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A novel approach to evaluating improper integrals

Russell A. Gordon∗ and Seán M. Stewart†

Abstract. We explain and apply a recently developed method for evaluating
improper integrals of the form

∫∞
0 f(t) dt using Laplace transforms. A number

of examples are provided to illustrate the method, along with some results that

streamline the computations. We show how the method can be used to readily
determine values for entire classes of certain integrals which, using other more

familiar methods, are difficult to find. We also indicate how the method can
determine the values of integrals for which other methods fail.

1. Introduction

The purpose of this paper is to discuss and illustrate a recently developed method
for evaluating certain integrals of the form

∫∞
0
f(t) dt. It is possible to evaluate some

of the integrals that appear here in other ways, but in such cases, we find that the
new method makes the computations much easier. In addition, we show how to apply
the method to evaluate some integrals that do not fall within the realm of more
traditional methods. Hence, this new method increases the number of options that
can be considered for evaluating integrals.

This recently developed method for evaluating integrals was initially introduced
heuristically by Kempf, Jackson, and Morales (see [10], [11]) in the context of quantum
field theory; they referred to it as “integration by differentiation.” It was later made
rigorous by Jia, Tang, and Kempf [9] for certain classes of functions and integrals.
Our goal here is to explain and illustrate this new method without overwhelming the
reader with some of the technical details. Careful proofs can be found in [9] and
further expanded upon in [6], so we focus on helping other mathematicians appreciate
the advantages of this newer method.
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2. Main Result

Suppose that f : R→ R is analytic on R. We express f as f(x) =
∞∑
k=0

akx
k, noting

that f is then defined for all complex numbers z. We define a differential operator
f(β∂x), where β is a complex number and the symbol ∂kx ◦φ(x) means to take the kth
derivative of φ with respect to x, as follows: given an analytic function φ, we have

f(β∂x) ◦ φ(x) = lim
n→∞

n∑
k=0

ak(β∂x)k ◦ φ(x) = lim
n→∞

n∑
k=0

akβ
kφ(k)(x) =

∞∑
k=0

akβ
kφ(k)(x)

for all real numbers x for which the corresponding series converges. To preview what
is to come, suppose further that f has a Laplace transform defined for all s > 0. Now
consider the following informal set of equations (see [11]) to compute the Laplace
transform of f , where the substitution u = st is made in the first step:

L {f(t)}(s) =

∫ ∞
0

e−stf(t) dt =

∫ ∞
0

e−uf(u/s)
du

s

=

∫ ∞
0

∞∑
k=0

ak
sk+1

uke−u du =

∞∑
k=0

ak
sk+1

∫ ∞
0

uke−u du

=

∞∑
k=0

ak ·
k!

sk+1
=

∞∑
k=0

ak(−∂s)k ◦
1

s
= f(−∂s) ◦

1

s

for all s > 0. Given this representation for the Laplace transform, it then seems
reasonable to conclude that∫ ∞

0

f(t) dt = lim
s→0+

f(−∂s) ◦
1

s
.

However, there are several issues to address here. How do we justify the interchange
of the integral and the infinite sum? How can we apply our differential operator to
a function that is not analytic? As we shall see, it turns out that this integration
formula is valid for a certain class of functions.

We first give a specific example to illustrate this differential operator. For any
complex number β and analytic function φ, we find that

eβ∂x ◦ φ(x) =

∞∑
k=0

βk

k!
φ(k)(x) =

∞∑
k=0

φ(k)(x)

k!
(x+ β − x)k = φ(x+ β).

Hence, the differential operator eβ∂x merely gives a translation of the function φ. It
then follows easily that the differential operators sin(β∂x) and cos(β∂x) behave in
much the same way when the sine and cosine functions are written as their complex
counterparts. Next, we use the differential operator to find the Laplace transform of
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the function t2 cos(3t):

L {t2 cos(3t)}(s) = (−∂s)2 cos(−3∂s)) ◦
1

s
=

1

2

(
e3i∂s + e−3i∂s

)
∂2
s ◦

1

s

=
1

2

(
e3i∂s + e−3i∂s

)
◦ 2

s3
=

1

(s+ 3i)3
+

1

(s− 3i)3

=
(s+ 3i)3 + (s− 3i)3

(s2 + 9)3
=

2s3 − 54s

(s2 + 9)3
.

We have used the translation property of the operators e3i∂s and e−3i∂s on the function
2/s3, even though this function is not analytic. We explain below why this computa-
tion is guaranteed to be accurate.

