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Abstract. This work explores the application of the method of brackets to evalu-
ate definite integrals. We show the effectiveness of this method through numerous

examples involving Bessel function taken from the classical table of integrals by

I. S. Gradshteyn and I. M. Ryzhik

1. Introduction

The table of integrals by Gradshetyn and Ryzhik [18] is one the most used com-
pendiums of integrals. A project dedicated to producing proofs of these entries began
in [20] was motivated by an incorrect entry appearing in this table. Indeed, the 6th

edition [16] contains, as entry 3.248.5, the beautiful evaluation

(1.1)

∫ ∞
0

dx

(1 + x2)3/2
[
ϕ(x) +

√
ϕ(x)

]1/2 =
π

2
√

6
,

where ϕ(x) = 1 +
4x2

3(1 + x2)2
. Unfortunately this evaluation is incorrect. A direct

numerical evaluation of the left-hand side gives 0.666377 for the left-hand side is
approximately 0.641275. The initial solution to this problem was to exclude this
entry from the next two editions [17, 18]. At this point one of the authors of the
current work had become the scientific editor of the table.

The correct value for this entry was found by J. Arias de Reyna [6], expressed as
the difference of two elliptic integrals. The correct question was found by P. Blaschke

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals, Bessel functions, method of brackets.

109



110 POLYMATH GROUP, SUMMER 2023

[8] in the form

(1.2)

∫ ∞
0

dx

(1 + x2)3/2
[
ϕ(x) +

√
ϕ(x)3

]1/2 =
π

2
√

6
,

The difference between (1.1) and (1.2) is a single number (the extra 3 in the exponent).
Transcribing formulas is a delicate subject. A generalization of (1.2) has been discussed
by L. Glasser [11].

The goal of the present work is to present some proofs of entries in [18] containing
the Bessel function in the integrand. Some examples have appeared in [12], [14]. The
evaluation of entries containing products of Bessel functions is in preparation [2].

Bessel functions are an important family of special functions known for their
crucial role in the analysis of wave propagation phenomena. Among the expressions
for these functions one finds power series and integral representations. These formulas
make them particularly well-suited for the application of the method of brackets.
This is a relatively new method of integration, created by I. Gonzalez [15] in his
Ph. D. Thesis. This method is described in Section 3. The reader is referred to [7, 22]
for general information about these functions and to [21] for a complete treatise on
them.

2. Fundamentals of Bessel, Gamma and Beta Functions

This section presents the definitions and fundamental properties of the special
functions that are considered in this work.

Bessel functions are solutions of the differential equation

(2.1) x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0.

These are divided into two types:
• Bessel functions of the first kind, denoted by Jν , are defined by the power
series representation

(2.2) Jν(x) =

∞∑
k=0

(−1)k

k! Γ(ν + k + 1)

(x
2

)2k+ν

.

• Bessel functions of the second kind, denoted by Yν , is defined by

(2.3) Yν(z) =
Jν(z) cos(πν)− J−ν(z)

sin(πν)
, ν 6∈ Z.

The case when ν is an integer is treated by a limiting procedure. This is a second
solution of (2.1), linearly independent of Jν .

In addition to these two main types, one finds the modified Bessel functions Iν(x)
and Kν(x). These are variations of the Bessel functions of the first and second kinds,
respectively, defined by

(2.4) Iν(x) = i−νJν(ix) =

∞∑
k=0

1

k! Γ(ν + k + 1)

(x
2

)2k+ν
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and

(2.5) Kν(x) =
π

2

I−ν(x)− Iν(x)

sin(νx)
.

Again, the limit must be used for the case when ν is an integer. The function Kν

admits the integral representation,

(2.6) Kν(x) =

∫ ∞
0

e−x cosh t cosh(νt)dt.

appearing as entry 8.432.1 in [18].
Through this work we will frequently encounter with the gamma function, defined

by

(2.7) Γ(x) =

∫ ∞
0

e−ttx−1. dt

This functions is a generalization of factorials to the complex numbers, except for
negative integers. Indeed, the value Γ(n) = (n − 1)! for n ∈ N is an elementary
consequence of the functional equation Γ(x+ 1) = xΓ(x).

The well-known Gaussian integral

(2.8)

∫ ∞
−∞

exp(−x2) dx =
√
π,

yields the special value Γ( 1
2 ) =

√
π.

Some properties of the Gamma function that will be frequently used along this
paper are given next:

• The Euler’s reflection formula:

(2.9) Γ(1− x)Γ(x) =
π

sin(πx)
, for x /∈ Z,

which implies

(2.10) Γ(−n+ x) = (−1)n−1 Γ(−x)Γ(x+ 1)

Γ(n+ 1− x)
.

• Legendre’s duplication formula:

(2.11) Γ

(
x+

1

2

)
=

√
π Γ(2z)

22x−1Γ(x)
,

which produces for x = n ∈ N the values

(2.12) Γ

(
n+

1

2

)
=

√
π (2n)!

