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Brackets: a method for definite integration

Ivan Gonzalez and Victor H. Moll

Abstract. The method of brackets is an integration method with origins in the
evaluation of Feynman diagrams. It consists of a small number of rules, some of

which are still at the heuristic level. This work contains examples which illustrate

this method. Elementary as well as more involved definite integrals are discussed.
The main advantage of this method over other classical procedures is that

the method of brackets is easy to apply. All computations are reduced to linear

systems of small order.

1. Introduction

The evaluation of definite integrals is one of the basic problems of Calculus. Many
of the examples coming from scientific problems were incorporated into older textbooks
such as [12, 13]. In the pre-digital times these evaluations were collected in Tables of
Integrals, beginning with the work of D. Bierens de Haan [5] and including the volume
by I. S. Gradshetyn and I. M. Ryzhik [21]. The goal of this note is to introduce a
method of integration, called the method of brackets, that has been used by the
authors to verify a large number of entries in [21]. K. van Deusen in her thesis
at Tulane [29], presented a comparison of the method of brackets with the current
methods appearing in the literature for the evaluation of Feynman diagrams. In
particular she has shown that this method is an optimization and generalization of the
so-called negative dimensional integration method (NDIM), see [19]. Details of
this comparison appeared in [30].

The history of the second author interest in the evaluation of integrals began in
1991 when a first year graduate student, George Boros, approached him, saying that
he was able to prove the formula

(1.1) N0,4(a;m) =

∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
=

π

2m+3/2(a+ 1)m+1/2
Pm(a),

where Pm(a) is a polynomial in a. He gave a formula for the coefficients of the polyno-
mial in terms of a complicated triple sum with alternating signs, suggesting that some
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100 IVAN GONZALEZ AND VICTOR H. MOLL

of the coefficients might be negative. Having no experience in these type of questions,
my immediate reaction was to try to evaluate the integral using Mathematica. At
that time, it was not possible to get an answer when a and m are parameters. The

same is true today. In order to get some understanding of the problem, I was able
to generate some data. My initial observation was that, in spite of his formula, the
coefficients seem to be positive. I told him that he should prove that. Some time later
he was able to do this, by first proving the formula

(1.2)

√
a+
√

1 + c =
√
a+ 1 +

1

π
√

2

∞∑
k=0

(−1)k

k + 1
N0,4(a; k)ck+1

and then using some results of Ramanujan. This work appeared in [9]. To be honest,
I was never able to understand how he thought of this. We often talked about this.
George Boros thesis [7] contains many similar results.

Intrigued by this, the second author searched in [20] for entries involving the
double square root function and found entry 3.248.5 stating that

(1.3)

∫ ∞
0

dx

(1 + x2)
3
2

√
ϕ(x) +

√
ϕ(x)

=
π

2
√

6
,

where ϕ(x) = 1 + 4x2/(3(1 + x2)2). The reason for the failure of his many failed
attempts to prove (1.3) is now clear: the entry is incorrect. (The later versions of the
table do not contain this entry). Recently J. Arias de Reyna [4] has expressed the
correct value as a difference of two elliptic integrals and P. Blaschke [6] has provided
an argument to the effect that the correct entry should have been

(1.4)

∫ ∞
0

dx

(1 + x2)
3
2

√
ϕ(x) +

√
ϕ(x)3

=
π

2
√

6
,

Typing formulas is complicated.
Motivated by this, the second author began to provide proofs to all the entries in

[21], generating a sequence of short papers beginning with [22]. During this process
the author received an email from the first author stating that in his Ph. D. thesis
in Physics, he had developed a procedure that optimized NDIM [19]. He used this
method of integration to evaluate some complicated definite integrals coming from the
study of Feynman diagrams. This is how two sansanos1 joined efforts to develop the
method of brackets.

Feynman developed a systematic procedure to convert the interaction of elemen-
tary particles into a diagram. A multi-dimensional integral is then attached to the
diagram, from which some physical properties of the interaction can be obtained. See
[25, 26, 31] for details. There is a wide variety of methods to evaluate these inte-
grals, see [26, 32] for details. An approach based on Mellin-Barnes integrals, where
the procedures are rigorously established appears in [11].