Let S be the collection of all functions that are analytic and bounded on R and
that can be expressed as finite linear combinations of terms of the form tkeβt, where
k is an integer and β is a complex number with Re β 6 0, using complex numbers for
the scalars. For a few examples of functions that belong to the set S, we note that

t4e−t sin(3t) =
1

2i
t4e(−1+3i)t − 1

2i
t4e(−1−3i)t;

sin t− t
t3

=
1

2i
t−3eit − 1

2i
t−3e−it − t−2;(

cos t− 1 + 1
2 t

2
)2

t7
=

1
2

t7
+

1
2 cos(2t)

t7
− (2− t2) cos t

t7
+

1− t2 + 1
4 t

4

t7

=
1

2
t−7 cos(2t)− 2t−7 cos t+ t−5 cos t+

3

2
t−7 − t−5 +

1

4
t−3

=
1

4
t−7e2it +

1

4
t−7e−2it − t−7eit − t−7e−it +

1

2
t−5eit +

1

2
t−5e−it

+
3

2
t−7 − t−5 +

1

4
t−3.

As indicated in these examples, we may let β = 0 so that terms of the form tk can be
used in the linear combinations for elements of S.

The fact that negative exponents appear when some of these analytic functions
are expanded raises a question about the differential operator. Referring to the second
example above, we have

sin(∂s)− ∂s
∂3
s

=
1

2i
∂−3
s ei∂s − 1

2i
∂−3
s e−i∂s − ∂−2

s .

How should we interpret the operator ∂ns when n is a negative integer? The answer,
which should be intuitively clear, is that ∂ns ◦ φ(s) represents the nth antiderivative
of φ when n < 0. The next question that arises concerns the constant of integration.
We assert that any such constants that might appear can be omitted. To verify this,

suppose that f(t)/tn is an analytic function. Then it must be true that f(t) =
∞∑
k=n

akt
k.

Suppose that φ is some function and let φn denote any nth order antiderivative of φ.



76 RUSSELL A. GORDON AND SEÁN M. STEWART

We then have (under the assumption that the appropriate series converge)

f(−∂s)
∂ns

◦ φ(s) = f(−∂s) ◦ φn(s) =

∞∑
k=n

(−1)kak∂
k
s ◦ φn(s) =

∞∑
k=n

(−1)kak(φn(s))(k).

Since we are taking at least n derivatives of the function φn, any constants that would
have appeared in the antiderivatives (turning into polynomials of degree less than or
equal to n − 1) will disappear. Hence, we omit all constants of integration in what
follows. Furthermore, since translation does not impact derivatives or antiderivatives
(in the sense of order of operations), we find that

eβ∂s∂ns ◦ φ(s) = eβ∂s ◦
(
∂ns ◦ φ(s)

)
= ∂ns ◦

(
eβ∂s ◦ φ(s)

)
= ∂ns e

β∂s ◦ φ(s)

for any complex number β and integer n.
We now record our key result for evaluating certain improper integrals.

Theorem 1: If f belongs to the collection S, then

L {f(t)}(s) = f(−∂s) ◦
1

s
and

∫ ∞
0

f(t) dt = lim
s→0+

f(−∂s) ◦
1

s
.

Proof: A careful and detailed proof of this result is given in [6].

For later reference, we list the following three simple facts:

eα∂s ◦ 1

s
=

1

s+ α
, ∂ns ◦

1

s
=

(−1)nn!

sn+1
, ∂−(n+1)

s ◦ 1

s
=
sn

n!

(
log s− hn

)
,

where hn is the nth harmonic number with h0 = 0; the third equation follows easily
using integration by parts and induction. To illustrate Theorem 1, we begin with four
relatively simple integrals.

Example 1: Verify that

∫ ∞
0

t4e−2t dt =
3

4
. Using Theorem 1, we find that

∫ ∞
0

t4e−2t dt = lim
s→0+

e2∂s∂4
s ◦

1

s
= lim
s→0+

e2∂s ◦ 4!

s5
= lim
s→0+

24

(s+ 2)5
=

3

4
.

Of course, this is a well-known integral, but a solution using Theorem 1 indicates how
easy it is to evaluate this integral with no prior knowledge.
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Example 2: Verify that

∫ ∞
0

t4e−t sin t dx = −3. Using Theorem 1, we find that∫ ∞
0

t4e−t sin t dx = lim
s→0+

(
−e∂s sin(∂s)∂

4
s ◦

1

s

)
= lim
s→0+

(
− 1

2i

(
e(1+i)∂s − e(1−i)∂s

)
◦ 24

s5

)
= 12i

( 1

(1 + i)5
− 1

(1− i)5

)
= 12i

(−1 + i

8
− −1− i

8

)
= 12i · i

4
= −3.

