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A note on series of hyperbolic functions

M.L. Glasser

Abstract. By means of an elementary re-summation any convergent hyperbolic

series can be associated with one of more ‘alleles’, i.e. similar series which has

the same value. A number of examples are treated here, most of which stem from
Fourier series for elliptic functions introduced by K. Jacobi.

1. Introduction

It is clear from examining any text on boundary value problems that functional
series

(1.1)

∞∑
n=0

nν hyp(nx)a

hyp(ny)b

or Fourier series with hyperbolic coefficients, such as

(1.2)
∑
n

sinh(nπc)

sinh(nπd)
sin(nπx),

where ”hyp” denotes sinh, cosh, their powers, or simply a finite sum of real exponen-
tials, occur abundantly in many branches of Science and Engineering. Accordingly,
they have received a good deal of attention, as well for purely theoretical reasons,
from a host of mathematicians including [11, 12, 13, 8, 9, 21, 22, 4, 5, 6, 20, 18,
19, 10, 1, 2, 14]. In this note I aim to show that by exploiting an underutilized
elementary expedient for transforming such series, one finds that they are, in many
cases, expressible in terms of series known in closed form. In particular, it is shown
that, in many cases, the factor n in (1.1) can be eliminated. Two methods used for
evaluating the classes (1.1) and (1.2) that have been most successful are contour in-
tegration [12] and the manipulation of Elliptic functions [9, 21]. This note will be
based on the latter approach. The principal formulations of elliptic function theory
are those due to Weierstrass, based on Eisenstein series, and Jacobi, based on the
inversion of definite integrals. The reader can find a brief, clear and concise exposition
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132 M.L. GLASSER

of the entire subject in Chapters 21-22 of Whittaker and Watson’s classic text [17].
It introduces the notation used here.

1.1. Jacobi’s Fourier series. By exploiting periodicity along the imaginary
axis, Jacobi constructed Fourier series for the functions: sn, cd, dn, nd, sd, cn, dc, nc,
and cs, which are listed in [18]. For example,

(1.3) sn

(
2

π
Kx, k

)
=

2π

kK

∞∑
n=0

qn+1/2

1− q2n+1
sin[(2n+ 1)x],

where

(1.4) q = eπK
′/K , K ′ = K(k′), k′ =

√
1− k2, 0 6 k < 1.

If one expands the denominator of (1.3) in powers of q, performs the n-sum and
expresses the result in hyperbolic form, (1.3) becomes

(1.5) sn

(
2

π
Kx, k

)
=

2π

kK

∞∑
m=0

cosh[ 1
2 (2m+ 1)πK ′/k]

cosh[(2m+ 1)πK ′/K]− cos(2x)
.

It is clear that for any series (1.1) the procedure just described produces an allele -
usually a different series having the same value, but which may be simpler in that, for
positive ν, it may lack the factor n in the numerator. As an example, consider Ling
and Zucker’s series [4, 5]

(1.6) V3(c) =

∞∑
n=1

n3

sinh(nπc)
.

By expressing the denominator in exponential form and expanding in powers of e−nπc,
then summing the derivative-geometric series and expressing the resulting ratio of
exponentials in hyperbolic form, one finds

(1.7) V3(c) =
1

4

∞∑
m=0

3 + 2 sinh2[π2 (2m+ 1)c]

sinh4[π2 (2m+ 1)c]
=

3

4
III4(c) +

1

4
III2(c).

In this way, it appears that the Ling- Zucker classes V−VIII are redundant. We will
return to other examples in the following section.

Returning to Jacobi’s Fourier series [3], we find the following transformed expres-
sions:
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Theorem 1.1.

cn

(
2Kx

π
, k

)
=

2π cosx

kK

∞∑
m=0

(−1)m
sinh[π2 (2m+ 1)K

′

K ]

cosh[π(2m+ 1)K
′

K ]− cos2 x
.(1.8)

cd

(
2Kx

π
, k

)
=
π cosx

kK

∞∑
m=0

cosh[π2 (2m+ 1)K
′

K ]

sinh2
[
π
2 (2m+ 1)K

′

K

]
+ cos2 x

.(1.9)

sd

(
2Kx

π
, k

)
=
π sinx

kk′K

∞∑
m=0

sinh[π2 (2m+ 1)K
′

K ]

sinh2[π2 (2m+ 1)K
′

K ] + cos2 x
.(1.10)

nd

(
2Kx

π
, k

)
=

π

2k′K

[
1 + 2

∞∑
m=0

(−1)m

(
sinh[(2m+ 1)πK

′

K ]

cosh[π(2m+ 1)K
′

K ] + cos(2x)
− 1

)]
.

