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On value distribution of differential polynomial of algebroidal
functions

Chuanxin Gao1 and Qingli Yin2

Abstract. In this paper, we generalized some results of the paper [1] in alge-

broidal functions, and get some interesting results.

1. Definitions and Symbols

In this paper, let w = w(z) be an algebroidal function with γ − branches deter-
mined by an irreducible equation

Aγ(z)wγ +Aγ−1(z)wγ−1 + . . .+A1(z)w +A0(z) = 0.

Where Aj(z) are holomorphic functions in |z| < +∞, and satisfy that m(r,A0(z)) =
o(T (r, w)) and Aj(z) do not simultaneously equal zero at a point (j = 0, 1, . . . , γ). In
particularly, w(z) is a meromorphic function when γ = 1.

N1(r, 1
w ) denotes the function of the number of zero of order 1 of w, N2(r, 1

w )
denotes the function of the number of zero of order > 2. S(r, w) denotes a quantity
satisfying o(T (r, w))(r →∞, r /∈ E), E denotes the set of finite linear measures.

Definition 1.1. A meromorphic function a(z) is called a small function of w(z)
if T (r, a(z)) = S(r, w).

a, a0, . . . , an denote small functions of w, c, c0, . . . , cn denote complex constants.

Definition 1.2. Let n0, n1, . . . , nk be nonnegative integers.

M(w) = wn0(w′)n1 . . . (w(k))nk

is called a differential monomial of w, rM = n0 + n1 + . . . + nk is called degree of
M(w), ΓM = n0 + 2n1 + . . .+ (k + 1)nk is called weight number of M(w).

Definition 1.3. Let Mj(w) be a monomial of w, aj(z)(j = 1, 2, . . . , n) be small
functions of w, then Ω(w) = a1M1(w) + . . . + anMn(w) is called a differential poly-
nomial of w. The integer rΩ = max{rMj

: 1 6 j 6 n} is called degree of Ω(w),
ΓΩ = max{ΓMj

: 1 6 j 6 n} is called weight number of Ω(w).
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In the studying existence of defective value of algebroidal functions, the value dis-
tribution of differential polynomials is an important application of Nevenlinna theory,
it is more complex and more interesting than the corresponding case of meromorphic
functions.

2. Main Results

Theorem 2.1. Let w(z) be an algebroidal function with γ-branches, Ω(w)(6≡ 0) be
a (n− 1)-degree differential polynomial, supposed ψ = wnw′ + Ω(w), then

T (r, w) 6 γ(γ2 + 3γ + 4)N̄(r,
1
ψ

) + γ[(α+ 1)γ2 + 2(α+ 2)γ + 2(α+ 2)]N̄(r, w)

+[(σΩ + 1)γ2 + 2(σΩ + 2)γ + 2(σΩ + 1)]Nx(r, w) + S(r, w).
Where α = ΓΩ − (n− 1), σΩ = max{σi}, σi = i1 + 3i2 + . . .+ (2n− 1)in.

If γ = 1, we get following result.

Corollary 2.1. ([1], Theorem 3) Let f be a non-rational meromorphic function,
Q(f)(6≡ 0) is (n− 1)-degree differential polynomial of f , if ψ = fnf ′ +Q(f), then

T (r, w) 6 8N̄(r,
1
ψ

) + (5α+ 9)N̄(r, w) + S(r, w).

Here α = ΓQ − (n− 1).

Theorem 2.2. Let w(z) be an algebroidal function with γ−branches, Ω(w)(6≡ 0)
be (n− 1)-degree differential polynomial, if N̄(r, w) = S(r, w), Nx(r, w) = S(r, w), and
ψ = wnw′ + Ω(w), then

T (r, w) 6 γ(γ2 + 3γ + 4)N̄(r,
1
ψ

) + S(r, w).

