.3) presented in this note
was inspired by the the classic analysis text of Goursat and Hedrick [3] published in
1904. This text contains an exercise which asks for a proof of formula (1.3) for the
special case m = 4. Section 3 of this note is devoted to a review of arc length and its
basic properties and formula (1.2) is derived as a key example. The arc length of the
lemniscate is also computed in Section 3. In Section 4 we show that the arc length of
the principal leaf in the m-clover satisfies formula (1.4).

2. A Generalization of Wallis’s Formula

Theorem 2.1. For all integers m ⩾ 1 and n ⩾ 0 define

Inm =

∫ 1

0

xn

√
1− xm

dx.

(a) For all integers m ⩾ 1 and n ⩾ 0, the improper integral Inm exists.

(b) For all integers m ⩾ 1 and n ⩾ 0,

In+m
m =

( 2n+ 2

2n+ 2 +m

)
Inm.

(c) For all integers m ⩾ 1, Im−1
m = 2

m .
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Proof. For all real numbers x with 0 ⩽ x < 1 and all integers m ⩾ 1 and n ⩾ 0,

xn

√
1− xm

⩽
1√
1− x

.

Therefore, for any real number b such that 0 ⩽ b < 1,∫ b

0

xn

√
1− xm

dx ⩽
∫ b

0

1√
1− x

dx = −2
√
1− x

]b
0
= 2− 2

√
1− b.

Since the value of the integral on the left increases with b, it follows that the improper
integral Inm exists and is bounded above by 2. This proves (a).

Now let b be any real number such that 0 < b < 1. For any integers m ⩾ 1 and
n ⩾ 0 consider the integral ∫ b

0

xn
√
1− xm dx.

Recall the general formula for integration by parts:∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

Evaluating the integral above using the integration by parts formula with

f(x) =
√
1− xm, f ′(x) =

−mxm−1

2
√
1− xm

, g(x) =
xn+1

n+ 1
, and g′(x) = xn

we obtain∫ b

0

xn
√
1− xm dx =

bn+1

n+ 1

√
1− bm +

m

2(n+ 1)

∫ b

0

xn+m

√
1− xm

dx.

Taking the limit as b approaches 1 from below shows that∫ 1

0

xn+m

√
1− xm

dx =
(2n+ 2

m

)∫ 1

0

xn
√
1− xm dx.

Also, since xn+m = xn − xn(1− xm), we have∫ 1

0

xn+m

√
1− xm

dx =

∫ 1

0

xn

√
1− xm

dx −
∫ 1

0

xn
√
1− xm dx.

Using the two previous equations we obtain:



104 JAMES R. SCHATZ

(2n+ 2 +m

m

)∫ 1

0

xn+m

√
1− xm

dx =
(2n+ 2

m

)∫ 1

0

xn

√
1− xm

dx

and the reduction formula (b) now follows.

Finally, note that for any real number b with 0 < b < 1 and any integer m ⩾ 1,∫ b

0

xm−1

√
1− xm

dx = − 2

m

√
1− xm

]b
0
= − 2

m

√
1− bm +

2

m
.

Taking the limit as b approaches 1 from below we obtain (c). □

For all integers n ⩾ 0 the substitution x = sin θ can be used to show that

In2 =

∫ 1

0

xn

√
1− x2

dx =

∫ π/2

0

sinn θ dθ.

A proof of Wallis’s formula using the sequence of integrals In2 in their trigonometric
form as shown above is given as a series of exercises by Spivak [5]. These two equivalent
expressions for In2 also reveal that the proof of formula (1.3) that is developed in the
next theorem is generalization of the proof outlined by Spivak for m = 2. A nice
summary of Wallis’s original proof is presented by Spivak after the series of exercises
on Wallis’s formula.

Theorem 2.2. For all integers m ⩾ 1,∫ 1

0

1√
1− xm

dx =
2

m

∞∏
n=1

( 2nm−m+ 2

2nm− 2m+ 2

)( 2n

2n+ 1

)
.

Proof. Let Inm denote the integral defined in the previous theorem. Using the
reduction formula (b) and result (c) from the previous theorem we have for n ⩾ 1:

Inmm =
( 2

m+ 2

)(2m+ 2

3m+ 2

)(4m+ 2

5m+ 2

)
· · ·

(2nm− 2m+ 2

2nm−m+ 2

)
I0m,

Inm+m
m =

( 2

m+ 2

)(2m+ 2

3m+ 2

)(4m+ 2

5m+ 2

)
· · ·

( 2nm+ 2

2nm+ 2 +m

)
I0m,

and,

Inm+m−1
m =

( 2

m

)(2
3

)(4
5

)
· · ·

( 2n

2n+ 1

)
.

