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A Curious Trigonometric Infinite Product in Context

Michael Milgram

Abstract. By treating the multiple argument identity of the logarithm of the

Gamma function as a functional equation, we obtain a curious infinite product
representation of the sinc function in terms of the cotangent function. This result

is believed to be new. It is then shown how to convert the infinite product to

a finite product, which turns out to be a simple telescoping of the double angle
sin function. In general, this result unifies known infinite product identities in-

volving various trigonometric functions when the product term index appears as

an exponent. In one unusual case, what appears to be a straightforward limit,
suggests a counterexample to Weierstrass’ factor theorem. A resolution is offered.

An Appendix presents the general solution to a simple functional equation. This

work is motivated by its educational interest.

1. Introduction and Motivation

Throughout, the symbols, m,n, j, k,N are positive integers, ψ(x) is the digamma
function and γ is the Euler-Mascheroni constant; other symbols are real, although the
extension to general complex values is always available. In the course of a study of
the properties of η(s), the alternating companion to Riemann’s function ζ(s) defined
[1, Eq. 2.3(1)] by

(1.1) η(s) ≡
∞∑
k=0

(−1)k/(k + 1)s = (1− 21−s) ζ(s), <(s) > 0 ,

I obtained the identity

(1.2)

∞∑
j=1

η(1 + j) (−a)
j

1 + j
=

1

a
ln

(√
π Γ
(
a
2 + 1

)
Γ
(
a
2 + 1

2

)
2a

)
, |a| < 1

corresponding to similar identities developed in [1, Section 3.4], in particular the
identity [1, Eq. 3.4(10)]
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(1.3)

∞∑
j=1

ζ(1 + j) (−a)
j

1 + j
= − ln(Γ(a+ 1))

a
− γ, |a| < 1 .

To obtain (1.2), apply the second equality of (1.1) to yield

(1.4)

∞∑
j=1

ζ(1 + j) (−a)
j

1 + j
=

1

a
ln

(√
π Γ
(
a
2 + 1

)
Γ
(
a
2 + 1

2

)
2a

)
+

∞∑
j=1

ζ(1 + j)
(
−a2
)j

1 + j

from which (1.2) can be easily verified by recourse to (1.3). In addition to employ-
ing (1.4) to prove (1.2), cursory observation of (1.4) shows that it satisfies a simple
and easily solvable (see Appendix) functional equation of the form

(1.5) f(a) = g(a) + x f

(
a

p

)
,

of which the application to η(s) is discussed elsewhere [2]. However, noticing that
(1.3) and (1.4) also simply reproduce the half argument identity of log(Γ(1 + a)) in
the form

(1.6) ln(Γ(1 + a)) = ln(2) a− ln(π)

2
+ ln

(
Γ

(
a

2
+

1

2

))
+ ln

(
Γ
(

1 +
a

2

))
,

the question arises: “Will anything interesting be found if (1.6) is studied as an in-
stance of the functional equation (1.5)?” That is the motivation for this work, which
is intended to be an educational exercise in the merits of curiosity.

In the following Section 2, that question is pursued, first in Subsection 2.1 where
it is shown to yield interesting and curious infinite trigonometric products and cor-
responding infinite summation identities, some of which are thought to be new. In
that same Subsection these identities are related to known results by the operation of
differentiation and the exceptional cases are analysed. Curiosity then suggests that
the new, curious identity be generalized, and this is done in two different ways in
Sections 2.2.1 and 2.2.2; in the latter Section, connections are also made with known
identities, thereby unifying known results listed elsewhere. A requirement that always
arises when studying what may be a new identity is to place it in context with known
material from the literature; this is pursued in Section 3 where a closely-related, pur-
ported, and long-ago analysed, identity is reviewed. Finally, curiosity leads one far
afield by noticing that the limiting case of two of the contextually related identities
previously introduced ostensibly appear to violate Weierstrass’ factor theorem. In
Section 3.1 this issue is considered and a resolution is offered.