22nn!
.

A companion function is the beta function, defined by

(2.13) B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx.

It also admits the integral representation (see entry 8.380.3 in [18])

(2.14) B(a, b) =

∫ ∞
0

ta−1 dt

(1 + t)a+b
,
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which is preferred for the application of the method of brackets since the integral is
taken over the interval (0,∞]. Also, it is related with the gamma function via the
relation

(2.15) B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

In particular, this gives the identity

(2.16) B(a, 1− a) = Γ(a)Γ(1− a) =
π

sin(π a)
.

More properties, as well as analytic information about the gamma and beta func-
tions can be found at [1, 5, 9, 22].

3. The method of brackets

This section presents the main steps in the application of the method of brackets.
This is a technique used to compute definite integrals over the half line [0,∞), with
relatively few computations. The primary object in this method is the so-called bracket
series, which is produced and evaluated according to a small number of rules, initially
derived in a heuristic manner, some of which are placed on solid ground [4]. A complete
analysis of this method has been given in [10]

The key idea is the assignment of the formal symbol

(3.1) 〈a〉 =

∫ ∞
0

xa−1 dx,

called the bracket associated to the divergent integral on the right. The expansion
of the integrand as a power series will be combined with the use of this symbol to
construct the previously mentioned bracket series.

An important notation while operating with brackets is the use of the symbol

(3.2) φn =
(−1)n

Γ(n+ 1)
,

called the indicator of n. The symbol φi1,i2,...,ir , denotes the product φi1φi2 · · ·φir .
The evaluation of the iintegral

(3.3) I(f) =

∫ ∞
0

f(x) dx,

by the method of brackets consists of the application of a small number of rules. These
are of two types: production and evaluation of a bracket series (see [3] for details).
First we present the rules for the production of brackets.

Rule P1. Assume f has the expansion

(3.4) f(x) =
∞∑
n=0

φnanx
αn+β−1.

Then I(f) is assigned the bracket series

(3.5) I(f) =

∞∑
n=0

φnan〈αn+ β〉.
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Rule P2. For α ∈ R, the multinomial power (a1 + a2 + · · ·+ ar)
α is assigned the

r-dimensional bracket series

(3.6)
∑
n1>0

∑
n2>0

· · ·
∑
nr>0

φn1,n2,...,nra
n1
1 · · · anrr

〈n1 + · · ·+ nr − α〉
Γ(−α)

.

Rule P3. Each representation of an integral by a bracket series has associated
an index of the representation via

(3.7) index= number of sums -number of brackets.

Remark 3.1. It is important to note that the index is attached to each specific
representation of the integral and not just to integral itself. The level of difficulty in
the analysis of the resulting bracket series increases with the index. Hence, among all
representations of an integral as a bracket series, the one with minimal index should
be chosen.

Now we introduce the rules for the evaluation of brackets.

Rule E1. Let a, b ∈ R. The one-dimensional bracket series (3.5) is assigned the
value

(3.8)

∞∑
n=0

φnan〈αn+ β〉 =
1

|α|
f(n∗)Γ(−n∗),

where n∗ is obtained from the vanishing of the bracket; that is n∗ solves αn+ b = 0.
This is precisely the Ramanujan’s Master Theorem.

The next rule evaluates a multi-dimensional bracket series of index 0, that is, the
number of sums is equal to the number of brackets.

Rule E2. Assume the matrix A = (aij), with aij ∈ R, is non-singular. Then we
have the assignment

∑
n1>1

∑
n2>1

· · ·
∑
nr>1

φn1···nrf(n1, . . . , nr)〈a11n1 + · · ·+ a1rnr + c1〉

· · · 〈ar1n1 + · · ·+ arrnr + cr〉 =
1

|det(A)|
f(n1

∗, . . . , nr
∗)Γ(−n1

∗) · · ·Γ(−nr∗),

(3.9)

where {n∗i } is the (unique) solution of the linear system obtained from the vanishing
of the brackets. There is no assignment if A is singular.

Rule E3. The value of a multi-dimensional bracket series of positive index is
obtained by computing all the contributions of maximal rank by Rule E2. These
contributions to the integral appear as series in the free parameters. Series converging
in a common region are added and divergent series are discarded. Any series producing
a non-real contribution is also discarded. There is no assignment to a bracket series
of negative index. If all the resulting series are discarded, then the method is nor
applicable.

The next section begins the evaluation of entries in [18].



114 POLYMATH GROUP, SUMMER 2023

4. Integrals in section 6.561 from Gradshteyn and Ryzhik

Sections 6.56 − 6.58 contain entries under the title Combinations of Bessel

functions and powers. Some examples are evaluated next. Two examples from
the Subsection 6.561 are given.

4.1. Entry 6.561.14.

(4.1)

∫ ∞
0

xµJν(αx)dx = 2µα−µ−1 Γ( 1
2 + 1

2ν + 1
2µ)

Γ( 1
2 + 1

2ν −
1
2µ)

.