The method of brackets described here consists of a small number of rules, some
of which are at the moment at a heuristic level. This method reduces the problem
of evaluating integrals to the solution of a small size linear system. During the last

1This is the name given to students from Universidad Santa Maria in Valparaiso, Chile.
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decade, the second author has involved a number of his graduate students in this
problem:

(1) K. Kohl: Algorithmic methods for definite integration; 2011
(2) L. Jiu: The method of brackets and the Bermoulli symbol ; 2016
(3) T. Ngo: An analytic approach to the method of brackets; 2018
(4) K. van Deusen: A comparison of negative-dimensional integration tech-

niques; 2021
(5) Z. Bradshaw: A rigorous treatment of the method of brackets; 2023

These theses contain a variety of results of this method. The set of rules discussed
below came as a modification of the so-called negative dimension integration method
(NDIM) [2, 3, 27, 28]. The most important feature of the method of brackets is its
simplicity and that it applies to a wide range of problems. One of the rules, see Step
3 below, is connected to the so-called Ramanujan’s Master Theorem [1, 16]:

If a complex-valued function f(x) has an expansion of the form

f(x) =

∞∑
k=0

ϕ(k)

k!
(−x)k, then the Mellin transform of f(x) is given by∫ ∞

0

xs−1f(x) dx = Γ(s)ϕ(−s).

The origin and analysis of this formulation are discussed in [19] and [15].

The next goal in the analysis of the method of brackets is to provide a rigorous
foundation to the heuristic rules presented here. In his thesis, Z. Bradshaw [10] has
provided rigorous proofs of some of them.

The evaluation of definite integrals has produced in the recent past some inter-
esting connections to many mathematical topics; see [23] for some of them. The goal
of this paper is to present to a general audience a variety of techniques used in this
endevour. The next section illustrates these ideas with the example

(1.5) I(a, b;µ, ν) =

∫ ∞
0

dx

(axµ + b)ν
.

The last method in this section presents some of the rules of the method of brackets.
Section 3 illustrates how to evaluate integrals coming from Feynman diagrams. The
main point to emphasize is the simplicity of the method.

2. The evaluations of an eulerian integral

Many of the entries in [21] can be reduced to special values of the eulerian integrals

(2.1) Γ(a) =

∫ ∞
0

ta−1e−t dt and B(a, b) =

∫ 1

0

ta−1(1− t)b−1 dt,

the classical gamma and beta function, respectively. This section presents a variety
of proofs for the evaluation of (1.5). For simplicity of exposition, the parameters
a, b;µ, ν are assumed to be real and positive.
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Proof 1. In this electronic era, the first attempt to a proof should be via a symbolic
language. In this case, using Mathematica directly gives

(2.2) I(a, b;µ, ν) =
1

µ
b1/µ−νa−1/µB

(
1

µ
, ν − 1

µ

)
.

Requesting Mathematica to evaluate this integral provides also convergence conditions.
The evaluation is faster if one includes in this request the condition

Assumptions((a > 0) && (b > 0) && (µ > 0) && (ν > 0))

as part of the input. The question of whether this is an acceptable proof could be the
subject of an interesting discussion.

Proof 2. In the evaluation of an integral, a good change of variables usually is a good
first step. Introduce here a new variable t by the relation axµ = bt to produce

(2.3) I(a, b;µ, ν) =
1

µ
b1/µ−νa−1/µ

∫ ∞
0

t1/µ−1 dt

(1 + t)ν
dt,

and the expression (2.2) now follows from the classical formula

(2.4)

∫ ∞
0

tx−1 dt

(1 + t)x+y
= B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
,

appearing as entry 8.380.3 in [21].

Proof 3. Given that the table [21] is over 1000 pages long, it is reasonable for the
beginner to miss a desired evaluation. See [8] for an illustration of this possibility.
Indeed, in the case at hand, entry 3.251.11 states that

(2.5)

∫ ∞
0

xµ−1(1 + bxp)−ν dx =
1

p
b−µ/pB

(
µ

p
, ν − µ

p

)
,

and with the right assignment of parameters it yields (2.2).

Proof 4. The next proof serves as an introduction to the method of brackets. Start
with the expansion of the integrand in (2.3) in a series using the binomial theorem

(2.6) (1− u)−α =

∞∑
n=0

(α)n
n!

un

where (α)n is the Pochhammer symbol

(2.7) (α)n =
Γ(α+ n)

Γ(α)
.

This produces

(2.8)
1

(axµ + b)ν
= b−ν

∞∑
n=0

(−1)n

n!

Γ(ν + n)

Γ(ν)

(a
b

)n
xnµ.

Integrating (2.8) leads to the (diverging) expression

(2.9)

∫ ∞
0

dx

(axµ + b)ν
= b−ν

∞∑
n=0

(−1)n

n!