(1.11)

ns

(
2Kx

π
, k

)
=

π

2K

[
csc x+ 4 sinx

∞∑
m=1

cosh[(πmK′

K )]

cosh[(2πmK′

K )− cos(2x)

]
,(1.12)

sn

(
2

Kx
, k

)
=

π

kK
sinx

∞∑
m=0

cosh[ 1
2 (2m+ 1)πK

′

K ]

cosh[(2m+ 1)πK
′

K ]− cos2 x
.(1.13)

ds

(
2

π
Kx, k

)
=

π

2K

[
csc x− 4 sinx

∞∑
m=1

cosh(mπ)K
′

K

cosh(2mπK
′

K )− cos(2x)

]
.(1.14)

nc

(
2

π
Kx, k

)
=

π

2k′K

[
sec x− 4 cosx

∞∑
m=1

(−1)m cosh(mπ)K
′

K

cosh(2mπK
′

K ) + cos(2x)

]
.(1.15)

(
2

π
Kx, k

)
=

π

2k′K

[
tanx− 2 sin(2x)

∞∑
m=1

(−1)m

cosh(2mπK
′

K ) + cos(2x)

]
.(1.16)
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By comparison with Jacobi’s expressions, one obtains

Corollary 1.1.
∞∑
n=0

cos[(2n+ 1)x]

cosh[(2n+ 1)π2
K′

K ]
= 2 cosx

∞∑
n=0

sinh[(2n+ 1)π2
K′

K ]

cosh[(2n+ 1)πK
′

K ]− cos(2x)
.(1.17)

∞∑
n=0

sin[(2n+ 1)x]

(
1− tanh[(2n+ 1)

π

2

K ′

K
]

)
= 2 sinx

∞∑
n=0

(−1)n+1 cosh[nπK
′

K ]

cosh[2nπK
′

K ]− cos(2x)
.

(1.18)

2 sinx

∞∑
n=0

cosh[(n+ 1
2 )π2

K′

K ]

cosh[(n+ 1
2 )πK

′

K ]− cos(2x)
=

∞∑
n=0

sin[(2n+ 1)x]

sinh[(2n+ 1)π2
K′

K ]
.(1.19)

∞∑
n=0

(−1)n
{

1− tanh[(2n+ 1)
π

2

K ′

K
]

}
=

∞∑
n=1

(−1)n+1

cosh[nπK
′

K ]
.(1.20)

∞∑
n=1

(−1)n

[
1−

sinh[nπK
′

K

cosh[nπK
′

K ] + cos(2π)

]
=

∞∑
n=1

(−1)n
cos(2nx)

cosh(nπK
′

K )
.(1.21)

2 cosx

∞∑
n=0

cosh[(2n+ 1)π2
K′

K ]

cosh[(2n+ 1)πK
′

K ] + cos(2x)
=

∞∑
n=0

(−1)n
cos[(2n+ 1)x]

sinh[(2n+ 1)π2
K′

K ]
.(1.22)

∞∑
n=0

(−1)n cos[(2n+ 1)x](1− tanh[(n+ 1
2 )π

K ′

K
]) = 2 cosx

∞∑
n=1

cosh[mπK
′

K ]

cosh[2mπK
′

K ] + cos(2x)
.

(1.23)

∞∑
n=0

(−1)n
sin[(2n+ 1)x]

cosh[(n+ 1
2 )πK

′

K ]
= sinx

∞∑
n=0

(−1)n
sinh[(n+ 1

2 )πK
′

K ]

cosh[(2n+ 1)πK
′

K ] + cos(2x)
.(1.24)

sinx

∞∑
n=1

cosh[nπK
′

K ]

cosh[2nπK
′

K − cos(2x)
=

∞∑
n=0

sin[(2n+ 1)x]

{
1− tanh[(n+ 1

2 )π
K ′

K
]

}
.