Theorem 2.3. Let w be an algebroidal function with γ-branches, P (w) = anw
n+

an−1w
n−1 + . . .+ a0. Where an(6≡ 0), an−1, . . . , a0 be small functions of w, and an−1

an

be a constant. Supposed Ω(w) be a differential polynomial of w with degree 6 n − 1,
and ψ = P (w)w′ + Ω(w), then

ψ = (w +
an−1

an
)nw′, or

T (r, w) 6 γ(γ2 + 3γ + 4)N̄(r,
1
ψ

) + γ[(β + 1)γ2 + 2(β + 2)γ

+2(β + 2)]N̄(r, w) + [(σΩ + 1)γ2 + 2(σΩ + 2)γ + 2(σΩ + 1)]Nx(r, w) + S(r, w).
Where β = max{1,ΓΩ − rΩ)}.

Corollary 2.2. In Theorem 2.3, if N̄(r, w) = S(r, w), Nx(r, w) = S(r, w), the
other conditionns is same as in Theorem 2.3, then ψ = an(w+ an−1

an
)nw′, or T (r, w) 6

γ(γ2 + 3γ + 4)N̄(r, 1
ψ ) + S(r, w).

Corollary 2.3. Let w and P (w) be same as in Theorem 2.3, a(z)(6≡ 0) be a
small function of w, supposed N̄(r, w) = S(r, w), Nx(r, w) = S(r, w), then T (r, w) 6
γ(γ2 + 3γ + 4)N̄(r, 1

P (w)w′−a ) + S(r, w).
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Corollary 2.4. If a γ-values algebroidal function w satisfying Nx(r, w) = S(r, w),
Θ(∞, w) > 1− 1

γ(γ+2)2 , let a(z)(6≡ 0) be a small function of w, then ww′−a has infinity
of zero points.

Corollary 2.5. Let w be a γ-values algebroidal function satisfying Nx(r, w)
= S(r, w), P (w) be same as in Theorem 2.3, if Θ(∞, w) > 1 − 1

2γ(γ2+3γ+3) , then
P (w)w′ − a has infinity of zero points.

If setting γ = 1 in the above Corollaries, we get same results as the Theorems in
[1].

3. Some Lemmas

Lemma 3.1. [2] Let w be a γ-values algebroidal function,

Ω1(w) =
∑

a(i)w
i0(w′)i1 . . . (w(n))in(6≡ 0)((i) = i0, . . . , in),

Ω2(w) =
∑

b(j)w
j0(w′)j1 . . . (w(m))jm(6≡ 0)((j) = j0, . . . , jn),

be differential polynomial of w, if wnΩ1(w) = Ω2(w) and n > rΩ2 , then we have
m(r,Ω1(w)) = S(r, w). Where rΩ2 is the degree of Ω2, w(z) is a allowable function
for the coefficients {a(i)(z)} and {bj(z)} of Ω1(w) and Ω2(w)(i.e. w(z) satisfying∑
T (r, a(i)) +

∑
T (r, bj) = o(T (r, w))).

Lemma 3.2. [3] Let w be a γ-branches algebroidal function, Ω∗1(w) and Ω∗2(w)
be quasi-differential polynomials of w, w be a allowable function for the coefficients
of Ω∗1(w) and Ω∗2(w), and satisfy wnΩ∗1(w) = Ω∗2(w), n > rΩ∗

2
, then m(r,Ω∗1(w)) =

S(r, w).

Lemma 3.3. Let w be a γ-branches algebroidal function, {a(i)(z)} be a meromor-
phic function of z, and satisfy

T (r, a(i)) = S(r, w), i = 0, 1, . . . ,Ω(z) =
∑
i

a(i)(z)wi0(w′)i1 . . . (w(n))in

be a differential polynomial of algebroidal function of w, if the pole of w with order of
τ(∞, w) is not a zero point and pole of the coefficient of a(i), and supposed that the
non-pole branching points of w(z) which produce poles of the derivatives of w(z) are
not zero points of {a(i)(z)}, then the order of poles of Ω(w) is the most

rΩτ(∞, w) + (ΓΩ − rΩ)γ + σΩ(λ− 1),

and

N(r,Ω(w)) 6 rΩN(r, w) + (ΓΩ − rΩ)γN̄(r, w) + σΩNx(r, w) + S(r, w).

Where σΩ = max{[i1 + 3i2 + . . .+ (2n− 1)in](λ− 1)}.