Γ(ν + n)

Γ(ν)

(a
b

)n ∫ ∞
0

xnµ dx.
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This statement is now rewritten in terms of two new objects: [1] the indicator φn
defined by

(2.10) φn =
(−1)n

n!

and [2] the bracket defined by

(2.11) 〈r〉 =

∫ ∞
0

xr−1 dx for r ∈ C.

Then (2.9) becomes

(2.12)

∫ ∞
0

dx

(axµ + b)ν
= b−ν

∑
n

φn
Γ(ν + n)

Γ(ν)

(a
b

)n
〈nµ+ 1〉.

The object on the right of (2.12) is called a bracket series. The change in notation:

from

∞∑
n=0

to
∑
n

is our way to indicate to the reader that these bracket series will be

assigned a value and that this will involve non integer choices for n.

The method of brackets for the evaluation of the integral of f over (0,∞) is
presented next. It consists in a small number of rules described below. Details are
presented in [15] and [17].

Definition 2.1. This consists on three easy steps:

Step 1. Start with an expansion of the integrand in the form

(2.13) f(x) =

∞∑
n=0

φnanx
αn+β−1

with an, α, β ∈ R and φn as in (2.10).

Step 2. Integrate to form the brackets series
∑
n

φnan〈αn+ β〉.

Step 3. Assign the bracket series in Step 2 the number

(2.14)
1

|α|
A(n∗)Γ(−n∗).

Here A is a complex-valued function interpolating the sequence {an} at the integers;
that is, A(n) → an, for n ∈ N. The number n∗ = −β/α2 is the solution of the linear
equation obtained by requiring the vanishing of the brackets. Finally Γ is the classical
gamma function. This step can be established rigorously: it is the so-called Ramanujan
Master Theorem.

Therefore the evaluation of (2.12) reduces to solving nµ + 1 = 0. Doing so gives
n∗ = −1/µ and then use Step 3 to obtain

(2.15)

∫ ∞
0

dx

(axµ + b)ν
= b−ν

Γ(ν − 1/µ)

Γ(ν)

(a
b

)−1/µ

.

2The notation n∗ was used in the earlier papers on the method of brackets. The notation is kept
here for convenience.
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This is (2.2). It is a remarkable fact that this method gives the value of the integral.

Proof 5. In the argument above one starts with an expansion of the integrand and
then use the method of brackets to evaluate the integral. The proof is now simplified
by introducing a new rule for brackets.

Definition 2.2. Multinomial expansion rule. For α ∈ R, the expression

(2.16) (a1 + a2 + · · ·+ ar)
−α

is assigned the brackets series

(2.17)
∑
n1···nr

φ1,2,··· ,ra
n1
1 · · · anr

r

〈α+ n1 + · · ·+ nr〉
Γ(α)

,

where φ1,2,··· ,r is a short-hand notation for the product φn1
· · ·φnr

. Therefore the sum
of r terms in (2.16) is assigned an r-dimensional bracket series.

An idea of the proof starts with the identity

(2.18)
1

bα
=

1

Γ(α)

∫ ∞
0

tα−1e−bt dt

and with b = a1 + · · ·+ ar it follows that

1

(a1 + · · ·+ ar)α
=

1

Γ(α)

∫ ∞
0

tα−1e−(a1+···+ar)t dt

=
1

Γ(α)

∫ ∞
0

tα−1e−a1t · · · e−art dt

=
1

Γ(α)

∫ ∞
0

tα−1

[ ∑
n1,··· ,nr

φn1···nr
an1

1 · · · anr
r tn1+···nr

]
dt

=
1

Γ(α)

∫ ∞
0

∑
n1,··· ,nr

φn1···nra
n1
1 · · · anr

r tα+n1+···nr−1 dt

and the last integral is the bracket 〈α+ n1 + · · ·+ nr〉.
Then the integrand in (1.5) is assigned the bracket series expansion

(2.19) (axµ + b)−ν =
∑
n1,n2

φ1,2
an1bn2

Γ(ν)
〈ν + n1 + n2〉xµn1 .

Integration now produces

(2.20)

∫ ∞
0

(axµ + b)−ν dx =
∑
n1,n2

φ1,2
an1bn2

Γ(ν)
〈ν + n1 + n2〉〈µn1 + 1〉.

Therefore, without requiring an expansion of the integrand, the evaluation of (1.5)
has been transformed into a 2-dimensional brackets series with 2 brackets.