2. log(Γ(a+ 1)) treated as a functional equation

2.1. A curious identity. By applying the first corollary of Lemma (A.1) to
(1.6)– see the Appendix– we easily find the interesting identity
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(2.1) Γ(1 + 2 a)

∞∏
j=0

1

2 2 a

(√
π Γ
(
a/2j + 1

)
Γ
(
a/2j + 1

2

) )2j

= e−2 γ a ,

equivalent to the (convergent) sum
(2.2)
∞∑
j=1

(
2j ln

(
Γ
(
a/2j + 1

)
Γ(a/2j + 1/2)

)
+ 2j−1 ln(π)− 2 ln(2) a

)
+ 2 ln(Γ(a+ 1)) = −2 γ a .

Now add the identity (2.2) and its companion where a⇒ −a, to obtain the curious
infinite product

(2.3)

∞∏
j=1

(
tan
(
a/2j

) 2j

a

)2j−1

=
a

sin(a)
,

and, letting a = ib, its hyperbolic equivalent

(2.4)

∞∏
j=1

(
2j tanh

(
b/2j

)
b

)2j−1

=
b

sinh(b)
.

Inverting also yields the following representation of the sinc(a) function, defined by
sinc(a) ≡ sin(a)/a :

(2.5) sinc(a) =

∞∏
j=1

(
cot
(
a/2j

) a
2j

)2j−1

.

It is important to consider the exceptional cases where a is in integral multiple of
π. There are two possibilities: a is an even or odd multiple of π. In the latter case,
let a = (2n − 1)π, n > 1, in which case the only divergent term in the product is
labelled by the index j = 1. So, by setting n→ n+ ε, consider the limit

(2.6) lim
ε→0

2 tan
(

(2n+2 ε−1)π
2

)
(2n+ 2 ε− 1)π

= − 2

π2 (2n− 1) ε
+O(1)

and compare to the corresponding divergent term on the right-hand side of (2.3), to
obtain

(2.7)

∞∏
j=2

 tan
(

(2n−1)π
2j

)
2j

(2n− 1)π

2j−1

= π2 (1/2− n)
2
.

In the case that a is an even multiple of π, recall that any even number can always
be written as the product of an integral power of 2 and an odd number, so let a =
2m (2n − 1)π, where m > 0 and n > 1. By setting m → m + ε and considering the
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limit as ε → 0, it is easy to find that the first m terms of the product each vanish to

order (ε ln(2))2j−1

, and therefore

(2.8) lim
ε→0

m∏
j=1

 tan
(

2m+ε (2n−1)π
2j

)
2j

2m+ε (2n− 1)π

2j−1

≈ ε2
m

ln(2)
2m−1

ε
.

The next term of the product corresponding to j = m+ 1 is the only divergent factor,
being of order

(2.9) lim
ε→0

 tan
(

2m+ε (2n−1)π
2m+1

)
2m+1

2m+ε (2n− 1)π

2m

≈
(

4

ln(2) (2n− 1)2 π2 ε

)2m

.

Therefore the product of (2.8) and (2.9) diverges to order ε−1, as does the right-hand
side of (2.3) under the conditions specified. So, if a is an integral multiple of π, we
have the exceptional case

(2.10)
∞∏

j=m+2

(
tan
(
2m−j (2n− 1)π

)
2m−j (2n− 1)π

)2j−1

=

(
(2n− 1)π

2

)2m+1

reducing to (2.7) if m = 0.

Remarks:

• Differentiating (2.3) with respect to a gives

(2.11)

∞∑
j=1

(
2j−1 − a

sin(a/2j−1)

)
= a cot(a)− 1 ,

an extension of the listed [3, Eq. 25.1.2] identity

(2.12)

n∑
j=0

1

sin(x/2j)
= cot

( x

2n+1

)
− cot(x) .

