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c© Universidad Técnica Federico Santa Maŕıa 2023

A note on Solvable Equations including De Moivre’s quintic

M.L. Glasser

Abstract. In this note we examine a simple algorithm for producing solvable

polynomial equations and study the solutions of the quintic equation with real
coefficients

x5 + 5ax3 + 5a2x + b = 0

solved in radicals by De Moivre. the result is used to sum a hypergeometric series

for several arguments.

Introduction

It is common knowledge that there are no elementary formulas for the solution
of polynomial equations of degree higher than 4. However, specific equations of any
degree exist which have algebraic solutions. In the n-th degree case of a trinomial
equation it is known that the roots are expressible in terms of hypergeometric functions
and one of the aims of this note is to show by example that solvability can lead to the
exact evaluation of such functions in elementary terms..

In the last twenty five years attention has been devoted to determining all sextic
equations which are solvable in terms of radicals in the sense of Galois; we mention [1],
[2], [3] in particular. These studies were group-theoretic and little attention was paid
to explicit solutions. We begin by presenting an elementary procedure for generating
multiple-parameter solvable equations of arbitrary degree, which is illustrated here for
degrees 5 and 6.

Let

F (x) =

n∑
k=0

Akx
k = 0 (1.1)

be an algebraic equation with An = 1, but otherwise having arbitrary complex coeffi-
cients. Then, for a 6= 0,

G(u) = unF (u− a/u) = 0 (1.2)

is a 2n-th degree equation. Next, select the coefficients Ak so that (1.2) reduces to a
solveable equation with respect to some power um (where m|2n). For example, in the
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case n = 6, let us choose A5 = 0, A4 = 6a, A2 = 9a2 and A1 = 6aA3 resulting in

u12 +A3u
9 + (A0 − 2a3)u6 −A3a

3u3 + a6 = 0 (1.3)

a quartic equation in u3, which therefore has twelve algebraic roots, half of which are
roots of the three parameter sextic

x6 + 3ax4 +A3x
3 + 9a2x2 + 3A3ax+A0 = 0. (1.4)

As an example, A3 = a = 1, A0 = 2 gives

u12 + u9 − 2u3 + 1 = 0 (1.5)

having root

u3 = −1
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Therefore, the irreducible sextic

x6 + 3x4 + x3 + 9x2 + 3x+ 2 = 0 (1.7)

has the root
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(1.8)

De Moivre’s Solvable Quintic

We start with the general quintic equation (over the real numbers)

5∑
j=0

ajx
j = 0 (2.1)

with a5 = 1. Using Vietá’s substitution, x = u− a/u with a 6= 0 real, expanding and
multiplying by u5, the resulting 10-th degree equation is solvable (in radicals) only for
a1 = aa3 = 5a2, a2 = a4 = 0, in which case

u10 + a0u
5 − a5 = 0. (2.2)

By solving this quadratic equation (in u5) and extracting the fifth roots, after elimi-
nating duplicates, we see that the roots of the De Moivre equation[ (writing b in place
of a0)

x5 + 5ax3 + 5a2x+ b = 0 (2.3)

are
x1 = 2−1/5[e−3πi/5(

√
γ − b)1/5 + e−2πi/5√γ + b)1/5]

x2 = −2−1/5[e−πi/5(
√
γ − b)1/5 + e−4πi/5(

√
γ + b)1/5]

x3 = 2−1/5[e−2πi/5(
√
γ − b)1/5 + e−3πi/5(

√
γ + b)1/5].

x4 = −2−1/5[eπi/5(
√
γ − b)1/5 + e4πi/5(

√
γ + b)1/5]

x5 = 2−1/5[(
√
γ − b)1/5 + (

√
γ + b)1/5]

γ = 4a5 + b2. (2.4)
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(The asterisk denotes the complex conjugate.)
By means of the Tschirnhausen transformation [5] y = x2 + αx + β any quintic

can be reduced to “principal” form y5 + Ay2 + By + C = 0. This can be carried out
efficiently using Mathematica by means of the command

Resultant[x5 + 5ax3 + 5a2x+ b, y − (x2 + αx+ β), x] which returns y5 + (10a−
5β)y4 + (35a2 + 5aα2− 40aβ + 10β2)y3 + . . . from which we easily determine α =

√
a

and β = 2a. Thus, the principal form for the De Moivre quintic is

y5 + (5
√
ab− 10a3)y2 + 15a4y − (9a5/2b+ 22a5 + b2) = 0. (2.5)

Jerrard[4] found that by means of a quartic Tschirnhausen transformation a prin-
cipal quintic can be further reduced to the trinomial Bring form

z5 − z + t = 0. (2.6)

The details can be mechanised to some extent[5,6], but are still quite cumbersome. To
present the result it is convenient to introduce the further abbreviations: α = 8a5/2−b,
β = 2a5/2− b, δ = 176a5 + 36a5/2b− b2. Also d0 = 675(β/α)(2a5/2 + b)a2b, d1 = ∆/α,
d2 = 25(β/α)(8a5 − 3a5/2b − b2), d3 = 75(β/α)a3/2(16a5/2 + 3b) and d4 = 75βa1/2,
where

∆ = 25[
δγ1/2α

32/3a1/2
(β

√
3a3/2(11a5/2 − b)− 9a2γ1/2)1/3+

1

31/3αγ1/2

16a15/2 + 4a5b+ 4a5/2b2 + b3

(β
√

3a3/2(11a5/2 − b)− 9a2γ1/2)1/3
−

(800a17/2 − 318a6b+ 227a7/2b2 − 12ab3)]. (2.7)

The quantity ∆ has six possible values, due to the choice of branches in the square
and cube roots, so it takes a bit of experimentation to select the appropriate one.