The omitted computations involving complex numbers are routine.

These first two examples indicate why this technique has been called integration
by differentiation (see [9]). In each case, an integral has been evaluated using differ-
entiation. As indicated in our next two examples (and as we shall later see), the more
interesting examples involve antidifferentiation.

Example 3: Verify that

∫ ∞
0

sin3 t

t3
dt =

3π

8
, an example of a Dirichlet type integral.

We first note that

sin3 t

t3
=

1

t3

(eit − e−it
2i

)3

=
i

8

(e3it − 3eit + 3e−it − e−3it

t3

)
.

Theorem 1 then yields (the integrand is an even function so f(−∂s) = f(∂s))∫ ∞
0

sin3 t

t3
dt =

i

8
lim
s→0+

(
e3i∂s − 3ei∂s + 3e−i∂s − e−3i∂s

)
∂−3
s ◦

1

s

=
i

8
lim
s→0+

(
e3i∂s − 3ei∂s + 3e−i∂s − e−3i∂s

)
◦ s

2

2

(
log s− 3

2

)
=

i

16
lim
s→0+

(
(s+ 3i)2

(
log(s+ 3i)− 3

2

)
− 3(s+ i)2

(
log(s+ i)− 3

2

)
+ 3(s− i)2

(
log(s− i)− 3

2

)
− (s− 3i)2

(
log(s− 3i)− 3

2

))
=

i

16

(
−9
(

log(3i)− 3

2

)
+ 3
(

log(i)− 3

2

)
− 3
(

log(−i)− 3

2

)
+ 9
(

log(−3i)− 3

2

))
=

i

16

(
−9 log(3i) + 3 log(i)− 3 log(−i) + 9 log(−3i)

)
=

3i

16

(
−3 log(3)− 3 log(i) + log(i)− log(−i) + 3 log(3) + 3 log(−i)

)
=

3i

8

(
log(−i)− log(i)

)
=

3i

8

(
−πi

2
− πi

2

)
=

3π

8
.

Note the use of the principal value of the complex logarithm.
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Example 4: Evaluate

∫ ∞
0

e−at sin(bt)

t
dt, where a and b are positive constants.

Solution: By Theorem 1, the value of the integral is∫ ∞
0

e−at sin(bt)

t
dt = lim

s→0+

ea∂s sin(b∂s)

∂s
◦ 1

s

=
1

2i
lim
s→0+

(
e(a+bi)∂s − e(a−bi)∂s

)
◦ log s

=
1

2i
lim
s→0+

(
log(s+ a+ bi)− log(s+ a− bi)

)
=

1

2i
log
(a+ bi

a− bi

)
= arctan(b/a).

Note that the value of this integral has been determined with minimal computations.

3. Streamlining the Computations

As is clear from the last two examples presented in the previous section requiring
antidifferentiation, limits involving complex powers of the exponential function appear
regularly in the evaluation of the type of integrals under consideration. To streamline
the computations, we prove the following theorem and its relevant corollaries.

Theorem 2: Suppose that a and b are positive real numbers and that n is a nonneg-
ative integer. Expressing (a+ bi)n as c+ di, we then have

lim
s→0+

(ea∂s sin(b∂s)

∂n+1
s

◦ 1

s

)
=

1

n!

(
d log

√
a2 + b2 + c arctan(b/a)− dhn

)
;

lim
s→0+

(ea∂s cos(b∂s)

∂n+1
s

◦ 1

s

)
=

1

n!

(
c log

√
a2 + b2 − d arctan(b/a)− c hn

)
.

Proof: Using the properties of the operator ∂s, we have (recall that zn = z n for
complex conjugates)

lim
s→0+

(
ea∂s sin(b∂s)∂

−n−1
s ◦ 1

s

)
=

1

(2i)n!
lim
s→0+

((
e(a+bi)∂s − e(a−bi)∂s

)
◦ sn

(
log s− hn

))
=

1

(2i)n!
lim
s→0+

(
(s+ a+ bi)n

(
log(s+ a+ bi)− hn

)
− (s+ a− bi)n

(
log(s+ a− bi)− hn

))
=

1

(2i)n!