Proof. Let

(4.2) I =

∫ ∞
0

xµJν(αx)dx,

the series representation of the Bessel function (2.2) gives

I =

∫ ∞
0

xµ

[ ∞∑
n=0

φn
(αx2 )ν+2n

Γ(ν + n+ 1)

]

=

∫ ∞
0

∞∑
n=0

φn

(α
2

)ν+2n 1

Γ(ν + n+ 1)
xν+2n+µ

=

∞∑
n=0

φn

(α
2

)ν+2n 1

Γ(ν + n+ 1)
〈2n+ ν + µ+ 1〉.

(4.3)

The vanishing of the bracket gives n∗ = − 1
2 (ν + µ+ 1) and rule E1 yields

(4.4) I =
1

2

(α
2

)−µ−1 1

Γ(ν−µ+1
2 )

Γ

(
ν + µ+ 1

2

)
,

which is (4.1). �

4.2. Entry 6.561.16.

(4.5)

∫ ∞
0

xµKν(ax)dx = 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
.

Proof. The substitution z = ax produces

(4.6) I =

∫ ∞
0

xµKν(ax)dx = a−µ−1

∫ ∞
0

zµKν(z)dz.

The integral representation of Kν in (2.6) now yields

I = a−µ−1

∫ ∞
0

zµ
(∫ ∞

0

e−z cosh t cosh(νt) dt

)
dz

= a−µ−1

∫ ∞
0

cosh(νt)

(∫ ∞
0

zµe−z cosh t dz

)
dt.

(4.7)
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The substitution s = z cosh t for the interior integral then gives

I = a−µ−1

∫ ∞
0

cosh(νt)

[∫ ∞
0

( s

cosh t

)µ
e−s

ds

cosh t

]
dt

= a−µ−1Γ(µ+ 1)

∫ ∞
0

cosh(νt)

coshµ+1(t)
dt.

(4.8)

Since the integrand is even, then

(4.9) I =
a−µ−1Γ(µ+ 1)

2

∫ ∞
−∞

cosh(νt)

coshµ+1(t)
dt,

and the change of variables w = et now produces

I =
a−µ−1Γ(µ+ 1)

2

∫ ∞
0

1
2 (wν + w−ν)

( 1
2 )µ+1(w + w−1)µ+1

dw

w

= 2µ−1a−µ−1Γ(µ+ 1)

[∫ ∞
0

wν−1

(w + w−1)µ+1
dw +

∫ ∞
0

w−ν−1

(w + w−1)µ+1
dw

]
= 2µ−1a−µ−1Γ(µ+ 1)

[∫ ∞
0

wν+µ

(1 + w2)µ+1
dw +

∫ ∞
0

w−ν+µ

(1 + w2)µ+1
dw

]
.

(4.10)

Finally, the substitution x = w2 gives

I = 2µ−2a−µ−1Γ(µ+ 1)

[∫ ∞
0

x
ν+µ−1

2

(1 + x)µ+1
dx+

∫ ∞
0

x
−ν+µ−1

2

(1 + x)µ+1
dx

]

= 2µ−2a−µ−1Γ(µ+ 1)

[
B

(
ν + µ+ 1

2
,
−ν + µ+ 1

2

)
+B

(
−ν + µ+ 1

2
,
ν + µ+ 1

2

)]
= 2µ−1a−µ−1Γ

(
1 + µ+ ν

2

)
Γ

(
1 + µ− ν

2

)
,

(4.11)

where the last two steps follow from the definition of the beta function (2.14) and its
representation in terms of the gamma function (2.15).

�

5. Integrals in section 6.623 from Gradshteyn and Ryzhik

Sections 6.62 − 6.63 contains entries under the title Combinations of Bessel

functions, exponentials, and powers. Two examples are evaluated.

5.1. Entry 6.623.2.

(5.1) I =

∫ ∞
0

e−αxJν(βx)xν+1 dx =
2α(2β)νΓ(ν + 3

2 )
√
π(α2 + β2)ν+1/2

.

Two proofs are presented. The first one is a classical one, using elementary properties
of Bessel functions. The second proof uses the method of brackets.

First we establish a result giving an integral representation of e−αx. This will be
used to give a proof of (5.1).
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Lemma 5.1. Let r > 0, then

(5.2) e−r =
2r√
π

∫ ∞
0

e−r
2w2− 1

4w2 dw

Proof. Recall the identity

(5.3) I(r) =

∫ ∞
0

e−
r
2 t

2

dt =

√
π√
2r
.

Now, use the substitution t = y − 1
y , to obtain

I(r) =

∫ ∞
0

e−
r
2 t

2

dt =

∫ ∞
1

(
1 +

1

y2

)
e−

r
2 (y− 1

y )
2

dy

=

∫ ∞
1

e−
r
2 (y− 1

y )
2

dy +

∫ ∞
1

1

y2
e−

r
2 (y− 1

y )
2

dy.