Next, we require the coefficients

c0 =
56δ3γ2

α5
[5625β2f1(a, b) +

25

a
β∆f2(a, b) + 3a1/2∆2(188a5 + 86a5/2b+ 9b2)] (2.8)

c1 =
55δ2γa1/2

α4
[5625β2g1(a, b) +

25

a
β∆g2(a, b) + 9a3∆2(4a5/2 + b)],

where

f1(a, b) = 2622464a35/2 − 1339776a15b+ 103828a25/2b2 + 218210a10b3−

17365a15/2b4 − 2858a5b5 + 297a5/2b6 − b7

f2(a, b) = 209024a25/2 − 30616a10b− 34508a15/2b2−
98a5b3 + 530a5/2b4 − b5,

g1(a, b) = 133120a35/2 − 83520a15b+ 26804a25/2b2 + 1789a10b2−
1082a15/2b4 + 386a5b5 − 48a5/2b6 + b7, (2.9)

g2(a, b) = 11200a25/2 − 3656a10b− 754a15/2b2 + 62a5b3 − 38a5/2b4 + b5.

The result is that the roots of the Bring-Jerrard quintic

z5 − z + t = 0 (2.10)
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with
t = −e−iπ/4c0c−5/4

1 (2.11)

are

zj = e−iπ/4c
−1/4
1

4∑
k=0

dk(x2
j +
√
axj + 2a)k. (2.12).

Now it has been shown by James Cockle[7] ( the first Chief Magistrate of Queens-
land, Australia) and others[8] that one of the roots of (2.10) is

z0 = t 4F3(1/5, 2/5, 3/5, 4/5; 1/2, 3/4, 5/4;
3125

256
t4). (2.13)

Therefore, it has been shown that

4F3(1/5, 2/5, 3/5, 4/5; 1/2, 3/4, 5/4;−3125

256

c40
c51

) =

−c1
c0

4∑
k=0

dk(x2
0 +
√
ax0 + 2a)k (2.14)

where x0 is one of the five values in (2.4). (Which one it is can be determined numer-
ically).

As a very simple example, let us take the case b = 2a5/2. Then the principal
quintic (2.5) is already in Bring form, which is easily scaled by y = eiπ/4151/4az into
(2.6) with t = 44e−iπ/415−5/4. Therefore, from (2.13) we find

4F3(1/5, 2/5, 3/5, 4/5; 1/2, 3/4, 5/4;−14641

243
) =

15

44
[(
√

2 + 1)2/5 + (
√

2− 1)2/5 − (
√

2 + 1)1/5 + (
√

2− 1)1/5]. (2.15)

At the other extreme, the algorithm described here produces formulas such as

4F3(1/5, 2/5, 3/5, 4/5; 1/2, 3/4, 5/4; z) = Z (2.16)

where

z = ((13 +
√

182)2/3((789132/3 + 247131/6
√

14)(13 +
√

182)1/3 + 2275(13 +
√

182)2/3−

131/3(6799 + 542
√

182))4)/(1521((−7132/3 + 3131/6
√

14)(13 +
√

182)1/3−
161(13 +

√
182)2/3 + 131/3(133 + 10

√
182))5) ∗2.17)

and
Z = (5((−7132/3 + 3131/6

√
14)(13 +

√
182)1/3−

161(13 +
√

182)2/3+

131/3(133 + 10
√

182))(−3(−5 +
√

26)4/5(13 +
√

182)1/3(1103 + 3465(5 +
√

26)1/5+

5355(5 +
√

26)2/5 + 3780(5 +
√

26)3/5)+

3(−5 +
√

26)3/5(13 +
√

182)1/3(8872 + 1485
√

26 + 4412(5 +
√

26)1/5+

6930(5 +
√

26)2/5 + 3780(5 +
√

26)4/5) + (−5 +
√

26)1/5(−142132/3+
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142131/3(13 +
√

182)2/3 + (13 +
√

182)1/3(34114 + 5355
√

26+

13236(5 +
√

26)(3/5) + 10395(5 +
√

26)4/5−
9(5 +

√
26)2/5(−2797 + 180

√
26)))− (−5 +

√
26)2/5(−142132/3+

142131/3(13 +
√

182)2/3 + (13 +
√

182)1/3(33742 + 6480
√

26+

20790(5 +
√

26)3/5 + 16065(5 +
√

26)4/5+

9(5+
√

26)1/5(2797+180
√

26)))+(5+
√

26)1/5(142132/3−3309(5+
√

26)3/5(13+
√

182)1/3+

3(5 +
√

26)2/5(−8872 + 1485
√

26)(13 +
√

182)1/3+

(−34114 + 5355
√

26)(13 +
√

182)1/3 − 142131/3(13 +
√

182)2/3+ (2.18)

2(5 +
√

26)1/5(71132/3 + (−16871 + 3240
√

26)(13 +
√

182)1/3 − 71131/3(13+√
182)2/3))))/(568(13 +

√
182)1/3((789132/3+

247131/6
√

14)(13 +
√

182)1/3 + 2275(13 +
√

182)2/3 − 131/3(6799 + 542
√

182)))
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