(1.25)

sin(2x)

∞∑
n=1

(−1)n+1

cosh(nπK
′

K )− cos(2x)
=

∞∑
n=1

sin(2nx)

{
1− tanh(nπ

K ′

K
)

}
.(1.26)

sin(2x)

∞∑
n=1

1

cosh(nπK
′

K ) + cos(2x)
=

∞∑
n=1

(−1)n sin(2nx)

{
1− tanh(nπ

K ′

K
)

}
.(1.27)

1.2. Discussion. Numerous specific hyperbolic series can now be found by in-
serting values of x and k for which the elliptic values are known. Thus, for x = 0, since
sn(0; k) = 0, cn(0; k) = 1; and dn(0; k) = 1, Theorem 1.1 gives (setting πK ′/K = r)
the specific examples listed in Table 1.
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Table 1

x = 0

∞∑
n=0

csch[(2n+ 1)r/2] =
kK

2
(1.28)

∞∑
n=0

cosh[(2n+ 1)r/2]

sinh2 {[(n+ 1/2)r]− 1}
=
kπ

π
FIX(1.29)

∞∑
n=0

(−1)n
1

sinh[(2n+ 1)r] + 1
=

2k′K

π
− 1.(1.30)

∞∑
n=0

(−1)n

cosh(nr)
=

1

2

(
1− 2k′K

π

)
.(1.31)

∞∑
n=1

(
1− sinh(nr)

2 cosh2(nr/2)

)
=

∞∑
n=1

(−1)n

cosh(nr)
.(1.32)

∞∑
n=0

cosh[(2n+ 1)r/2]

sinh2[(2n+ 1)r/2] + 1
=

∞∑
n=0

(−1)n

sinh[(n+ 1
2 )r]

.(1.33)

x = π
4

∞∑
n=0

sinh[(2n+ 1)r/2]

cosh2[(2n+ 1)r/2]− 1
2

=
k
√

2k′kK√
1 + k′

.(1.34)

∞∑
n=0

sinh[(2n+ 1)r/2]

sinh2[(2n+ 1)r/2] + 1
2

=

∞∑
n=0

(−1)n+bn2 c

sinh[(2n+ 1)r/2]
.(1.35)

Hundreds of additional hypergeometric series can be quickly generated by taking
advantage of singular value compilations. A singular modulus kc is the solution to the
equation

(1.36)
K ′(kc)

K(kc)
= c,

where c is a positive integer. In this case, (1.36) reduces to a polynomial equation,
so kc is an algebraic number and, as proven by Selberg and Chowla [16], the elliptic
integrals K,K ′ and E are expressible as products of Gamma functions. For example,
for c = 1

(1.37) k1 =
1√
2
, andK = K1 = K ′1 =

Γ2
(

1
4

)
4
√
π
.

The book [7] contains tables of these values for 1 6 c 6 100. (The function b(x) that
appears is Γ2(x)/Γ(2x).) For example, from the Fourier series for sn(2Kx/π, k), with
x = π/2, one gets the infinite series of identities whose first three members are listed
in Table 2 below.
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Table 2

∞∑
n=0

(−1)ncsch[(2n+ 1)
π

2
] =

1

2

∞∑
n=0

sech[(2n+ 1)
π

2
] =

Γ2
(

1
4

)
π3/2
√

32

∞∑
n=0

(−1)ncsch[(2n+ 1)
π√
2

] =
1

2

∞∑
n=0

sech[(2n+ 1)
π√
2

] = 2

√
(
√

2− 1)(
√

3 + 1)
Γ2(1/8)

πΓ(1/4)

∞∑
n=0

(−1)ncsch[(2n+ 1)
π
√

3

2
] =

1

2

∞∑
n=0

sech[(2n+ 1)
π
√

3

2
] = 2−1/3

√
3(2 +

√
3

Γ2(1/3)

πΓ(2/3)
.

The formation of an allele to any hyperbolic series may yield something of interest
or simply something unexpected. One example is the case n = 1 of Ramanujan’s series
[3]:

(1.38)

∞∑
k=0

(−1)k(2k + 1)4n−1

cosh[(2k + 1)π2 ]
= 0

which is equivalent to

(1.39)

∞∑
n=0

sinh[(2n+ 1) 3π
2 ]

cosh4[(2n+ 1)π2 ]
=

23

5

∞∑
n=0

sinh[(2n+ 1)π2 ]

cosh4[(2n+ 1)π2 ]
.

A more interesting family of formulas stem from modular identities, such as Ra-
manujan’s modular identity [3]: For ab = π2,

(1.40) a2
∞∑
n=1

n3

eπan − 1
− b2

∞∑
n=1

n3

eπbn − 1
=
a2 − b2

320
,

whose allele is of the form

(1.41) a2 [3I2(a/2) + I4(a/2)]− b2 [3I2(b/2) + I4(b/2)] =
a2 − b2

40
.

in Ling-Zucker notation [4]. The series in (1.41) were probably familiar to Laplace
and are evaluated in the papers of Ling [13] and Zucker [22] yielding

a2

[(
2Ka/2

π

)
(k4
a/2 − k

2
a/2 + 1)− 479

576

(
2Ka/2

π

)(
2Ea/2

Ka/2
+ k2

a/2 − 2

)]
−(1.42)

b2
[(

2Kb/2

π

)
(k4
b/2 − k

2
b/2 + 1)− 479

576

(
2Kb/2

π

)(
3Eb/2

Kb/2
+ k2

b/2 − 2

)]
=

1

2
(a2 − b2).