• It is possible to reproduce (2.11) by subtracting the sum (2.12) from the
elementary identity

(2.13)

n∑
j=0

2j = 2n+1 − 1

and evaluating the limit as n→∞.
• Further, differentiation of (2.2) yields

(2.14)

∞∑
j=1

(
2 ln(2)− ψ

(
1 +

a

2j

)
+ ψ

(
a

2j
+

1

2

))
= 2ψ(a+ 1) + 2 γ ,

a result that is discussed elsewhere [2], which could also be obtained by
evaluating the n→∞ limit of [3, Eq. (55.8.4)].
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• A related result extracted from the classical literature [4, Eq. (1042)] is

(2.15) lim
n→∞

 n∏
j=1

tan

(
π j

2n

) 1
n

= 1 .

2.2. Generalizations.
2.2.1. By recursion. It is possible to generalize (2.3) as follows

(2.16)

∞∏
j=n+1

(
2j−n

a
tan
(
2n−j a

))2j−1

=
a2n

sin2n (a)
, n > 0,

the proof being by induction.

Proof: Let n⇒ n+ 1 and simultaneously let a⇒ a/2 to obtain

(2.17)

∞∏
j=n+2

(
2j−n

a
tan
(
2n−j a

))2j−1

=

(
a
2

)2n+1

sin2n+1 (a
2

) .
Extend the product on the left-hand side and transfer the new factor to the right-hand
side, yielding

(2.18)

∞∏
j=n+1

(
2j−n

a
tan
(
2n−j a

))2j−1

=

(
a
2

)2n+1

sin2n+1 (a
2

) (2 tan
(
a
2

)
a

)2n

.

After some elementary simplification we find

(2.19)

∞∏
j=n+1

(
2j−n

a
tan
(
2n−j a

))2j−1

= a2n

(
1

2 cos
(
a
2

)
sin
(
a
2

))2n

reducing to (2.16) from the double angle identity

sin(a) = 2 cos(a/2) sin(a/2). QED(2.20)

Again generalizing, let n ⇒ n1, a ⇒ a/2n1 in (2.16) and similarly n ⇒ n2, a ⇒
a/2n2 with n2 > n1. Divide the resulting identities and split the first product from n1

to n2 and n2 + 1 to ∞. After some simplification, we have the finite product

(2.21)

n2∏
j=n1+1

(
2j

a
tan
( a

2j

))2j−1

= aN1−N2 2−N1 n1+N2 n2

sinN2

(
a
N2

)
sinN1

(
a
N1

) ,
where N1 ≡ 2n1 and N2 ≡ 2n2 . Consider two examples. Let n1 = 0, n2 = 4 and
a⇒ 2 a giving

(2.22) tan(a) tan2
(a

2

)
tan4

(a
4

)
tan8

(a
8

)
= 215 sin16

(
a
8

)
sin(2 a)

.
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The case n1 = n, n2 = n+ 1 yields the identity

(2.23) tan
( a

2n+1

)
=

2 sin2
(
a/2n+1

)
sin(a/2n)

,

made obvious by setting a⇒ 2n a and referring to (2.20). It is easily seen that (2.22)
is a simple recursive rendition of the double angle formula (2.20) by rewriting it in the
form

(2.24) sin(2 a)
sin(a)

cos(a)
tan2

(a
2

)
tan4

(a
4

)
tan8

(a
8

)
= 215 sin16

(a
8

)
and applying (2.20) recursively.

2.2.2. Triplication and Onwards. Since (2.1) is essentially based on the duplication
formula (1.6), consider the triplication analogue

(2.25) ln(Γ(a+ 1)) = ln

(
3a+ 1

2 Γ
(
a
3 + 1

3

)
Γ
(
a
3 + 2

3

)
2π

)
+ ln

(
Γ
(a

3
+ 1
))

a special case of the well-known general identity [5, Eq. 5.5.6]

(2.26) Γ(na) = (2π)
1
2−

n
2 nna−

1
2

n−1∏
k=0

Γ

(
a+

k

n

)
.