Lemma 3.4. [3] Let w(z) be a γ-branches algebroidal function, Ω1(w)(6≡ 0) and
Ω2(w)(6≡ 0) be differential polynomials of w, if wnΩ1(w) = Ω2(w), then

(n− rΩ)T (r, w) 6 nNx(r,
1
w

) + (ΓΩ2 − rΩ2)γN̄(r, w) + σΩ2Nx(r, w) + S(r, w).
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Where Nx(r, 1
w ) denotes the function of the number of zero points of w which are

non-pole branch points of w(z) in χ(r). σΩ2 = max{j1 + 3j2 + . . .+ (2m− 1)jm}.

Lemma 3.5. [2] Let w = w(z) be a γ-branches algebroidal function, Ω(w) be
a differential polynomials of w, if w(z) is a allowable function for the coefficients
{a(i)(z)} of Ω(w), then m(r,Ω(w)) 6 rΩm(r, w) + S(r, w).

Lemma 3.6. [3] Let w(z) be a γ-branches algebroidal function, Ω∗(w) be a quasi-
differential polynomials of w, then m(r,Ω∗(w)) 6 rΩ∗m(r, w) + S(r, w).

4. The Proof Of Theorem 2.1

Proof. By

(4.1) ψ = wnw′ + Ω(w)

and its derivative ψ′ = ψ′
ψ w

nw′ + ψ′
ψ Ω(w), and ψ′ = nwn−1(w′)2 + wnw′′ + (Ω(w))′,

we get

(4.2) wn−1F = Ω(w)(
ψ′

ψ
− (Ω(w))′

Ω(w)
).

Where

(4.3) F = n(w′)2 + ww′′ − ψ′
ψ
ww′′.

By using a similar method to the Theorem 3 in [1], when F ≡ 0, the proof follows
from the Annotation 1 in the appendix of this paper.

In the following supposed F 6≡ 0, by (4.2) and Lemma 3.3 , we get

(4.4) m(r, F ) = S(r, w).

Now we estimate N(r, F ). It easily follows from (4.3) that the only possible poles
of F are from poles of w or the non-pole branching points of w which generate poles
of derivatives of w, or poles of the coefficients of Ω(w), or zero points of ψ which are
not zero points of ww′.

Let z0 be pole of w(z) with order τ(∞, w), then it is pole of (n − 1)τ(∞, w). As
some non-pole branching points of w(z) producing pole of derivatives of w(z), by (4.2)
and Lemma 3.3, we get that z0 is a pole of Ω(w)(ψ

′

ψ − (Ω(w))′

Ω(w) ), its order is at most
(n − 1)τ(∞, w) + (α + 1)γ + σΩ(r − 1), and z0 is a pole of F , its order is at most
(α+ 1)γ + σΩ(r − 1), therefore we have

(4.5) N(r, F ) 6 γN̄∗(r,
1
ψ

) + (α+ 1)γN̄(r, w) + σΩNx(r, w) + S(r, w).

Where N̄∗(r, 1
ψ ) denotes the reducing function of the number of zero points of ψ which

are not zero points of ww′(i.e. not counting the order of a zero point of ψ).
We use N̄∗∗(r, 1

ψ ) denoting the reducing function of the number of zero points of
ψ which are zero points of ww′, then we have
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(4.6) N̄(r,
1
ψ

) = N̄∗(r,
1
ψ

) + N̄∗∗(r,
1
ψ

).

By (4.4) and (4.5), we get

(4.7) T (r, F ) 6 γN̄∗(r,
1
ψ

) + (α+ 1)γN̄(r, w) + σΩNx(r, w) + S(r, w).