Now, for all integers m ⩾ 1 and n ⩾ 0, observe that

Inm+m
m ⩽ Inm+m−1

m ⩽ Inmm .
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If we multiply each of the three integrals in this pair of inequalities by(m+ 2

2

)(3m+ 2

2m+ 2

)(5m+ 2

4m+ 2

)
· · ·

( 2nm−m+ 2

2nm− 2m+ 2

)
we obtain

( 2nm+ 2

2nm+ 2 +m

)
I0m ⩽

( 2

m

)(2 +m

2

)(2
3

)
· · ·

( 2nm−m+ 2

2nm− 2m+ 2

)( 2n

2n+ 1

)
⩽ I0m.

Computing the limit of each expression in this pair of inequalities as n → ∞, the
theorem now follows from the squeeze theorem for limits. □

3. Arc Length

There are two reasons why we take a little extra care in our review of arc length
in this section. First, showing that the principal leaf in an m-clover has well-defined
arc length and that formula (1.4) holds is slightly complicated by the fact that the
integral in formula (1.4) is improper. Second, the usual formula for computing the arc
length of a curve given in polar coordinates is not used here. The alternative formula
that we need is not complicated, but it does not appear in most textbooks. So, it
seems worthwhile to take the time to derive this formula.

For any vector v in Rn, v = (v1, v2, . . . , vn), the length of v is denoted by ∥v∥,

∥v∥ =
√

v21 + v22 + · · ·+ v2n.

A path is a continuous mapping γ : [a, b] → Rn, where n ⩾ 1 and a and b are
real numbers with a < b. For any partition P = (x0, x1, . . . , xm) of [a, b], where
a = x0 < x1 < x2 < · · · < xm = b, let

A(γ, P ) =

m∑
k=1

∥γ(xk)− γ(xk−1)∥.

Let S = {A(f, P ) : P is a partition of [a, b]}. Now, consider the following two cases.

If n ⩾ 2 and the set S is bounded above then we say that γ has well-defined arc
length on [a, b] and the arc length of γ on [a, b] is defined as the least upper bound
of S. If γ has well-defined arc length on [a, b] the arc length is denoted by L(γ, [a, b]).

If n = 1 and the set S is bounded above then we say that γ is a function of
bounded variation on [a, b] and the total variation of γ on [a, b] is defined to be
the least upper bound of S. The definition of bounded variation can be extended to
real-valued functions that are not necessarily continuous, but we will not require the
more general concept in this note.
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There is a concept of arc length for real-valued functions as well. For a continuous
function f : [a, b] → R we define the arc length of f on [a, b] as the arc length of the
path γ : [a, b] → R2, where γ(t) = (t, f(t)), provided that this path has well-defined
arc length on [a, b]. In this case the arc length of f on [a, b] is denoted by L(f, [a, b]).

There are a number of basic results about functions of bounded variation and arc
length that we will state without proof. For proofs of these assertions see Apostol [1],
Chapter 8.

(a) If f : [a, b] → R is monotonic then f is of bounded variation on [a, b] and the
total variation of f on [a, b] is |f(b)− f(a)|.

(b) If f and g are of bounded variation on [a, b] then f + g, f − g, and fg are of
bounded variation on [a, b].

(c) A path γ : [a, b] → Rn, γ(t) = (γ1(t), γ2(t), . . . , γn(t)), has well-defined arc
length on [a, b] if and only if for k = 1, 2, . . . , n, γk is of bounded variation on [a, b].

(d) Let γ : [a, b] → Rn be a path. For any point c such that a < c < b, γ has
well-defined arc length on [a, b] if and only if γ has well-defined arc length on [a, c] and
[c, b] and in this case, L(γ, [a, b]) = L(γ, [a, c]) + L(γ, [c, b]).

(e) Let γ : [a, b] → Rn be a path with well-defined arc length on [a, b]. Define a
function L : [a, b] → R by L(a) = 0 and L(x) = L(γ, [a, x]) if a < x ⩽ b. Then L is an
increasing continuous function on [a, b].

(f) If γ : [a, b] → Rn is continuously differentiable on [a, b] then γ has well-defined
arc length on [a, b] and

L(γ, [a, b]) =

∫ b

a

∥γ′(t)∥ dt.