Apply Corollary 1 from the Appendix as before to find

ln(Γ(a+ 1)) =

∞∑
j=0

(
ln(3)

2
+ ln

(
3

3 a
31+j

)
+ ln

(
Γ

(
a

31+j
+

1

3

))
(2.27)

+ ln

(
Γ

(
a

31+j
+

2

3

))
− ln(2π)

)
,

the analogue of (2.2). Adding (2.25) and its partner with a⇒ −a then yields

(2.28)

∞∏
j=0

1 + 2 cos
(
2 a/31+j

)
3

=
sin(a)

a
,

equivalent to

(2.29)

∞∏
j=1

(
1−

4 sin2
(
a/3j

)
3

)
=

sin(a)

a
,

a known result [3, Eq. 91.8.14] . Similarly, by differentiating (2.27) we find

(2.30)

∞∑
j=0

(
3 ln(3)

31+j
+
ψ
(
a/31+j + 1

3

)
31+j

+
ψ
(
a/31+j + 2

3

)
31+j

)
= ψ(a+ 1) ,

the analogue of (2.14). Remark: Hansen [3] sources (2.29) by the initials “CJ’, which
label does not appear in the Bibliography.

Continuing, and similarly, the quadruplication and quintuplication cases produce
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(2.31)

∞∏
j=0

(
cos
(
a/41+j

)
2

+
cos
(
3 a/41+j

)
2

)
=

sin(a)

a

and

(2.32)

∞∏
j=0

1 + 2 cos
(
2 a/51+j

)
+ 2 cos

(
4 a/51+j

)
5

=
sin(a)

a
,

the general even and odd cases being respectively

(2.33)

∞∏
j=0

1

N

N∑
n=1

cos

(
(2n− 1) a

(2N)
1+j

)
=

sin(a)

a
,

(2.34)

∞∏
j=0

(
1

2N + 1
+

2

2N + 1

N∑
n=1

cos

(
2na

(2N + 1)
1+j

))
=

sin(a)

a
.

In (2.33), let N = 1 to find Euler’s well-known infinite product formula [3, Eq. 91.8.2]

(2.35)

∞∏
j=0

cos
(
a/21+j

)
=

sin(a)

a
.

Both (2.33) and (2.34) have been obtained elsewhere through the use of both Cheby-
shev polynomials and Fourier transforms (see Nishimura [6] where the words odd and
even are erroneously scrambled).

Remarks

• Although the identity (2.35) as cited requires |a| < 1, the derivation given
here removes that limitation.

• Additionally, (2.35) might be compared to the equally well-known [3, Eq.
91.8.3, unsourced] and occasionally re-cited (e.g. [7]) identity

(2.36)

k−1∏
j=0

cos
(
2j a

)
=

sin
(
2k a

)
2k sin(a)

.

• We also find from the classical literature [4, Eq. (1050)] the related identity

(2.37)

2 k−1∏
j=1

cos

(
π j

k

)
=

(−1)
k − 1

22 k−1
.

Superficially, the equality of the left-hand sides of (2.31) and (2.32) appears to be
surprising; likewise the corresponding sides of (2.33) and (2.34). However, from [3,
Eq. 17.1.1] we have
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(2.38)

N∑
n=1

cos

(
(2n− 1) a

(2N)
1+j

)
=

sin
(
a/(2N)

j
)

2 sin
(
a/(2N)

1+j
)

and with some simplification help from Maple [8]

(2.39)

N∑
n=1

cos

(
2na

(2N + 1)
1+j

)
=

sin
(
a/ (2N + 1)

j
)

2 sin
(
a/ (2N + 1)

1+j
) − 1

2
,

so that, after the application of (2.39) to (2.34), we have

 sin(a)

sin
(

a
(2N+1)

)
(2N + 1)

×
 sin

(
a

2N +1

)
sin
(

a
(2N+1)2

)
(2N + 1)

(2.40)

×
∏
j=2

sin
(
a/ (2N + 1)

j
)

sin
(
a/ (2N + 1)

1+j
)

(2N + 1)
=

sin(a)

a

where the first two terms of the product have been extracted and isolated by brack-
ets ([..]) to demonstrate that the product partially telescopes (e.g. the denominator of
the j=0 factor (first bracket) cancels the corresponding factor in the numerator of the
j=1 factor (second bracket), each contributing a factor 2N + 1 in the denominator.
The limiting term(s) of the product then approach unity because

(2.41) lim
j→∞

1

sin
(
a/ (2N + 1)

1+j
) =

(2N + 1)
j+1

a
+O

(
1

(2N + 1)
j

)
,

cancelling the accumulating multiplicative factor, thereby demonstrating the veracity
of (2.34), and similarly (2.33).