(
(c+ di)

(
log(a+ bi)− hn

)
− (c− di)

(
log(a− bi)− hn

))
=

1

(2i)n!

(
c log

(a+ bi

a− bi

)
+ di log(a2 + b2)− 2dihn

)
=

1

n!

(
c arctan(b/a) + d log

√
a2 + b2 − dhn

)
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and

lim
s→0+

(
ea∂s cos(b∂s)∂

−n−1
s ◦ 1

s

)
=

1

2n!
lim
s→0+

((
e(a+bi)∂s + e(a−bi)∂s

)
◦ sn

(
log s− hn

))
=

1

2n!

(
(c+ di)

(
log(a+ bi)− hn

)
+ (c− di)

(
log(a− bi)− hn

))
=

1

2n!

(
c log(a2 + b2) + di log

(a+ bi

a− bi

)
− 2c hn

)
=

1

n!

(
c log

√
a2 + b2 − d arctan(b/a)− c hn

)
.

In each case, we are using the principal branch of the complex logarithm.

Corollary 3: If b is a positive real number and p is a positive integer, then

lim
s→0+

sin(b∂s)

∂2p−1
s

◦ 1

s
= (−1)p−1 · b2p−2

(2p− 2)!
· π

2
;

lim
s→0+

cos(b∂s)

∂2p
s

◦ 1

s
= (−1)p · b2p−1

(2p− 1)!
· π

2
;

lim
s→0+

sin(b∂s)

∂2p
s

◦ 1

s
= (−1)p−1 · b2p−1

(2p− 1)!
· (log b− h2p−1);

lim
s→0+

cos(b∂s)

∂2p−1
s

◦ 1

s
= (−1)p−1 · b2p−2

(2p− 2)!
· (log b− h2p−2).

Proof: These four limits can be obtained from Theorem 2 by setting a = 0 and noting
that the expression arctan(b/a) becomes π/2. The values of c and d vary depending
on whether n is even or odd; the elementary details are left to the reader.

Corollary 4: If a is a positive real number and n is a nonnegative integer, then

lim
s→0+

( ea∂s
∂n+1
s

◦ 1

s

)
=
an

n!

(
log a− hn

)
.

Proof: Letting b = 0 in the cosine portion of Theorem 2 (which implies c = an and
d = 0), we find that

lim
s→0+

( ea∂s
∂n+1
s

◦ 1

s

)
=

1

n!

(
c log a− c hn

)
=
an

n!

(
log a− hn

)
.

This completes the proof.

Corollary 5: If p is a positive integer, then lim
s→0+

1

∂p+1
s

◦ 1

s
= 0.

Proof: Using simple properties of the logarithm function, we find that

lim
s→0+

1

∂p+1
s

◦ 1

s
= lim
s→0+

sp

p!

(
log s− hp

)
= 0.

This establishes the desired limit.
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We refer to the evaluation of integrals using Theorem 1 along with Theorem 2 and
its corollaries as the Laplace transform operator method, the LTO method for short.

4. Some Further Examples

We now give some examples to illustrate the LTO method, starting by redoing
Example 3 to show how the limits presented in Theorem 2 and its corollaries simplify
the computations.

Example 5: Verify that

∫ ∞
0

sin3 x

x3
dx =

3π

8
. Using the LTO method, along with

a trigonometric identity for the function sin3 x and the appropriate limit given in
Corollary 3 (the first of the listed limits using p = 2 and b = 1, b = 3, respectively),
we find that ∫ ∞

0

sin3 x

x3
dx =

∫ ∞
0

3
4 sinx− 1

4 sin(3x)

x3
dx

= lim
s→0+

(3

4
· sin(∂s)

∂3
s

− 1

4
· sin(3∂s)

∂3
s

)
◦ 1

s

=
3

4
(−1)1 · 12

2!
· π

2
− 1

4
(−1)1 · 32

2!
· π

2

=
π

2

(
−3

8
+

9

8

)
=

3π

8
.

Comparing the computations here with those in Example 3 illustrates the advantages
of Theorem 2 and its corollaries; these advantages increase with more complicated
integrals.

Example 6: Verify that

∫ ∞
0

(sinx− x)4

x7
dx =

152

45
log 2− 81

40
log 3− 1

90
.

