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The integral of Wallis

Victor H. Moll

Abstract. The evaluation of one of the earliest definite integrals and its connec-
tion to an infinite product for π is presented.

1. Introduction

One of the challenging problems in Integral Calculus courses presented to students
is the evaluation of the integral

(1.1) Wn =

∫ ∞
0

dx

(x2 + 1)n
.

The goal of this note is to describe a variety of interesting mathematical findings
connected to Wn. In particular, we have tried to avoid unmotivated steps and to
place ourselves as a student trying to find an expression for Wn alone. The goal
of this note is mostly pedagogical. We hope to interest the reader to look into the
question of evaluation of integrals and to see beautiful connections with many areas
of Mathematics.

2. A blind request from Mathematica

A first direct request from Mathematica to evaluate Wn produces the answer

(2.1)

√
πGamma[− 1

2 + n]

2 Gamma[n]

and the restriction if Re[n] > 1
2 . For the moment, assume that the reader is not

acquainted with the Gamma function and ignore the specific answer. The restriction
condition is clear: the integrand is a continuous function, but since the interval of
integration is infinite, problems with the convergence of the integral can occur at
infinity. For large x,

(2.2)
1

(x2 + 1)n
∼ 1

x2n
,
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so Wn has the same convergence properties as

(2.3)

∫ ∞
a

1

x2n
dx =

1

1− 2n
x1−2n

∣∣∣∞
a

and this expression, when n is real, is finite precisely when n > 1
2 . In the case of

n ∈ C, this condition becomes Re[n] > 1
2 , as stated by Mathematica. The gamma

function, which actually gives the value of Wn, is discussed in Section 5.

3. An empirical prediction of the answer

In this section we describe how to predict a (possible) expression for Wn. Using
Mathematica one can obtain the value of Wn for any specific fixed value of n. For
instance, the request for W1 is written as

(3.1) Integrate
[
(x2 + 1)−1, {x, 0, Infinity}

]
,

and one obtains W1 =
π

2
almost immediately. This is the basic value

(3.2)

∫ ∞
0

dx

x2 + 1
=
π

2
.

A similar request yields the values

(3.3) W2 =
π

4
, W3 =

3π

16
, W4 =

5π

32
, W5 =

35π

256
, W6 =

63π

512
.

The data above suggests that Wn is a rational multiple of π. This motivates the
definition of

(3.4) W (1)
n =

Wn

π
.

and this yields W
(1)
1 = 1

2 and converts (3.3) into

(3.5) W
(1)
2 =

1

4
, W

(1)
3 =

3

16
, W

(1)
4 =

5

32
, W

(1)
5 =

35

256
, W

(1)
6 =

63

512
.

The denominators of the list (3.5) are all powers of 2. The can be extracted with
the Mathematical command Denominator[W1[n]]. Indeed, the command

(3.6) D1[n] = Denominator[W1[n]]

can be used to create the table

(3.7) Table[ D1[n]: {n,1,6 } ]

and obtain

(3.8) List1 = {2, 4, 16, 32, 256, 512},
and the corresponding exponent is obtained by defining

(3.9) D2[n] = Log[2, D1[n]],

which produces

(3.10) List2 = {1, 2, 4, 5, 8, 9}.
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Now comes an important step in this process. One needs to guess an upper bound
for the expression D2[n]. There is no rule for this, but observing the list (3.10) it is
reasonable (after staring at data for some time) that a good guess is

(3.11) D2[n] 6 2n.

The reader should enlarge the list (3.10), say to include 100 values, and confirm the
guess (3.11). This analysis motivates the definition

(3.12) W (2)
n = 22nW (1)

n .

One expects W
(2)
n to be an integer. Indeed, Mathematica gives the values

(3.13) List3 = {2, 4, 12, 40, 140, 504}.

Of course, the data above suggests that one could have multiplied by 22n−1 in (3.12),
but this is too fine of a point to make in the beginning of the guessing process. It is

also convenient to check the guess that W
(2)
n is an integer for larger values of n. This

is indeed the case; for instance,

W
(2)
100 = 45501766158845869932363908079137770791208336520308209468000.