3. Some Perspectives

Infinite products have significance rooted in the early history of analysis exempli-
fied by Euler’s 1734 product formula [5, Eq. 4.22.1] for the sin function

(3.1)
sin(a)

a
=

∞∏
j=1

(
1− a2

π2 j2

)
.

In the realm of infinite products involving trigonometric functions, we have Euler’s
infinite product formula (2.35). Setting a = π/2 in (2.35) yields

(3.2)
2

π
=

√
2

2
×
√

2 +
√

2

2
×

√
2 +

√
2 +
√

2

2
× . . .
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as a special case, originally obtained recursively by François Viète in 1593 and recently
generalized by both Moreno and Garcia [9] and Levin [10], the latter of whose approach
was based upon an an analysis of the functional equation

(3.3) F (a z) = g(F (z))

with simple conditions on F (z) and g(z).

Relevant to the identity reported here, in 1876, Dobinski [11, Eq. (72)] proposed
the identity

(3.4)

∞∏
j=1

(
tan

(
2j a

))2−j

= 4 sin2 (a) .

Written otherwise, we have

(3.5) tan(a)× (tan (2 a))
1
2 × (tan (4 a))

1
4 × (tan (8 a))

1
8 × · · · = 4 sin2 (a)

to be compared to (2.23) and (2.24). In 1947, the identity (3.4) was questioned by
Agnew and Walker [12]. By reproducing Dobinski’s derivation, Agnew and Walker
claim that (3.4) is true iff

(3.6) lim
j→∞

(
sin
(
21+j a

))2−j

= 1 ;

therefore, (3.4) is true only for special values of a 6= (2n+ 1)π/2k. To reinforce their
scepticism, it is worth noting that for certain real values of a, some of the product
factors are complex while the right-hand side is real. So, (3.4) thus requires that, if for
some value j = j+ tan(2j+a) > 0, then 2ja must lie in a region where tan(2ja) > 0 for
all j 6= j+. As might be expected, this imposes a severe restriction on allowable values
of a, and omits the possibility that the imaginary part of all the (complex) product
factors corresponding to tan(2j+a) < 0 somehow vanishes. Unfortunately, Agnew and
Walker do not identify a concrete example to demonstrate the limited veracity of (3.4)
and numerical experimentation by myself has uncovered no examples.

3.1. A digression. The juxtaposition of the proof of (3.4) in proximity with
(2.36) leads the curious analyst to consider the question of the evaluation of (2.36)
when its right-hand side vanishes, in the light of “Weierstrass’ Factor-Theorem”, [13,
page 9, Theorem 1] that states “A convergent product has the value zero if and only if,
one of its factors vanishes”. Which of the factors of (2.36) vanishes in this eventuality?
Consider the candidate case a = 2nπ. After evaluating the appropriate limit on the
right-hand side, we find

(3.7)

k−1∏
j=0

cos
(
2j+n π

)
= 1 +

(
−22 k

6
+

1

6

)
(a− 2n π)

2
+O

(
(a− 2n π)

4
)

and there is no issue, since each of the factors comprising the product are equal to
unity. In the case a = π/2m, that is
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(3.8)

k−1∏
j=0

cos

(
2j π

2m

)
=

sin
(
2k−m π

)
2k sin(2−mπ)

only if k > m does the right-hand side vanish, and accordingly, only the single
left-hand side factor indexed by j = m− 1 vanishes, and both (2.36) and Weierstrass’
Factor-Theorem are satisfied. Now consider (2.36) in the case that k →∞, that is

(3.9) lim
k→∞

k−1∏
j=0

cos
(
2j a

)
= lim
k→∞

sin
(
2k a

)
2k sin(a)

→ 0 .