Solution: Referring to the trigonometric identities

sin2 x =
1

2

(
1− cos(2x)

)
;

sin3 x =
1

4

(
3 sinx− sin(3x)

)
;

sin4 x =
1

4

(
1− 2 cos(2x) + cos2(2x)

)
=

1

8

(
3− 4 cos(2x) + cos(4x)

)
;

we find that the integrand can be written as

3
8

x7
−

1
2 cos(2x)

x7
+

1
8 cos(4x)

x7
− 3 sinx

x6
+

sin(3x)

x6
+

3

x5
− 3 cos(2x)

x5
− 4 sinx

x4
+

1

x3
.

Using the LTO method to evaluate the integral, we see that three of the corresponding
limits will be zero by Corollary 5. Noting that all of the functions are odd (so that
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f(−∂s) = −f(∂s)), Corollary 3 can be used to determine the other six limits:

lim
s→0+

cos(2∂s)

2∂7
s

◦ 1

s
=

1

2
(−1)3 26

6!

(
log 2− h6

)
= −25

6!

(
log 2− h6

)
= − 2

45
log 2 +

2

45
h6;

lim
s→0+

cos(4∂s)

−8∂7
s

◦ 1

s
= −1

8
(−1)3 46

6!

(
log 4− h6

)
=

29

6!

(
log 4− h6

)
=

64

45
log 2− 32

45
h6;

lim
s→0+

3 sin(∂s)

∂6
s

◦ 1

s
= 3(−1)2 15

5!

(
log 1− h5

)
= − 3

5!
h5 = − 1

40
h5;

lim
s→0+

− sin(3∂s)

∂6
s

◦ 1

s
= (−1)3 35

5!

(
log 3− h5

)
= −35

5!

(
log 3− h5

)
= −81

40
log 3 +

81

40
h5;

lim
s→0+

3 cos(2∂s)

∂5
s

◦ 1

s
= 3(−1)2 24

4!

(
log 2− h4

)
=

3 · 24

4!

(
log 2− h4

)
= 2 log 2− 2h4;

lim
s→0+

4 sin(∂s)

∂4
s

◦ 1

s
= 4(−1)1 13

3!

(
log 1− h3

)
=

4

3!
h3 =

2

3
h3.

The value of the integral is thus∫ ∞
0

(sinx− x)4

x7
dx =

(
− 2

45
+

64

45
+ 2
)

log 2− 81

40
log 3 +

(
−2

3
h6 + 2h5 − 2h4 +

2

3
h3

)
=

152

45
log 2− 81

40
log 3 +

2

5
− 2

3

(1

4
+

1

5
+

1

6

)
=

152

45
log 2− 81

40
log 3− 1

90
.

Some computer algebra systems are unable to evaluate this integral exactly. Request-
ing an antiderivative for the integrand generates a function with 29 terms involving
the sine, cosine, and cosine integral functions. Hence, the LTO method is quite helpful
and much simpler for integrals of this type.

Example 7: Find the value of

∫ ∞
0

e−ax sin3(bx)

x3
dx, where a and b are positive

constants.

Solution: Since (see Example 6 for the appropriate trigonometric identity)

e−ax sin3(bx)

x3
=
e−ax

(
3 sin(bx)− sin(3bx)

)
4x3

,

the LTO method for evaluating the integral yields two limits. For the first limit, noting
that (a+ bi)2 = (a2 − b2) + 2abi, we find that

3

4
lim
s→0+

ea∂s sin(b∂s)

∂3
s

◦ 1

s
=

3

4
· 1

2!

(
2ab · log

√
a2 + b2 + (a2 − b2) arctan(b/a)− 2abh2

)
=

3ab

8
log(a2 + b2) +

3

8
(a2 − b2) arctan(b/a)− 9ab

8
.
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For the second limit, noting that (a+ 3bi)2 = (a2 − 9b2) + 6abi, we have

−1

4
lim
s→0+

ea∂s sin(3b∂s)

∂3
s

◦ 1

s

= −1

4
· 1

2!

(
6ab · log

√
a2 + 9b2 + (a2 − 9b2) arctan(3b/a)− 6abh2

)
= −3ab

8
log(a2 + 9b2)− 1

8
(a2 − 9b2) arctan(3b/a) +

9ab

8
.

The value of the integral is thus

3ab

8
log
( a2 + b2

a2 + 9b2

)
+

3

8
(a2 − b2) arctan(b/a)− 1

8
(a2 − 9b2) arctan(3b/a).

Some computer algebra systems have a great deal of difficulty with this integral, but
the LTO method provides a very easy solution.

Example 8: In this example, we consider two families of integrals. For each positive
integer n, let

In =

∫ ∞
0

sin2n+1 x

x
dx and Jn =

∫ ∞
0

sin2n+1 x

x3
dx.