(5.4)

The change of variables t = 1
y gives

(5.5)

∫ ∞
1

1

y2
e−

r
2 (y− 1

y )2 dy =

∫ 1

0

e−
r
2 (t− 1

t )2 dt,

and (5.4) becomes

(5.6) I(r) =

∫ 1

0

e−
r
2 (y− 1

y )
2

dy +

∫ ∞
1

e−
r
2 (y− 1

y )
2

dy =

∫ ∞
0

e−
r
2 (y− 1

y )2 dy.

Finally, the substitution y =
√

2rw yields

(5.7) I(r) =
√

2r

∫ ∞
0

e−r
2w2− 1

4w2 er dw,

which using (5.3) produces the desired result. �

Proof. (of entry 6.623.2). Start with the slightly different integral

(5.8) Ĩ(α) =

∫ ∞
0

e−αxJν(βx)xν dx.

Lemma 5.1 yields

Ĩ(α) =

∫ ∞
0

(
2αx√
π

∫ ∞
0

e−(αxt)2− 1
4t2 dt

)
Jν(βx)xν dx

=

∫ ∞
0

2α√
π
e−

1
4t2

∫ ∞
0

e−(αxt)2Jν(βx)xν+1 dx dt.

(5.9)



THE INTEGRALS IN GRADSHTEYN AND RYZHIK. PART 34 117

The integral with respect to x can be evaluated using entry 6.631.4 (see (6.1) for the
proof). Therefore

Ĩ(α) =
2α√
π

∫ ∞
0

e−
1

4t2
βνe−

β2

4α2t2

(2α2t2)ν+1
dt

=
2αβν√

π(2α2)ν+1

∫ ∞
0

t2νe
− t24

(
1+ β2

α2

)
dt

=
αβν√

π(2α2)ν+1

Γ(ν + 1
2 )

( 1
4 (1 + β2

α2 ))ν+ 1
2

=
(2β)νΓ(ν + 1

2 )
√
π(α2 + β2)ν+ 1

2

.

(5.10)

Finally, (5.1) follows by differentiation of Ĩ(α), using its integral representation given
by (5.8) and the explicit representation found in (5.10). Indeed, from (5.8)

(5.11)
d

dα
(Ĩ(α)) =

d

dα

(∫ ∞
0

e−αxJν(βx)xν dx

)
= −

∫ ∞
0

e−αxJν(βx)xν+1 dx = −I,

while from (5.10)

(5.12)
d

dα
(Ĩ(α)) = −

2α(2β)νΓ(ν + 3
2 )

√
π(α2 + β2)ν+ 3

2

.

This completes the proof.

An evaluation of the entry above is now given using the method of brackets. This
should serve as an example illustrating the simplicity of this method.

Start with the original integral and use the standard series for the exponential
function and the Bessel function Jν given in (2.2). Then

I =

∫ ∞
0

e−αxJν(βx)xν+1 dx(5.13)

=

∫ ∞
0

[ ∞∑
n=0

(−αx)n

n!

][ ∞∑
m=0

(−1)m(β2 )ν+2m

m! Γ(ν +m+ 1)
xν+2m

]
xν+1 dx

=

∫ ∞
0

∞∑
n=0

∞∑
m=0

φn,m
αn(β2 )ν+2m

Γ(ν +m+ 1)
x2ν+n+2m+1 dx

=

∞∑
n=0

∞∑
m=0

φn,m
αn(β2 )ν+2m

Γ(ν +m+ 1)
〈n+ 2m+ 2ν + 2〉.

This is a 2-dimensional bracket series of index one (one bracket and two sums). Then
according to rule E3 we must consider the two contributions coming from taking,
separately, n and m as free parameters:
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n as a free parameter. In this case m∗ = −ν − 1 − n
2 and the coefficient of m is

a = 2, so the contribution to the value of the integral is

(5.14) I1 =
1

2

∞∑
n=0

φn
αn(β2 )−ν−n−2 Γ(ν + 1 + n

2 )

Γ(−n2 )
.

Note that due to the appearance of Γ(−n2 ) in the denominator, only the odd indexes
contribute to the sum. Therefore

I1 =
1

2

∞∑
n=0

φ2n+1

α2n+1(β2 )−ν−2n−3 Γ(ν + n+ 3
2 )

Γ(−n− 1
2 )

=
2ν+2α

βν+3

∞∑
n=0

(−1)2n+1

(2n+ 1)!

22n(αβ )2n Γ(ν + n+ 3
2 )

Γ(−n− 1
2 )

.

(5.15)

This expression can be simplified using the identities

(5.16)
1

Γ(−n− 1
2 )

=
(−1)n−1(2n+ 1)!√

π 22n+1n!
,

and the relation of the Pochammer symbol with the gamma function

(5.17) Γ
(
ν + n+ 3

2

)
= Γ

(
ν + 3

2

) (
ν + 3

2

)
n
.