Each representation of an integral by a bracket series has associated a complexity
index of the representation via

(2.21) complexity index = number of sums − number of brackets.
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It is important to observe that the complexity index is attached to a specific represen-
tation of the integral and not just to integral itself. The experience obtained by the
authors using this method suggests that, among all representations of an integral as a
bracket series, the one with minimal complexity index should be chosen. The level of
difficulty in the analysis of the resulting bracket series increases with the complexity
index.

The next rule states how to evaluate a multidimensional bracket series of index 0.

Definition 2.3. Multi-dimensional brackets series of index 0. Assume
that A = (aij) is a non-singular real matrix. Then∑
n1>0

· · ·
∑
nr>0

φn1···nr
f(n1, · · · , nr)〈a11n1 + · · ·+a1rnr+c1〉 · · · 〈ar1n1 + · · ·+arrnr+cr〉

=
1

|det(A)|
f(n∗1, · · ·n∗r)Γ(−n∗1) · · ·Γ(−n∗r),

where {n∗j} is the (unique) solution of the linear system obtained from the vanishing
of the brackets. There is no assignment if A is singular.

This rules states that to evaluate (2.20) one only need to solve the linear system

n1 + n2 = −ν(2.22)

µn1 = −1.

The solutions are n∗1 = −1/µ and n∗2 = 1/µ−ν and since the matrix A has determinant
detA = −µ, rule 2.3 now gives

(2.23)

∫ ∞
0

(axµ + b)−ν dx =
1

| − µ|
an∗

1
bn∗

2

Γ(ν)
× Γ(−n∗1)Γ(−n∗2).

Replacing the values of n∗1 and n∗2 gives (2.2). Therefore, the evaluation of (2.20)
has been reduced to the solution of a two-dimensional linear system of equations.
Remarkable!

In this section we have given a rule to evaluate multi-dimensional bracket series
on index 0. The case of non-zero index will appear in the next section.

3. The original problem

The method of brackets described above was developed in [19] as a method to
compute integrals coming from Feynman diagrams. For the present exposition, a
Feynmann diagram is simply a graph G with E+1 external lines and N internal

lines and L loops. See [18] for details. The internal lines are sometimes referred
as propagators. All but one of these external lines are assumed to be independent.
From its connection to Physics, the internal and external lines represent particles
that transfer momentum among the vertices of the diagram. Each of these particles
carries a mass mi > 0 for i = 1, . . . , N . The vertices represent the interaction of
these particles and conservation of momentum at each vertex assigns the momentum
corresponding to the internal lines. A Feynman diagram has an associated integral
given by a so-called parametrization of the diagram.
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Example 3.1. The first diagram corresponds to the so-called massless sunset

diagram indicated in Figure 1. The diagram is parametrized by

p

p − q − k

k

q

Figure 1. The massless sunset diagram

the integral (in momentum space)

(3.1) G =

∫
dDq

iπD/2
dDk

iπD/2
1

q2 · k2 · (p− q − k)2

where D = 4 − 2ε and ε → 0+ is the so-called dimensional regulator. Schwinger
parametrization is a systematic procedure to express the integral G in terms of some
parameters (see [24]). In this example one finds out that G becomes

(3.2) G = (−1)−D
∫ ∞

0

∫ ∞
0

∫ ∞
0

exp
(
− xyz

(xy+xz+yz)p
2
)

(xy + xz + yz)D/2
dx dy dz.

This triple integral is now evaluated by the method of brackets. Start by expanding
the exponential to obtain

(3.3) G = (−1)−D
∑
n1

φ1(p2)n1

∫ ∞
0

∫ ∞
0

∫ ∞
0

xn1yn1zn1 dx dy dz

(xy + xz + yz)D/2+n1
.

The expansion rule 2.2 now gives

(3.4)
1

(xy + yz + xz)D/2+n1
=

∑
n2,n3,n4

φ2,3,4x
n2+n3yn2+n4zn3+n4

〈D2 + n1 + n2 + n3 + n4〉
Γ(D2 + n1)

and then G becomes

(3.5) G = (−1)−D
∑
~n

φ1,2,3,4(p2)n1
〈D2 + n1 + n2 + n3 + n4〉

Γ(D2 + n1)

× 〈n1 + n2 + n3 + 1〉〈n1 + n2 + n4 + 1〉〈n1 + n3 + n4 + 1〉.
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This is a 4-dimensional bracket series with 4 brackets (and hence of index 0). The
matrix of the system has determinant 1 with solution n∗1 = D − 3, n∗2 = n∗3 = n∗4 =
1−D/2. This gives the value

(3.6) G = (−1)−D
Γ(3−D)Γ(D/2− 1)3

Γ(3D/2− 3)
(p2)D−3.