Using the trigonometric identity

sin2n+1 x =
(−1)n

22n

n∑
k=0

(−1)k
(

2n+ 1

k

)
sin((2n− 2k + 1)x),

along with the value of the Dirichlet integral (namely I0 = π/2), it is not difficult to
verify directly that

In =
π

22n+1

(
2n

n

)
.

Performing integration by parts twice on the second integral (omitting the elementary
details), we find that

Jn = n(2n+ 1)In−1 −
1

2
(2n+ 1)2In

for each positive integer n. A little algebra then yields

Jn =
π

22n+2
· 2n+ 1

2n− 1

(
2n

n

)
.

We have thus found the values of these two families of integrals without use of the
LTO method; the In values are Entry 3.821.7 in [7] and the Jn values are Entry
3.821.11 in [7].
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However, using the LTO method for the Jn values, we obtain∫ ∞
0

sin2n+1 x

x3
dx = lim

s→0+

(−1)n

22n

n∑
k=0

(−1)k
(

2n+ 1

k

)
sin((2n− 2k + 1)∂s)

∂3
s

◦ 1

s

=
(−1)n

22n

n∑
k=0

(−1)k
(

2n+ 1

k

)
(−1)1 (2n+ 1− 2k)2

2!
· π

2

=
π

4
· (−1)n+1

22n

n∑
k=0

(−1)k
(

2n+ 1

k

)
(2n+ 1− 2k)2

for all n > 1. Given the two forms for the value of Jn, it must be true that

n∑
k=0

(−1)k
(

2n+ 1

k

)
(2n+ 1− 2k)2 = (−1)n+1 2n+ 1

2n− 1

(
2n

n

)
.

This identity is indeed valid, but a direct proof using properties of binomial coefficients
is nontrivial. Several other intriguing (and more complicated) binomial identities that
arise from the use of the LTO method for evaluating integrals can be found in [13].

Example 9: Verify that∫ ∞
0

(4n+ 2)!

2x4n+3

(
cosx−

n∑
k=0

(−1)k

(2k)!
x2k
)2

dx = 24n log 2−24nh4n+2+

2n+1∑
k=n+1

(
4n+ 2

2k

)
h2k,

where n is any nonnegative integer and hn represents the nth harmonic number.
Letting bk = (−1)k/(2k)! to simplify the notation, we note that(

cosx−
n∑
k=0

bkx
2k
)2

x4n+3
=

1
2

x4n+3
+

1
2 cos(2x)

x4n+3
−

n∑
k=0

(2bk cosx)x2k

x4n+3
+

( n∑
k=0

bkx
2k
)2

x4n+3
.

Using the LTO method, we know that two of these terms will produce limits of zero.
For the other two relevant limits, we have (note that the functions are odd in this
case)

lim
s→0+

( cos(2∂s)

−2∂4n+3
s

◦ 1

s

)
= −1

2
(−1)2n+1 24n+2

(4n+ 2)!
(log 2− h4n+2)

=
2

(4n+ 2)!

(
24n log 2− 24nh4n+2

)
;

lim
s→0+

n∑
k=0

(2bk cos(∂s)

∂4n−2k+3
s

◦ 1

s

)
=

n∑
k=0

2bk(−1)2n−k+1

(4n− 2k + 2)!
(log 1− h4n−2k+2)

=

n∑
k=0

2

(2k)!(4n− 2k + 2)!
h4n−2k+2

=
2

(4n+ 2)!

n∑
k=0

(
4n+ 2

2k

)
h4n−2k+2.
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Adding these results gives an equivalent form for the value of the integral. For a more
standard approach, one that involves the sine integral and cosine integral functions, to
evaluating these integrals, see [4]. Once again, seeing another method for evaluating
a given integral reveals the ease and efficiency with which the LTO method works.

Example 10: Find the value of

∫ ∞
0

e−2x

(
sinx− x

)2
x4

dx.

Solution: Using the LTO method, we find that∫ ∞
0

e−2x

(
sinx− x

)2
x4

dx =

∫ ∞
0

e−2x
( 1

2 −
1
2 cos(2x)− 2x sinx+ x2

x4

)
dx

= lim
s→0+

(e2∂s

2∂4
s

◦ 1

s
− e2∂s cos(2∂s)

2∂4
s

◦ 1

s
− 2e2∂s sin(∂s)

∂3
s

◦ 1

s
+
e2∂s

∂2
s

◦ 1

s

)
.