The next step is to guess an expression for W
(2)
n . Starting with the (empirical)

assumption that W
(2)
n is an integer, one may try to obtain its prime factorization.

Mathematica produces this factorization with the command

(3.14) FactorInteger[W2[n]].

Starting with small numbers, one gets

(3.15) W
(2)
10 = 97240 = 23 · 5 · 11 · 13 · 17

and then moving to larger values

W
(2)
100 = 25 · 3 · 53 · 11 · 132 · 17 · 37 · ·53 · 59 · 61 · 101 · 103 · 107 · 109 · 113 · 127 · 131·

· 137 · 139 · 149 · 151 · 157 · 163 · 167 · 173 · 179 · 181 · 191 · 193 · 197.

At this point one needs to observe the factorization and try to see patterns. This
is difficult when prime factorizations are produced. Therefore, we begin with small

observations and see where this leads us to. In the first example, note that W
(2)
10

is divisible by primes near 20 (of course, 19 is missing) and W
(2)
100 is divisible by

primes near 200. As a matter of fact, all primes between 101 and 197 appear in the

factorization of W
(2)
100 (again 199 = 2 · 100 − 1 does not appear, but we ignore this

observation for the moment). Now comes an important point: one needs to find an
expression of n divisible by all the primes up to 2n. A natural choice is (2n)!, leading
to the definition

(3.16) W (3)
n =

(2n)!

W
(2)
n

.

(Using Mathematica one checks that W
(2)
n /(2n)! produces reciprocals of integers, this

explains the form of the quotient in W
(3)
n ). The hope is that W

(3)
n is a simpler function
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of n. of course, there are no guarantees that this is true. Continuing with the computed
examples, we find that

W
(3)
10 = 25019559936000 = 215 · 38 · 53 · 72 · 19

and

W
(3)
100 = 173324671532880653580390144222695268724837440814422718670

897057471243261927297008184971545217021822920829338577168170188

77964935928757481179 242181748240683975268904911610142218446731

6560444976815686780199742838 31932103935015160998899783756614729517

61141517267100399304704000000000 0000000000000000000000000000000000000

with prime factorization

W
(3)
100 = 2192 ·396 ·546 ·732 ·1118 ·1314 ·1710 ·1910 ·238 ·296 ·316 ·374 ·414 ·434 ·474 ·532

· 592 · 612 · 672 · 712 · 732 · 792 · 832 · 892 · 972 · 199.

From this single example we see that 199 stays as a factor, but all the primes between
101 and 200 have disappeared and that the primes near 100 have even exponents in
the prime factorization. This motives the definition

(3.17) W (4)
n =

W
(3)
n

n!2
.

Mathematica now produces

(3.18) W
(4)
100 =

199

100

and it seems that the work above has payed off. Naturally a single example could be
just a coincidence. The next example

(3.19) W
(4)
200 =

399

200

gives us hope and suggests the final definition

(3.20) W (5)
n =

n

2n− 1
W (4)
n .

Mathematica can now be used to produce a list of the values of W
(5)
n . It shows that

W
(5)
n = 1 for all computed values.

Now unwind all the definitions given here to see that an (empirical) expression for
the Wallis integral in (1.1) is

(3.21) Wn =
π

22n−1

(
2n− 2

n− 1

)
.
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4. A proof using recurrences

Now that we have produced a candidate for the integral (1.1) in the form (3.21)
it is time to look for a rigorous proof. Given the definition

(4.1) Wn =

∫ ∞
0

dx

(x2 + 1)n
,

there are few options on how to proceed. In a lecture, the speaker stated if you are

stuck in a problem, integrate by parts. Perhaps we should try that advise. Let
u = (x2 + 1)−n and dv = dx to produce

(4.2) Wn =
x

(x2 + 1)n

∣∣∣∞
0

+ 2n

∫ ∞
0

x2 dx

(x2 + 1)n+1
.