Theorem 3.1. Suppose that γ : [a, b] → Rn is a path with well-defined arc length
on [a, b] and that for all x such that a < x < b, γ is continuously differentiable on
[a, x]. Assume that the integral ∫ x

a

∥γ′(t)∥ dt

is improper when x = b and that the improper integral obtained when x = b exists.
Then

L(γ, [a, b]) =

∫ b

a

∥γ′(t)∥ dt.
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Proof. Let L(a) = 0 and L(x) = L(γ, [a, x]) if a < x ⩽ b. If a < x < b then

L(γ, [a, x]) + L(γ, [x, b]) = L(γ, [a, b])

and so L(γ, [x, b]) = L(b)− L(x). Since L is continuous on [a, b],

lim
x→b−

L(γ, [x, b]) = 0.

Now,

L(γ, [a, x]) ⩽ L(γ, [a, b]) = L(γ, [a, x]) + L(γ, [x, b])

and so ∫ x

a

∥γ′(t)∥ dt ⩽ L(γ, [a, b]) =

∫ x

a

∥γ′(t)∥ dt+ L(γ, [x, b]).

The theorem now follows from the squeeze theorem for limits. □

The unit semi-circle is the path γ : [−1, 1] → R2, where γ(t) = (t,
√
1− t2). Since

the component functions of γ are monotonic on the subintervals [−1, 0] and [0, 1], γ
has well-defined arc length on [−1, 1]. We define the real number π as the arc length
of the unit semi-circle. By symmetry, π/2 is the arc length of γ on the interval [0, 1].
For all t such that 0 ⩽ t < 1 we have

γ′
1(t) = 1 and γ′

2(t) =
t√

1− t2
,

and so

γ′
1(t)

2 + γ′
2(t)

2 =
1

1− t2
.

Thus, for any x such that 0 < x < 1, γ is continuously differentiable on [0, x] and

L(γ, [0, x]) =

∫ x

0

1√
1− t2

dt.

Now, the improper integral obtained when x = 1 exists by Theorem 2.1 and so, by
Theorem 3.1, we obtain

π

2
=

∫ 1

0

1√
1− t2

dt.

Wallis’s formula now follows by taking m = 2 in Theorem 2.2. Notice that this proof
of Wallis’s formula does not depend on the theory of the trigonometric functions.

Another interesting arc length calculation involves the lemniscate of Bernoulli. In
general, a lemniscate is the set of all points (x, y) in the plane such that the product
of the distances from (x, y) to two fixed points is constant. The two fixed points that
define a lemniscate are called the foci. If a is a positive real number and the foci are
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taken as (−a, 0) and (a, 0) then we can define a lemniscate as the set of all points
(x, y) such that

[(x− a)2 + y2] [(x+ a)2 + y2] = a4.

This equation can be rewritten as

(x2 + y2)2 = 2a2(x2 − y2).

Taking a = 1/
√
2 we obtain the equation of the particular lemniscate that we are

interested in,

(x2 + y2)2 = x2 − y2.

Notice that the points (−1, 0) and (1, 0) satisfy this equation, along with (0, 0). Also,
the point (x, y) is not on the lemniscate if |x| > 1.

To obtain a parametrization of the section of the lemniscate in the first quadrant,
consider the equation x2 + y2 = t2 for 0 ⩽ t ⩽ 1. Solving for x and y in terms of t we
obtain the parametrization γ : [0, 1] → R2,

γ1(t) = t

√
1 + t2

2
and γ2(t) = t

√
1− t2

2
.

Since γ1 is increasing on [0, 1] and γ2 is the product of an increasing function and a
decreasing function on [0, 1], γ1 and γ2 are functions of bounded variation on [0, 1].
Therefore, γ has well-defined arc length on [0, 1]. For all t such that 0 ⩽ t < 1,

γ′
1(t) =

1 + 2t2√
2
√
1 + t2

and γ′
2(t) =

1− 2t2√
2
√
1− t2

,

and so

γ′
1(t)

2 + γ′
2(t)

2 =
1

1− t4
.

Thus, for any x such that 0 < x < 1, γ is continuously differentiable on [0, x] and

L(γ, [0, x]) =

∫ x

0

1√
1− t4

dt.

The improper integral obtained when x = 1 exists by Theorem 2.1. Therefore, if the
arc length of the section of the lemniscate formed by points (x, y) in the first and
fourth quadrants is denoted by ϖ4 then Theorem 3.1 implies that

ϖ4

2
=

∫ 1

0

1√
1− t4

dt.
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The computations that we have done here for the lemniscate are interesting, but they
also suggest that to make further progress we are going to need the power of the
trigonometric functions and ability to describe a curve in polar coordinates. It will be
helpful to review the formula for calculating the arc length of a path given in polar
coordinate form when θ is a function of r.