Let z0 be a zero point of w with order τ(z0, 1
w ), w(z) has β-branches such that

w = 0 at z0(1 6 β 6 γ), then we have w(z) = (z − z0)
r(z0, 1

w
)

β g(z), g(z0) 6= 0,∞ in

a neighborhood of z0, hence w(α)(z) = (z − z0)
r(z0, 1

w
)−αβ

β gα(z), gα(z0) 6= 0,∞(α =
1, 2, . . .). When τ(z0, 1

w )−αβ > 0, z0 is a zero point of w(α)(z). Hence we get that ψ′
ψ

only has β-order poles. Associating with (4.3), we infer that

(4.8) N2(r,
1
w

) +
1
2
N2(r,

1
w′

) 6 N(r,
1
F

),

and

(4.9) N̄(r,
1
F

) 6 N(r,
1
F

)− 1
2
N2(r,

1
w

),

which are same as the results in meromophic functions of the paper [1]. By (4.7)
and (4.8) we get

2N2(r,
1
w

) +N2(r,
1
w′

) 6 2γN̄∗(r,
1
ψ

)

+2(α+ 1)γN̄(r, w) + 2σΩNx(r, w) + S(r, w).
(4.10)

As F
w2 = n(w

′

w )2 + w′′

w − ψ′
ψ
w′

w , it is obvious that m(r, Fw2 ) = S(r, w), therefore
2m(r, 1

w ) 6 m(r, Fw2 ) +m(r, 1
F ) 6 T (r, F )−N(r, 1

F ) + S(r, w). By using (4.7), we get

m(r,
1
w

) 6
1
2
2γN̄∗(r,

1
ψ

) +
1
2
(α+ 1)γN̄(r, w)

+
1
2
σΩNx(r, w)− 1

2
N(r,

1
F

) + S(r, w).
(4.11)

Set

(4.12) G1 = − 1
2n+ 1

ψ′
ψ
− n

2n+ 1
F ′

F
.

It is east to see that

(4.13) m(r,G) = S(r, w).

It easily follows from (4.12) that all poles of G are β-order poles(1 6 β 6 γ), and
the poles of G are from zero points of ψ and F , or poles of w and coefficients of Ω(w),
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or some non-pole branching points of w which generate poles of derivatives of w(z).
Therefore we have

N(r,G) 6 γ{N̄(r,
1
ψ

) + N̄(r,
1
F

) + N̄(r, w)}+Nx(r, w) + S(r, w).

Associating with (4.9), we get

(4.14) N(r,G) 6 γ{N̄(r,
1
ψ

)+ N̄(r, w)+N(r,
1
F

)− 1
2
N2(r,

1
w

)}+Nx(r, w)+S(r, w).

By above, we have

(4.15) T (r,G) 6 γ{N̄(r,
1
ψ

) + N̄(r, w) +N(r,
1
F

)− 1
2
N2(r,

1
w

)}+Nx(r, w) +S(r, w).

In the following, we estimate N(r, 1
w ). let z1 be a 1-order zero point of w, but not

a zero point of ψ and not a pole of coefficients of Ω(w), it follows from (4.3) that

(4.16) F (z1) = n(w′(z1))2.

By using a similar method to the proof of the the theorem 3 [1], we have

(4.17)
F ′(z1)
F (z1)

=
2n+ 1
n

w′′(z1)
w′(z1)

− 1
n

ψ′(z1)
ψ(z1)

.

Set

(4.18) H = w′′ +Gw′.

If H(z) ≡ 0, then the proof follows from the annotation 3 in the appendix of this
paper. In the following supposed H(z) 6≡ 0, by (4.18), we have

1
w′

=
w′′

w′ +G

H
.

Combining it with (4.13), we get

(4.19) m(r,
1
w′

) 6 m(r,
1
H

) + S(r, w).

It follows from (4.12), (4.17) and (4.18) that

(4.20) H(z1) = 0.

In the following, we estimate T (r,H). By (4.13) and (4.18), we get

(4.21) m(r,H) 6 m(r, w′) + S(r, w).

It follows from (4.12) and (4.18) that the poles of H(z) are from zero points of ψ and
F , or poles of coefficients of w and Ω(w), or some non-pole branching points of w(z)
which generate poles of w(α)(z), α = 1, 2, . . . , n. Hence
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N(r,H) 6 γ[N̄(r,
1
ψ

) + N̄(r,
1
F

)] +N(r, w) + (γ + 1)N̄(r, w)

+(γ + 2)Nx(r, w) + S(r, w) 6 γN̄(r,
1
ψ

) +N(r, w) + (γ + 1)N̄(r, w)

+(γ + 2)Nx(r, w) + γN(r,
1
F

)− 1
2
γN2(r,

1
w

) + S(r, w).