We now compute each of the limits separately. For the first limit, we have n = 3 and
a = 2 in Corollary 4 and this yields

lim
s→0+

(e2∂s

2∂4
s

◦ 1

s

)
=

1

2
· 23

6

(
log 2− h3

)
=

2

3
log 2− 11

9
.

For the cosine result, we note that n = 3, a = 2, b = 2, c = −16, and d = 16 are the
appropriate values in Theorem 2. It follows that

lim
s→0+

(
−e

2∂s cos(2∂s)

2∂4
s

◦ 1

s

)
= −1

2
· 1

6

(
−8 log 8− 16 · π

4
+ 16 · 11

6

)
= 2 log 2 +

π

3
− 22

9
.

For the sine result, we note that n = 2, a = 2, b = 1, c = 3, and d = 4, thus obtaining

lim
s→0+

(
−2 e2∂s sin(∂s)

∂3
s

◦1

s

)
= −2·1

2

(
2 log 5+3 arctan 1

2−4·3
2

)
= −2 log 5−3 arctan 1

2+6.

For the fourth limit, we have n = 1 and a = 2 in Corollary 4 giving

lim
s→0+

e2∂s

∂2
s

◦ 1

s
= 2
(
log 2− h1

)
= 2 log 2− 2.

Hence, the value of the integral is

2

3
log 2− 11

9
+ 2 log 2 +

π

3
− 22

9
− 2 log 5− 3 arctan 1

2 + 6 + 2 log 2− 2,

which simplifies to
1

3
+
π

3
+

14

3
log 2− 2 log 5− 3 arctan 1

2 .

Some software packages give this value exactly, while others only generate an approx-
imate value.

We next present a list of a variety of integrals for which the LTO method works
well; the reader is encouraged to carry out the details for some of these integrals. Since
there are other ways to evaluate most of these integrals, it is possible to compare
methods and decide which approach provides the clearest and shortest path to the
value of the integral.
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(1)

∫ ∞
0

sin2 x

x2
dx =

π

2
(Dirichlet type integral)

(2)

∫ ∞
0

(sinx− x)2

x5
dx =

1

3
log 2− 1

12

(3)

∫ ∞
0

sin(ax) sin(bx) sin(cx)

(ax)(bx)(cx)
dx =

π

2a
, where a > b > c > 0 and a > b + c

(Borwein integral, see [2])

(4)

∫ ∞
0

cos(ax)− cos(bx)

x
dx = log b− log a, where a, b > 0 (Frullani integral,

see [1] and [8])

(5)

∫ ∞
0

(sinx− x)4

x8
dx =

47π

7!

(6)

∫ ∞
0

xne−x sinx dx =
n!

2(n+1)/2
sin
(

(n+ 1)
π

4

)
, where n > 0 is an integer

(Entry 3.944.5 in [7])

(7)

∫ ∞
0

( sinx

x

)n
dx =

π

2
· 1

2n−1(n− 1)!

bn/2c∑
k=0

(−1)k
(
n

k

)
(n− 2k)n−1 for n ∈ Z+

(Entry 3.836.2 in [7])

(8)

∫ ∞
0

1

x4n+4

(
sinx−

n∑
k=0

(−1)k

(2k + 1)!
x2k+1

)2

dx =
π/2

(4n+ 3)((2n+ 1)!)2
, where n

is a nonnegative integer (see [12], [4], and [5] for three different approaches)

(9)

∫ ∞
0

e−ax sin2(bx)

x2
dx = b arctan(2b/a)− a

4
log
(a2 + 4b2

a2

)
, where a and b are

positive constants

For our last example, we tackle an integral whose exact value may never have been
computed. The details are tedious but not difficult, revealing the power of the LTO
method.

Example 11: Find the value of

∫ ∞
0

e−x
(
sinx− x

)4
x11

dx.

Solution: Both Maple and Mathematica generate a very lengthy expression for an
antiderivative of this function (involving a few pages of functions), but neither system
can find an exact value for this integral. An approximate value is 0.0004093129. Using
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the LTO method (which, admittedly, is rather tedious in this case, but it does require
just nine limits), we find the value of the integral to be

− 227

86400
+

7

1080
arctan 1− 44581

1814400
arctan 2− 481

22680
arctan 3

+
113221

3628800
arctan 4 +

37

945
ln 2 +

109699

4838400
ln 5− 14579

774144
ln 17.