Related to this is Schlomilch’s formula [3]

(1.43) a

∞∑
n=1

n

e2an − 1
+ b

∞∑
n=1

n

e2bn − 1
=
a+ b

24
− 1

4
, with ab = π2



A NOTE ON SERIES OF HYPERBOLIC FUNCTIONS 137

whose allele is Laplace’s formula (in Ling-Zucker notation)

(1.44) aI2(a/π) + bI2(b/π) =
a+ b

6
− 1

and evaluates to

(1.45) a

(
2Ka/π

π

)2(3Ea/π

Ka/π
+ k2

a/π − 2

)
+ b

(
2Kb/π

π

)2(3Eb/′π

Kb/π
+ k2

b/π − 2

)
= 6.

Turning next to the work of Yakubovich [20], it appears that the hyperbolic series
considered there can also be evaluated in terms of Ling’s basic series [13]. For example
one has the alleles

∞∑
n=1

n

sinh(πnx)
=

1

2
III2(x)(1.46)

∞∑
n=1

n2 cosh(nπx)

sinh2(nπx)
=

1

π

∂

∂x
III2(x).

It should be pointed out that this procedure is unproductive if a series and its
allele are identical, which is the case for the series

(1.47)

∞∑
n=0

(2n+ 1) cosh[(2n+ 1)πx/2]

sinh2[(2n+ 1)πx/2]

the allele of the second series in (1.47). Another useful consequence is that the alleles
of relations such as Sayer’s [15]

(1.48)

∞∑
r=1

(−1)rr4p+1

cosh(rπ)
= 0, p = 1, 2, 3, . . .

and the like lead to reduction identities for the Ling-Zucker classes. Thus p = 1 in
(1.48) is equivalent to

(1.49) IV6(1) =
30

31
IV4(1)− 4

31
IV2(1).

Returning to (1.1), when ν is a negative integer, use of this technique gives

(1.50)

∞∑
n=1

n−k

e2πn − 1
=

∞∑
n=1

Lik(e−2πn).

When k = 4m+ 3 we have (Glasser-unplublished)

(1.51)

∞∑
k=0

Li4n+3(e−2πk) =
1

2
ζ(4n+ 3)

− 1

2
42n+1π2n+3

2n+3∑
k=0

(−1)k
B2kB4n+4−2k

(2k)!(4n+ 4− 2k)!



138 M.L. GLASSER

which gives for m = 0, 1, 2, . . .

(1.52)

∞∑
n=1

coth(nπ)

n4m+3
=

1

2
[ζ(4m+ 3)+

+42m+1π2m+3
2m+3∑
k=0

(−k)k
B2kB4m+4−2k

(2k)!(4m+ 4− 2k)!

]
.

Finally, Table 3 contains a few hyperbolic series obtained for x = π/4, where
k = kr, K = Kr are the singular values for r = 1, 2, 3, . . .

Table 3

x = π
4

∞∑
n=0

(−1)n
sinh[(n+ 1/2)π

√
r]

cosh[(2n+ 1)π
√
r]

=
kk′K

π
√

2(1 + k′)
(1.53)

∞∑
n=0

cosh[(n+ 1/2)π
√
r]

sinh2[(n+ 1/2)π
√
r]

=
kK
√

2

π
√

1 + k′
.(1.54)

∞∑
n=1

cosh[nπ
√
r]

cosh[2nπ
√
r]

=
1

2

(
1− sqrt2k′(1 + k′)K

π

)
.(1.55)

∞∑
n=1

(−1)n

cosh[2nπ
√
r]

=
1

2

(
1− 2K

π

)
.(1.56)

∞∑
n=0

(−1)n[tanh[(2n+ 1)π
√
r]− 1] =

1

2

(
2
√
k′K

π
− 1

)
.(1.57)

∞∑
n=1

cosh(nπK
′

K )

cosh(2nπK
′

K )
=

1

2

(√
2(1 + k′)K

π
− 1

)
.(1.58)

∞∑
n=0

cosh[(n+ 1/2)π
√
r]

cosh[(2n+ 1)π
√
r]

=
kK

π
√

2(1 + k′)
.(1.59)
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