Example 3.2. The second example considers the diagram depicted in Figure
2. It contains two external lines and three internal lines. One of them, marked by
the momentum q, has mass M and the other are massless. As in the first example,
D = 4− 2ε and ε > 0 is the dimensional regulator.

p

p − q − k

k

q M

Figure 2. The sunset diagram with mass.

The integral associated to this Feynman diagram in terms of the Schwinger pa-
rameters is now given by

(3.7) G = (−1)−D
∫ ∞

0

∫ ∞
0

∫ ∞
0

exp(xM2)
exp

(
− xyz

(xy+xz+yz)p
2
)

(xy + xz + yz)D/2
dx dy dz.

The evaluation begins with the expansion of the exponentials in Taylor series and then
use the expansion rule 2.2 to write G in the form

(3.8) G = (−1)−D
∑
~n

φ~n(−M2)n1(p2)n2
1

Γ(D/2 + n2)

〈D
2

+n2 +n3 +n4 +n5〉〈n1 +n2 +n3 +n4 + 1〉〈n2 +n3 +n5 + 1〉〈n2 +n4 +n5 + 1〉,

with ~n = (n1, n2, n3, n4, n5). The vanishing of the brackets leads to the system

(3.9)


0 1 1 1 1
1 1 1 1 0
0 1 1 0 1
0 1 0 1 1



n1

n2

n3

n4

n5

 =


−D/2
−1
−1
−1

 .

This is a 5-dimensional bracket series with 4 brackets, so it is a problem on non-zero
index. The next rule describes how to deal with it.
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Definition 3.1. Multi-dimensional brackets series of non-zero index. The
value of a multi-dimensional bracket series of positive complexity index is obtained by
computing all the contributions of maximal rank using Rule 2.3. These contributions
to the integral appear as series in the free indices and depend on the parameters of the
problem. Series with the same argument are added to combine them into a single sum.

The matrix in (3.9) is of rank 4, so there are 5 systems to consider, one per free
parameter nj , 1 6 j 6 5. The details are given for one case.

n1 as a free parameter. Then (3.9) becomes

(3.10)


1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1



n2

n3

n4

n5

 =


−D/2
−n1 − 1
−1
−1


with solution

n∗2 = D − n1 − 3, n∗3 = −1

2
D + 1, n∗4 = −1

2
D + 1, n∗5 = −1

2
D + n1 + 1.

Rule 2.3 now gives
(3.11)

G1 = (−1)−D(p2)D−3Γ2

(
D

2
− 1

) ∞∑
n1=0

1

n1!

Γ(n1 + 3−D)Γ(D/2− 1− n1)

Γ(3D/2− 3− n1)

(
M2

p2

)n1

.

a series in the free parameter. To identify this result, simplify the gamma terms using

(3.12) Γ(u+ n) = (u)nΓ(u) and (u)−n =
(−1)n

(1− u)n

to obtain

(3.13) G1 = (−1)−D(p2)D−3 Γ3(D2 − 1) Γ(3−D)

Γ( 3D
2 − 3)

2F1

(
3−D 4− 3D

2

2− D
2

∣∣∣∣M2

p2

)
where 2F1 is the hypergeometric function.

Two of the remaining four indices give
(3.14)

G2 = (−1)−D(−M2)D−3 Γ2(D2 − 1)Γ(−D2 + 2)Γ(3−D)

Γ(D2 )
2F1

(
3−D 2− D

2
D
2

∣∣∣∣ p2

M2

)
and
(3.15)

G3 = (−1)−D(−M2)D/2−1(p2)D/2−2 Γ2(D2 − 1) Γ(2− D
2 )Γ(1− D

2 )

Γ(D − 2)
2F1

(
2− D

2 3−D
D
2

∣∣∣∣M2

p2

)
while the remaining two produce no solutions. Taking into account that the hyperge-
ometric series converges when the last argument has modulus strictly less than 1, it
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follows that

(3.16) G =

G1 +G3 if
∣∣∣M2

p2

∣∣∣ < 1,

G2 if
∣∣∣M2

p2

∣∣∣ > 1.

4. Conclusions

The method of brackets for definite integration converts the evaluation of an in-
tegral into the solution of a linear system of equations. It is based on a small list
of heuristic rules. The authors have used this method to evaluate a large number of
entries of classical tables of integrals [14]. There has never been an instance when an
application of these heuristic rules produces an error.

Acknowledgments. This work was done during a visit by the second author to
Universidad de Valparaiso, Chile.
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