Unlike the previous two cases, (3.9) is apparently analytically (and, for large values
of k, numerically) valid for all values of a. Consequently, consistency of the left-hand
side requires the existence of a solution to

(3.10) 2j−1a/N = π

for general values of a, if N is an odd integer. That (3.10) is clearly impossible (e.g.
a is rational) suggests that (3.9) provides a counterexample to Weierstrass’ factor
theorem – an unlikely prospect. Is there a resolution?

After due consideration, one must conclude that equating the right-hand side limit
of (3.9) to zero is unjustified (indicated by the use of the arrow), because the limit
k →∞ yields an accumulation, rather than a limit, point, courtesy of the numerator
factor that varies discontinuously for consecutive values of k in a neighbourhood of
zero acting as a limit. Similarly, the factors comprising the left-hand side of (3.9) span
an infinite number of possibilities, any one of which can approach arbitrarily close to,
but not equal to, zero, thus emulating an accumulation point and the infinite product
does not converge, although it comes arbitrarily close to zero. However, let us now
rewrite (3.9) as follows

(3.11)

sin(a)
k−1∏
j=0

cos
(
2j a

)
sin(2k a)

=
1

2k

an identity that is also analytically and numerically valid. Again, considering the limit
k →∞ gives

(3.12) lim
k→∞

sin(a)
k−1∏
j=0

cos
(
2j a

)
sin(2k a)

= lim
k→∞

1

2k
= 0,

and this time there is no ambiguity about the limit of the right-hand side. However,
as seen above, since the infinite product term on the left-hand side must be non-
convergent, Weierstrass’ factor theorem does not apply and we have an example of a
simple equality whose left and right-hand side limits differ, since neither of the other
two left-hand side factors will lead to a zero or negate the arbitrariness of the product
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term; if the product were to be convergent then we would have a counterexample to
Weierstrass’ factor theorem. Since k is not a continuous variable, I am unaware that
this example violates any theorems of analysis.

In addition to the above, note that (2.37) exhibits similar behaviour when k →
∞, although in that case, the resolution is obvious since the right-hand side clearly
alternates in value between even and odd values of k. However, (2.37) does exhibit
another curiosity: when k is even, the left-hand side product possesses two vanishing
factors indexed by j = k/2 and j = 3k/2, whereas the right-hand side possess a simple
zero. Again, since k is not a continuous variable, the disagreement in the order of the
zero (if one can talk about the order of a zero attached to a discrete variable) does not
violate Weierstrass’ theorem as written. For a collection of other interesting analytic
anomalies, see [14].

4. Summary

What began as a simple derivation of what appears to be a new, curious identity,
led to a study of some related and well-known identities. This in turn led to a unifi-
cation of heretofore disparate listed results for a family of infinite product identities
characterized by arguments containing the index variable appearing as an exponent.
Further investigation of related identities selected from the literature led to some in-
teresting examples of unexpected analytic behaviour, and further study of other, more
general, curiosities [15].

Appendices

A. Appendix: Lemma

Lemma A.1. Consider the functional equation

(A.1) f(a) = g(a) + x f

(
a

p

)
Then, if |x| < 1, f(0) is finite, 1 < p ∈ < and if the series converges

(A.2) f(a) =

∞∑
j=0

xj g

(
a

pj

)
Proof: Let a := a/p in (A.1) and substitute into itself, to yield

(A.3) f(a) = g(a) + g

(
a

p

)
x+ f

(
a

p2

)
x2 .

Let a := a/p2 in (A.1), substitute into (A.3) and repeat recursively altogether N times
to obtain

(A.4) f(a) = f

(
a

pN

)
xN +

N−1∑
j=0

xj g

(
a

pj

)
.
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According to the suppositions, if N → ∞, the first term in (A.4) vanishes, leaving
(A.2). QED

Corollary 1: If x = 1 and f(0) = 0, (A.2) also follows.
Corollary 2: If x > 1, lim

x→∞
f (x) is finite, and if the sum converges, by reversing

(A.1) to read

(A.5) f

(
a

p

)
= −g(a)

x
+
f(a)

x

we have the solution

(A.6) f(a) = −
∞∑
j=1

g
(
pj a

)
xj

.
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