Theorem 3.2. Suppose that γ : [a, b] → R2, where γ(r) = (r cos θ(r), r sin θ(r))
and θ(r) is continuously differentiable on [a, b]. Then the arc length of γ on [a, b] is
given by ∫ b

a

√
1 + r2 θ′(r)2 dr.

Proof. We have

γ1(r) = r cos θ(r) and γ2(r) = r sin θ(r),

and so

γ′
1(r) = −r sin θ(r) θ′(r) + cos θ(r) and γ′

2(r) = r cos θ(r) θ′(r) + sin θ(r).

Hence,

γ′
1(r)

2 + γ′
2(r)

2 = 1 + r2 θ′(r)2,

and the theorem follows. □

4. The Arc Length of a Clover Leaf

The m-clover is defined as the set of all points in the plane with polar coordinates
(r, θ) satisfying

rm/2 = cos(m2 θ).

The m-clover has m leaves when m is odd and m/2 leaves when m is even. The set
of points (r, θ) on the clover with r in [0, 1] and θ in [−π/m, π/m] form the principal
leaf. Since cos(−m

2 θ) = cos(m2 θ) we will restrict our attention to points (r, θ) on the
clover where θ is in the interval [0, π/m]. This half of the principal leaf is the image
of the path γ : [0, 1] → R2 where

γ(r) = (r cos θ(r), r sin θ(r))

and

θ(r) = 2
m arccos(rm/2).

We need to show that γ has well-defined arc length on [0, 1].

First, notice that for any m ⩾ 1, rm/2 is a strictly increasing function on [0, 1].
Since arccos(x) is strictly decreasing on [0, 1], it follows that θ(r) is also strictly de-
creasing on [0, 1] with θ(0) = π/m and θ(1) = 0. For m ⩾ 2 we now see that each
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component function of γ is the product of monotonic functions on [0, 1] and therefore
is of bounded variation. Hence, if m ⩾ 2 then γ has well-defined arc length on [0, 1].

For m = 1 we have a little more work to do because sin(x) is not monotonic on
[0, π]. However, when m = 1,

θ( 12 ) = 2 arccos( 1√
2
) =

π

2
.

Therefore, each component function of γ is a product of monotonic functions on each
subinterval [0, 1

2 ] and [ 12 , 1]. Thus, the component functions are of bounded variation
on each subinterval and so γ has well-defined arc length on [0, 1].

Now, for any integer m ⩾ 1 and all r such that 0 ⩽ r < 1,

θ′(r) = − r
m
2 −1

√
1− rm

.

Therefore, for any x such that 0 < x < 1, Theorem 3.2 implies that the arc length of
γ on [0, x] is equal to

∫ x

0

√
1 + r2

( rm−2

1− rm

)
dr =

∫ x

0

1√
1− rm

dr.

The improper integral obtained when x = 1 exists by Theorem 2.1. Hence, if ϖm

denotes the arc length of the principal leaf in the m-clover then

ϖm

2
=

∫ 1

0

1√
1− rm

dr.

This proves formula (1.4) from the introduction and also provides the geometric sig-
nificance of the generalization of Wallis’s formula given by equation (1.3).

For m = 1 the 1-clover is a cardioid and the arc length can be computed exactly,

ϖ1

2
=

∫ 1

0

1√
1− r

dr = 2.

That is, ϖ1 = 4. It is easy to check that the right hand side of formula (1.3) is simply
equal to 2 when m = 1.
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m = 1: cardioid

For m = 2 the 2-clover is given by the polar equation r = cos θ. The single leaf of
the 2-clover is the circle with equation x2 + y2 = x. This is the circle with center at
( 12 , 0) and radius 1

2 . In this case we have

ϖ2

2
=

∫ 1

0

1√
1− r2

dr =
π

2
,

and so, of course, ϖ2 = π.

m = 2: circle

For m = 3 the 3-clover is just that, a 3-leaf clover. In this case we have
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ϖ3

2
=

2

3

∞∏
n=1

(6n− 1

6n− 4

)( 2n

2n+ 1

)
.

m = 3: 3-leaf clover

For m = 4 the 4-clover is simply the lemniscate we studied in the previous section,
(x2 + y2)2 = x2 − y2. In this case our formulas show that

ϖ4 =

∞∏
n=1

(4n− 1

4n− 3

)( 2n

2n+ 1

)
.

m = 4: lemniscate
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At this point we have completed our exercises from Goursat, Hedrick, and Spivak!

Finally, we would like to thank Keith Conrad who kindly read an earlier draft of
this note and suggested many improvements.
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