In the new integral, since x2 + 1 is the fundamental object, it is convenient to write
x2 = (x2 + 1)− 1 to produce

(4.3)

∫ ∞
0

x2 dx

(x2 + 1)n+1
=

∫ ∞
0

dx

(x2 + 1)n
−
∫ ∞

0

dx

(x2 + 1)n+1
= Wn −Wn+1.

Replacing in (4.2) and observing that the boundary terms vanishes, it leads to

(4.4) Wn+1 =
2n− 1

2n
Wn.

This recurrence and the initial value W1 = π/2 can be used to prove the evaluation
(3.21) by induction.

On the other hand, the value guessed for Wn can be used to simplify the inductive
proof. Define

(4.5) Tn =
22n−1

π
(

2n−2
n−1

)Wn,

that is, divide the unknown expression Wn by the value guessed for it. Then (4.4)
becomes

(4.6) Tn+1 =

(
2n− 1

2n
·
π
(

2n−2
n−1

)
22n−1

· 22n+1

π
(

2n
n

))Tn.
and simplifying the factor in braces leads to

(4.7) Tn+1 = Tn.

To prove Tn ≡ 1 is truly a one-line proof.

5. The gamma function

Motivated by the value given by Mathematica

(5.1) Wn =

√
πΓ(− 1

2 + n)

2 Γ(n)
,

an online search of the gamma function produces the definition

(5.2) Γ(x) =

∫ ∞
0

e−ttx−1 dt
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that can be interpreted as a simple example of the Laplace transform

(5.3) Lf(s) =

∫ ∞
0

f(t)e−st dt

for the power function fx(t) = tx−1. Indeed, a simple scaling gives

(5.4) Lfx(s) = s−xΓ(x).

The integral (5.2) converges for x > 0 (or Rex > 0 if one takes x ∈ C). Integration
by parts gives the functional equation

(5.5) Γ(x+ 1) = xΓ(x)

and an induction argument shows that Γ(n+1) = n! for n ∈ N. Therefore, the gamma
function interpolates the factorials. This function allows us to compute values like

(5.6)

(
−1

2

)
! = Γ

(
1

2

)
=

∫ ∞
0

e−tt−1/2 dt.

The change of variables t = s2 gives

(5.7)

∫ ∞
0

e−tt−1/2 dt = 2

∫ ∞
0

e−s
2

ds =

∫ ∞
−∞

e−s
2

ds.

The value of this last integral is
√
π, familiar to students from the elementary courses

in Statistics. This yields the spectacular formula

(5.8)

(
−1

2

)
! = Γ

(
1

2

)
=
√
π.

6. A trigonometric version

The change of variables x = tanϕ gives

(6.1) Wn =

∫ π/2

0

cos2n−2 ϕdϕ.

This motivates the introduction of the integral

(6.2) In =

∫ π/2

0

cosn ϕdϕ.

Observe that

(6.3) In =

∫ π/2

0

sinn ϕdϕ.

by letting ϕ 7→ π/2−ϕ. It is convenient to double the interval of integration and work
with

(6.4) Dn =

∫ π

0

sinn ϕdϕ.

Integration by parts produces the recurrence

(6.5) Dn =
n− 1

n
Dn−2
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and from here it follows that D0 = π determines D2n and D1 = 2 does the same for
D2n+1. Indeed, writing the recurrence (6.5) according to parity

(6.6) D2n =
2n− 1

2n
D2n−2 and D2n+1 =

2n

2n+ 1
D2n−1.

and iteration yields

(6.7) D2n = π

n∏
k=1

2k − 1

2k
and D2n+1 = 2

n∏
k=1

2k

2k + 1
.

The inequalities sin2n+1 x 6 sin2n x 6 sin2n−1 x shows that

(6.8) D2n+1 6 D2n 6 D2n−1

and therefore

(6.9) 1 6
D2n

D2n+1
6
D2n−1

D2n+1
6

2n+ 1

2n

proving that

(6.10) lim
n→∞

D2n

D2n+1
= 1.

This produces one of the earliest analytic expressions for π:

(6.11)
π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· · ·

The reader will find in [2, 5] more information about π and the list [1, 3, 4, 6, 7, 9]
[8] includes some of the many papers written about this number. We wish the reader
happy hunting.
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