The last two identities imply that, for |α| < |β|,

I1 =
2ν+1αΓ

(
ν + 3

2

)
√
π βν+3

∞∑
n=0

(−1)n

n!

(
ν +

3

2

)
n

(
α

β

)2n

=
2ν+1αΓ

(
ν + 3

2

)
√
π βν+3

(
1 +

α2

β2

)−ν− 3
2

=
2α(2β)νΓ(ν + 3

2 )
√
π(α2 + β2)ν+ 3

2

.

(5.18)
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m as a free parameter. In this case n∗ = −2ν − 2m − 2 and a = 1. Then, the
contribution to the integral, for |β| < |α|, is

I2 =

∞∑
m=0

φm
α−2ν−2m−2(β2 )ν+2m Γ(2ν + 2m+ 2)

Γ(ν +m+ 1)

=
βν

2να2ν+2

∞∑
m=0

φm
Γ(2ν + 2m+ 2)

Γ(ν +m+ 1)

(
β

2α

)2m

=
2ν+1βν√
π α2ν+2

∞∑
m=0

φm Γ(ν +m+ 3/2)

(
β

α

)2m

=
2ν+1βν Γ(ν + 3/2)√

π α2ν+2

∞∑
m=0

φm

(
ν +

3

2

)
m

(
β

α

)2m

=
2ν+1βν Γ(ν + 3/2)√

π α2ν+2

(
1 +

β2

α2

)−ν− 3
2

=
2α(2b)νΓ(ν + 3

2 )
√
π(α2 + β2)ν+ 3

2

.

(5.19)

Finally, since both contributions yield the same result (I1 = I2), rule E3 states that
the integral is given by this common value. This concludes the proof of (5.1). �

6. Entry 6.631

This section uses the method of brackets to evaluate an integral containing the
gaussian function (quadratic exponential) and a Bessel Jν term.

6.1. Entry 6.631.4.

(6.1) I =

∫ ∞
0

e−αx
2

Jν(βx)xν+1 dx =
βνe−

β2

4α

(2α)ν+1
.

Proof. The first proof is in classical style. The series representation of the Bessel
function (2.2) gives

I =

∫ ∞
0

e−αx
2
∞∑
n=0

[
(−1)n(β2 )ν+2n

n! Γ(ν + n+ 1)
xν+2n

]
xν+1 dx

=

∫ ∞
0

e−αx
2
∞∑
n=0

[
(−1)n(β2 )ν+2n

n! Γ(ν + n+ 1)
x2ν+2n+1

]
dx.

(6.2)
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Using the substitution x =
(
t
α

)1/2
, this becomes

I =
1

2

∞∑
n=0

(−1)n(β2 )ν+2n

n! Γ(ν + n+ 1)αn+ν+1

∫ ∞
0

tν+ne−t dt

=
1

2

∞∑
n=0

(−1)n
(
β
2

)ν+2n

n!αn+ν+1

=
βνe−

β2

4α

(2α)ν+1
,

(6.3)

which is the desired result.
On the other hand, to evaluate this integral using the method of brackets, start

with (6.2) and use the series expansion of the exponential to obtain a bracket series
as follows:

I =

∫ ∞
0

[ ∞∑
m=0

(−αx2)m

m!

][ ∞∑
n=0

(−1)n(β2 )ν+2n

n! Γ(ν + n+ 1)
x2ν+2n+1

]
dx

=

∫ ∞
0

∞∑
n=0

∞∑
m=0

φn,m
αm(β2 )ν+2n

Γ(ν + n+ 1)
x2n+2m+2ν+1 dx

=

∞∑
n=0

∞∑
m=0

φn,m
αm(β2 )ν+2n

Γ(ν + n+ 1)
〈2n+ 2m+ 2ν + 2〉.

(6.4)

This is a 2-dimensional bracket series of index one. According to rule E2 we consider
the two contributions coming from considering n and m as free parameters.

First take m as the free parameter. Then n∗ = −ν − m − 1 and a = 2, and
according to rule E1 the contribution in this case is

(6.5) I1 =
1

2

∞∑
n=0

φm
αm(β2 )−ν−2m−2Γ(ν +m+ 1)

Γ(−m)

which diverges due to the appearance of the term Γ(−m). Therefore this is discarded.
Now, when n as the free parameter, m∗ = −ν − n − 1 and a = 2. Thus the

contribution of this case is given by

I2 =
1

2

∞∑
n=0

φn
α−ν−n−1(β2 )ν+2nΓ(ν + n+ 1)

Γ(ν + n+ 1)

=
βν

(2α)ν+1

∞∑
n=0

φn

(
β2

4α

)n

=
βνe−

β2

4α

(2α)ν+1
.

(6.6)

This completes the proof. �
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7. Section 6.512

This section contains 10 entries where the integrand is a product of Bessel func-
tions. One of them, entry 6.512.1 has been evaluated in [19] in order to illustrate
methods of automatic computation. In this section the method of brackets is used to
evaluate half of the entries in this section.