Using trigonometric identities for powers of sinx (see Example 6), we find that

(sinx− x)4

−x11
=

sin4 x− 4x sin3 x+ 6x2 sin2 x− 4x3 sinx+ x4

−x11

= −
3
8

x11
+

1
2 cos(2x)

x11
−

1
8 cos(4x)

x11
+

3 sinx

x10
− sin(3x)

x10
− 3

x9

+
3 cos(2x)

x9
+

4 sinx

x8
− 1

x7
.

Using the LTO method, we need to evaluate nine limits, which we do one by one.

For the first limit, we have a = 1, n = 10 in Corollary 4:

−3

8
lim
s→0+

e∂s

∂11
s

◦ 1

s
= − 3

8 · 10!

(
log 1− h10

)
=

3h10

8 · 10!
.

For the second limit, we have a = 1, b = 2, n = 10, c = 237, d = −3116 in Theorem 2:

1

2
lim
s→0+

e∂s cos(2∂s)

∂11
s

◦ 1

s
=

1

2 · 10!

(
237 log

√
5 + 3116 arctan 2− 237h10

)
.

For the third limit, use a = 1, b = 4, n = 10, c = 1093425, d = 905768 in Theorem 2:

−1

8
lim
s→0+

e∂s cos(4∂s)

∂11
s

◦ 1

s
= − 1

8 · 10!

(
1093425 log

√
17−905768 arctan 4−1093425h10

)
.

For the fourth limit, we have a = 1, b = 1, n = 9, c = 16, d = 16 in Theorem 2:

3 lim
s→0+

e∂s sin(∂s)

∂10
s

◦ 1

s
=

3

9!

(
16 log

√
2 + 16 arctan 1− 16h9

)
.

For the fifth limit, use a = 1, b = 3, n = 9, c = 7696, d = −30672 in Theorem 2:

− lim
s→0+

e∂s sin(3∂s)

∂10
s

◦ 1

s
= − 1

9!

(
−30672 log

√
10 + 7696 arctan 3 + 30672h9

)
.

For the sixth limit, we have a = 1, n = 8 in Corollary 4:

−3 lim
s→0+

e∂s

∂9
s

◦ 1

s
= − 3

8!

(
log 1− h8

)
=

3h8

8!
.

For the seventh limit, we have a = 1, b = 2, n = 8, c = −527, d = 336 in Theorem 2:

3 lim
s→0+

e∂s cos(2∂s)

∂9
s

◦ 1

s
=

3

8!

(
−527 log

√
5− 336 arctan 2 + 527h8

)
.
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For the eighth limit, we have a = 1, b = 1, n = 7, c = 8, d = −8 in Theorem 2:

4 lim
s→0+

e∂s sin(∂s)

∂8
s

◦ 1

s
=

4

7!

(
−8 log

√
2 + 8 arctan 1 + 8h7

)
.

For the ninth limit, we have a = 1, n = 6 in Corollary 4:

− lim
s→0+

e∂s

∂7
s

◦ 1

s
= − 1

6!

(
log 1− h6

)
=
h6

6!
.

We can then use these values to find the coefficients for each of the terms.

ln 17: −1093425

16 · 10!
= − 14579

774144

ln 5:
237

4 · 10!
+

15336

9!
− 1581

2 · 8!
=

109699

4838400

ln 2:
24

9!
+

15336

9!
− 16

7!
=

37

945

arctan 4:
905768

8 · 10!
=

113221

3628800

arctan 3: −7696

9!
= − 481

22680

arctan 2:
1558

10!
− 1008

8!
= − 44581

1814400

arctan 1:
48

9!
+

32

7!
=

7

1080

1:
3h10

8 · 10!
− 237h10

2 · 10!
+

1093425h10

8 · 10!
− 48h9

9!
− 30672h9

9!
+

3h8

8!
+

1581h8

8!

+
32h7

7!
+
h6

6!
= − 227

86400

Putting these values together yields the exact value of

∫ ∞
0

e−x
(
sinx− x

)4
x11

dx.

5. Conclusion

We hope that this introduction to a recently developed technique for evaluating
improper integrals allows readers to recognize the merits of the LTO method. In
particular, the limits that appear in Theorem 2 and its corollaries greatly streamline
the details that arise when using this method. The number and variety of the examples
presented in this paper illustrate a wide range of integrals that can be evaluated with
the LTO method. We encourage the reader to apply this method to other appropriate
improper integrals as well as to add this option to the tool kit for evaluating integrals
of the form

∫∞
0
f(t) dt.



88 RUSSELL A. GORDON AND SEÁN M. STEWART
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