(4.22)

For γ-branches algebroidal functions, we have m(r, w′) + N(r, w) + N̄(r, w) 6
T (r, w′), by (4.21) and (4.22), we get

T (r,H) 6 T (r, w′) + γN̄(r,
1
ψ

) + γN̄(r, w) + (γ + 2)Nx(r, w)

+γN(r,
1
F

)− 1
2
γN2(r,

1
w

) + S(r, w).
(4.23)

We use N∗
1 (r, 1

w ) to denote the function of the numbers of 1-order zero points of
w which are not zero points of ψ and not poles of the coefficients of Ω(w), N∗∗

1 (r, 1
w )

to denote the function of the numbers of the other 1-order zero points of w. It follows
from (4.19), (4.20) and (4.23) that

N∗
1 (r,

1
w

) 6 N(r,
1
H

) 6 T (r,H)−m(r,
1
H

) +O(1) 6 T (r, w′) + γN̄(r,
1
ψ

)

+γN̄(r, w) + (γ + 2)Nx(r, w) + γN(r,
1
F

)− 1
2
γN2(r,

1
w

)−m(r,
1
w′

) + S(r, w).

Obviously,

(4.24) N∗∗
1 (r,

1
w

) 6 N̄∗∗(r,
1
ψ

) + S(r, w).

By above two expressions, we have

N1(r,
1
w

) 6 T (r, w′) + γN̄(r,
1
ψ

) +N∗∗(r,
1
ψ

) + (γ + 2)Nx(r, w)

+γN̄(r, w) + γN(r,
1
F

)− 1
2
γN2(r,

1
w

)−m(r,
1
w′

) + S(r, w).
(4.25)

Because of N(r, 1
w ) = N1(r, 1

w ) +N2(r, 1
w ), by (4.25) we get

N(r,
1
w

) 6 T (r, w′) + γN̄(r,
1
ψ

) + N̄∗∗(r,
1
ψ

) + γN̄(r, w) + (γ + 2)Nx(r, w)

+γN(r,
1
F

) + (1− 1
2
γ)N2(r,

1
w

)−m(r,
1
w′

) + S(r, w).
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By above the expression and (4.11), we get

T (r, w) 6 T (r, w′) + γN̄(r,
1
ψ

) +
1
2
γN̄∗(r,

1
ψ

) + N̄∗∗(r,
1
ψ

)

+(
α

2
+

3
2
)γN̄(r, w) + (γ − 1

2
)N(r,

1
F

) + (1− 1
2
γ)N2(r,

1
w

)

−m(r,
1
w′

) + (γ +
1
2
σΩ + 2)Nx(r, w) + S(r, w).

(4.26)

As T (r, w′)−m(r, 1
w′ ) = N(r, 1

w′ ) +O(1), by (4.6), (4.7) and (4.26), we get

T (r, w) 6 N(r,
1
w′

) + γ(γ + 1)N̄(r,
1
ψ

) + [(α+ 1)γ2 + γ]N̄(r, w)

+(σΩγ + γ + 2)Nx(r, w) + (1− 1
2
γ)N2(r,

1
w

) + S(r, w).
(4.27)

To estimate N(r 1
w′ ), let

(4.28) U =
H

w
=
w′′ +Gw′

w
.

We first estimate T (r, U). Since H 6≡ 0, U 6≡ 0. It follows from (4.13) and (4.28) that

(4.29) m(r, U) = S(r, w).

It is obvious that the poles of U are from zero points of ψ, F and w, or poles of
coefficients of w and Ω(w), or some non-pole branching points of w(z) which generate
poles of w(α), α = 1, 2, . . . , n. By (4.20) and (4.28), we know that the 1-order zero
points of w which are not zero points of ψ and not poles of the coefficients of Ω(w)
are not poles of U . Therefore

N(r, U) 6 γN̄(r,
1
ψ

) + γN̄(r,
1
F

) +N∗∗
1 (r,

1
w

)

+N2(r,
1
w

) + 2γN̄(r, w) + (γ + 2)Nx(r, w) + S(r, w).