7.1. Entry 6.512.1.

(7.1)

∫ ∞
0

Jµ(ax)Jν(bx) dx =
bν

aν+1

Γ
(
µ+ν+1

2

)
Γ(ν + 1)Γ

(
µ−ν+1

2

) 2F1

( µ+ν+1
2

ν−µ+1
2

ν + 1

∣∣∣∣ b2a2

)
for a, b > 0 and b < a. For a < b, the positions of µ, ν and a, b should be reversed.

Proof. Denote the integral by I and assume b < a. Using the power series of
the Bessel function gives the representation of I as an index 1 bracket series

(7.2) I =
∑
n1,n2

φ1,2
a2n1+µb2n2+ν

22n1+2n2+µ+ν

〈2n1 + 2n2 + µ+ ν + 1〉
Γ(µ+ n1 + 1)Γ(ν + n2 + 1)

.

The evaluation of this series, using Rule E3, is now divided into two cases, according
to which index is chosen as the free one.

Case 1: n1 is a free index. The vanishing of the bracket gives n∗2 = −n1 − 1
2µ −

1
2ν −

1
2 . Rule E3 now gives

(7.3) I1 =
aµ

bµ+1

∞∑
n1=0

(−1)n1

n1!

Γ(n1 + 1
2µ+ 1

2ν + 1
2 )

Γ(n1 + µ+ 1)Γ( 1
2ν + 1

2 −
1
2µ− n1)

(
a2

b2

)n1

.

The gamma factors are now converted to Pochhammer symbols using

(7.4) Γ(x+m) = Γ(x)(x)m and (x)−m =
(−1)m

(1− x)m
for x ∈ R and m ∈ N.

This produces

(7.5) I1 =
aµ

bµ+1

Γ
(
µ+ν+1

2

)
Γ(µ+ 1)Γ

(
ν+1−µ

2

) ∞∑
n1=0

(
µ+ν+1

2

)
n1

(
µ−ν+1

2

)
n1

n1!(µ+ 1)n1

(
a2

b2

)n1

.

Since b < a, the series diverges and it does not contribute to the value of the integral.

Case 2: n2 is a free index. The vanishing of the brackets gives
n∗1 = −n2 − 1

2 (µ+ ν + 1). Rule E3 now gives the integral as

(7.6) I2 =

∞∑
n2=0

(−1)n2

n2!

Γ(−n∗1)

Γ(µ+ n∗1 + 1)Γ(ν + n2 + 1)
a2n∗

1+µb2n2+ν .

Now replace the value of n∗1 and use the identities

Γ(−n∗1) = Γ(n2 + 1
2 (µ+ ν + 1)) =

(
1
2 (µ+ ν + 1)

)
n2

Γ
(

1
2 (µ+ ν + 1)

)
(7.7)

Γ(µ+ n∗1 + 1) = Γ( 1
2 (µ− ν + 1)− n2) = (−1)n2/Γ(ν−µ+1

2 )

Γ(ν + n2 + 1) = Γ(ν + 1)(ν + 1)n2
.

in (7.7) to obtain the expression (7.1). �
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7.2. Entry 6.512.2. Let

(7.8) I =

∫ ∞
0

Jν+k(αt)Jν−k−1(βt) dt.

Then

(7.9) I =
βν−k−1Γ(ν)

αν−kk!Γ(ν − k)
2F1

(
ν − k
ν − k

∣∣∣∣β2

α2

)
if 0 < β < α

and the special cases

(7.10) I = (−1)k
1

2α
if 0 < β = α

and

(7.11) I = 0 if 0 < α < β.

Proof. In order to apply the method of brackets, expand both Bessel functions
in series to obtain

(7.12) I =

∫ ∞
0

∑
n1,n2

φ1,2
(α/2)2n1+ν+k(β/2)2n2+ν−k−1

Γ(n1 + ν + k + 1)Γ(n2 + ν − k)
t2n1+2n2+2ν−1 dt.

Integrating converts this into a bracket series of index 1:

(7.13) I =
∑
n1,n2

φ1,2
(α/2)2n1+ν+k(β/2)2n2+ν−k−1

Γ(n1 + ν + k + 1)Γ(n2 + ν − k)
〈2n1 + 2n2 + 2ν〉.

This is now expressed as a single series by choosing a free parameter.

n2 is free. Using Rule E2 with n∗1 = −ν − n2 gives

(7.14) I =
βν−k−1

2αν−k

∞∑
n2=0

(−1)n2

Γ(n2 + 1)

Γ(ν + n2)

Γ(k + 1− n2)Γ(n2 + ν − k)

(
β2

α2

)n2

Case 1: 0 < β < α. Then the series converges. In order to simplify this expression,
use Γ(u+ 1) = uΓ(u) and (α−m)m = (−1)m(1− α)m to prove the relation

(7.15) Γ(α− n) =
Γ(α)

(−1)n(1− α)n
.

Now use this to simplify the term Γ(k + 1 − n2) in (7.14) (the only gamma factor
where the index n2 appears with a negative sign). This gives the result (7.9), for the
case 0 < β < α.

Case 2: 0 < α = β. Then (7.14) becomes

(7.16) I1 =
1

α

∞∑
n2=0

(−1)n2

Γ(n2 + 1)

Γ(ν + n2)

Γ(k + 1− n2)Γ(n2 + ν − k)
.

The term 1/Γ(k + 1− n2) vanishes for n2 > k and expression I reduces to

(7.17) I1 =
1

α

k∑
n2=0

(−1)n2

Γ(n2 + 1)

Γ(ν + n2)

Γ(k + 1− n2)Γ(n2 + ν − k)
.
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Using (7.4) the desired result is seen to be equivalent to the identity

(7.18)

k∑
n2=0

(
k

n2

)
(ν)n2(1− ν)k−n2 = k!

Proof. Assume Xν be a gamma distributed random variable with parameter ν.
Then

(7.19) E[Xm
ν ] = (ν)m.

Recall that the sum of independent gamma distributed random variables is again
gamma distributed and the corresponding parameters are added; that is, if Xi ∼ Γ(νi)
are independent, then X1 +X2 ∼ Γ(ν1 + ν2).

Now

k∑
n=0

(
k

n

)
(ν)n(1− ν)k−n =

k∑
n=0

(
k

n

)
E[Xn

ν ]E[Xk−n
1−ν ](7.20)

= E[(Xν +X1−ν)k]

= E[X(1)k]

= (1)k

= k!,

and the proof is complete. �

�

7.3. Entry 6.512.3.

(7.21)

∫ ∞
0

Jν(αx)Jν−1(βx) dx =


βν−1/αν for β < α
1

2β for β = α

0 for β > α.

Proof. Using the power series of the Bessel function, it follows that

(7.22)

∫ ∞
0

Jν(αx)Jν−1(βx)dx∫ ∞
0

∞∑
n1=0

(−1)n1

n1!Γ(n1 + ν + 1)

(αx
2

)2n1+ν ∞∑
n2=0

(−1)n2

n2!Γ(n2 + ν)

(
βx

2

)2n2+ν−1

dx

=

∞∑
n1,n2=0

(−1)n1+n2α2n1+vβ2n2+ν−1

n1!n2!Γ(n2 + ν)Γ(n1 + ν + 1)22(n1+n2+ν)−1

∫ ∞
0

x2(n1+n2+ν)−1dx

=

∞∑
n1,n2=0

(−1)n1+n2α2n1+νβ2n2+ν−1

n1!n2!Γ(n2 + ν)Γ(n1 + ν + 1)22(n1+n2+ν)−1
〈2(n1 + n2 + ν)〉

This is a bracket series of index is 1. In its evaluation we use rule E3:
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n1 is a free parameter: The corresponding equation is 2n2 = −2ν − 2n1 with
determinant 2. Therefore, the contribution with n1 free is

I1 =

∞∑
n1=0

(−1)n1α2n1+v

β2n1+v+1(n1 + v)Γ(−n1)Γ(n1 + 1)
.

This series vanishes identically in view of the presence of Γ(−n1).

n2 is a free parameter: The corresponding equation is now 2n1 = −2ν−2n2, with
determinant 2. As in the previous case, the contribution of n2 free is

I2 =
1

β

∞∑
n2=0

(−1)n2

Γ(n2 + 1)Γ(1− n2)

(
β

α

)2n2+ν

.(7.23)

The presence of Γ(1 − n2) shows that every term, except n2 = 0, vanishes. This
confirms the evaluation.

�

7.4. Entry 6.512.9.

(7.24)

∫ ∞
0

K0(ax)J1(bx) dx =
1

2b
ln

(
1 +

b2

a2

)
, a > 0, b > 0.

Proof. The creation of a bracket series for this problem starts with the integral
representation

(7.25) K0(x) =

∫ ∞
0

cos(xt)

(t2 + 1)1/2
dt

discussed in [13]. Therefore

(7.26) I =

∫ ∞
0

∫ ∞
0

cos(axt)√
t2 + 1

J1(bx)dtdx

Now use the Taylor series for cos(axt) and J1(bx) and rule P2 to expand (t2 + 1)−1/2

into a bracket series. two sums and a bracket. The value of the integral is therefore
given by
(7.27)

I =
∑

n1,n2,n3,n4

φ1234
n1!

(2n1)!

a2n1

Γ(n2 + 2)

(b/2)n2+1

Γ(1/2)
〈n3+n4+1/2〉〈2n1+2n2+2〉〈2n1+2n4+1〉.

This is a bracket series representation of index 1. The value of the integral is now
obtained by taking each of the four indices free, one at the time.

n1 is a free index. The vanishing of the brackets leads to the system of equations

(7.28)

0 1 1
2 0 0
0 2 0

n2

n3

n4

 =

 −1/2
−2n1 − 2
−2n1 − 1


with a matrix A of determinant 4 and solutions

(7.29) n2 = −n1 − 1, n3 = −n1 − 1
2 , n4 = n1.
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Therefore the contribution of the free index n1 to the value of the integral is

(7.30) I1 =
1

4

∞∑
n1=0

(−1)n1

n1!

Γ2(n1 + 1)Γ(n1 + 1
2 )Γ(−n1)

Γ(2n1 + 1)Γ(−n1 + 1)

a2n1b−2n1−1

√
π2−2n1−1

.

Using the identity Γ(n+ 1
2 ) =

(2n)!
√
π

22nn!
, the series above can be written as

(7.31) I1 = − 1

2b

∞∑
n1=0

(−1)n1

n1

(a
b

)n1

.

The first term diverges, so this contribution is discarded.

n2 is a free index. Now the solution to the corresponding linear system is

(7.32) n1 = −n2 − 1, n3 = n2 + 1
2 , n4 = −n2 − 1.

Using elementary properties of the gamma function the corresponding series converges
for b < a and it reduces to

(7.33) I2 =
b

2a2

∞∑
n2=0

(−1)n2

n2 + 1

(
b2

a2

)n2

.

This series can be summed to obtain

(7.34) I2 =
1

2b
log

(
1 +

b2

a2

)
.

n3 is a free index. The solutions are now

(7.35) n1 = −n3 − 1
2 , n2 = n3 − 1

2 , n4 = −n3 − 1
2 .

The standard procedure gives as contribution a series where every terms containing
the vanishing factor 1/Γ(−2n3). Therefore I3 = 0.

n4 is a free index. In the final case, the computation is similar to the case when
n1 is a free index, leading to no contribution.

This completes the proof. �

7.5. Entry 6.512.10.

(7.36)

∫ ∞
0

K0(ax)I1(bx) dx = − 1

2b
ln

(
1− b2

a2

)
, a > 0, b > 0.

Proof. Denote the integral by I and use the representations

(7.37) K0(ax) =

∫ ∞
0

cos(axt)√
t2 + 1

dt

and

(7.38) I1(bx) =

∞∑
n1=0

1

n1!Γ(n1 + 2)

(
bx

2

)2n1+1
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and using them in the integral I. The usual procedure for the representation of this
integral as a bracket series (following similar steps as the ones described in the previous
example) yields
(7.39)

I =
b

2
√
π

∑
n1,n2,n3,n4

φ1234
Γ(n2 + 1)

Γ(2n2 + 1)

(−1)n1

Γ(n1 + 2)
〈2n1+2n2+2〉〈2n2+2n3+1〉〈n3+n4+ 1

2 〉

This is a bracket series of index 1. The evaluation is obtained by treating each index
as a free one.

n1 is a free index. The usual linear system has a matrix of determinant 4 and
gives the solutions

(7.40) n2 = −n1 − 1, n3 = n1 + 1
2 , n4 = −n1 − 1.

Therefore, the contribution of this index to the value of the integral I is

(7.41) I1 =
b

8a2
√
π

∞∑
n1=0

Γ(−n1 − 1
2 )Γ(n1 + 1)Γ(−n1)

Γ(−2n1 − 1)Γ(n1 + 2)

b2n1

22n1a2n1
.

Using the duplication formula for the gamma function

(7.42) Γ(2u) =
1√
π

22u−1Γ(u)Γ(u+ 1
2 )

gives the simplified form

(7.43) I1 =
b

2a2

∞∑
n1=0

1

(n1 + 1)

(
b2

a2

)n1

and this series can be summed to produce

(7.44) I1 = − 1

2b
log

(
1− b2

a2

)
.

n2 is a free index. The corresponding linear system has a matrix of determinant
4 and solutions

(7.45) n1 = −n2 − 1, n3 = n2 − 1
2 , n4 = n2.

Therefore the contribution to the integral is

(7.46) I2 =
1

8
√
π

∞∑
n2=0

(−1)n2

n2!
×

Γ(n2 + 1)

Γ(2n2 + 1)

(−1)−n2−1

Γ(−n2 + 1)
Γ(1 + n2)Γ(n2 + 1

2 )Γ(−n2)
a2n2b−2−2n2

2−2−2n2
.

The term corresponding to n2 = 0 diverges. Therefore this series does not contribute
to the integral.

n3 is a free index. In this case the case the contribution is seen to be a series with
Γ(−2n3) in the denominator. This series vanishes, so I3 = 0.

n4 is a free index. In this case the case the contribution is seen to be a series with
Γ(−n4) in the numerator. This series diverges, so it is discarded.
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In summary, only n1 as a free index gives a contribution to the integral. The final
result is

(7.47) I = − 1

2b
log

(
1− b2

a2

)
,

as claimed in (7.36). The evaluation is complete. �
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