By the above expression and (4.6), (4.7), (4.9), (4.24) and (4.29), we get

T (r, U) 6 γ(γ + 1)N̄(r,
1
ψ

) + γ[(α+ 1)γ + 2]N̄(r, w)

+(1− 1
2
γ)N2(r,

1
w

) + [γ(σΩ + 1) + 2]Nx(r, w) + S(r, w).
(4.30)

Let z2 be a 1-order zero point of w′ which is not a zero point of w and ψ, and not
a pole of the coefficients of Ω(w), i.e. w′(z) has β-branches such that w′(z2) = 0, at
z2(1 6 β 6 γ). We have w′(z) = (z − z2)

1
β ŵ1(z), ŵ1(z2) 6= 0,∞ in a neighborhood of

z2. It follows from (4.3) that F (z2) = w(z2)w′′(z2). By a similar method to the (35)
in [1], for algebroidal functions, we have

(4.31)
U ′(z2)
U(z2)

− F ′(z2)
F (z2)

− ψ′(z2)
ψ(z2)

−G(z2) = 0.



ON VALUE DISTRIBUTION OF DIFFERENTIAL POLYNOMIAL 35

Set

(4.32) V =
U ′

U
− F ′

F
− ψ′
ψ
−G,

by (4.31), we get

(4.33) V (z2) = 0.

If V ≡ 0, the proof follows from the annotation 4 in the appendix of this paper.
Supposed V 6≡ 0, by (4.3) and (4.32), we get

(4.34) m(r, w) = S(r, w).

It is obvious that the poles of V are from zero points of ψ, U and F , or poles
of coefficients of U , w and Ω(w), or some non-pole branching points of w(z) which
generate poles of w(α(z)), α = 1, 2, . . . , n. Therefore

N(r, V ) 6 γN̄(r,
1
ψ

) + γN̄(r,
1
U

) + γN̄(r,
1
F

) +N∗∗
1 (r,

1
w

)

+γ[N̄2(r,
1
w

) + N̄(r, w) +Nx(r, w)] + S(r, w).

By the above expression, (4.6), (4.7), (4.9), (4.24), (4.30) and (4.34), we get

T (r, V ) 6 γ(γ + 1)2N̄(r,
1
ψ

) +
1
2
γ(3− γ)N2(r,

1
w

) + γ[(α+ 1)γ2

+(α+ 3)γ + 1]N̄(r, w) + [(σΩ + 1)γ2 + (σΩ + 3)γ]Nx(r, w) + S(r, w).
(4.35)

Set N∗
1 (r, 1

w′ ) to denote the function of the number of 1-order zero points of w′

which are not zero points of w and ψ and not poles of the coefficients of the Ω(w) ;
N∗∗

1 (r, 1
w′ ) to denote the function of the number of 2-order zero points of w; N∗∗∗

1 (r, 1
w′ )

to denote the function of the number of the others 1-order zero points of w′. It follows
from (4.33), (4.35) that

N∗
1 (r,

1
w′

) 6 N(r,
1
V

) 6 γ(γ + 1)2N̄(r,
1
ψ

) +
1
2
γ(3− γ)N2(r,

1
w

) + γ[(α+ 1)γ2

+(α+ 3)γ + 1]N̄(r, w) + [(σΩ + 1)γ2 + (σΩ + 3)γ]Nx(r, w) + S(r, w).

As N∗∗
1 (r, 1

w′ ) 6 1
2N2(r, 1

w ) and N∗∗∗
1 (r, 1

w′ ) 6 N̄∗∗
1 (r, 1

ψ ) + S(r, w), then

N1(r,
1
w′

) 6 γ(γ + 1)2N̄(r,
1
ψ

) +
1
2
γ(3γ − γ2 + 1)N2(r,

1
w

) + γ[(α+ 1)γ2

+(α+ 3)γ + 1]N̄(r, w) + N̄∗∗(r,
1
ψ

) + [(σΩ + 1)γ2 + (σΩ + 3)γ]Nx(r, w) + S(r, w).

Hence, we have
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N(r,
1
w′

) = N1(r,
1
w′

) +N2(r,
1
w′

) 6 γ(γ + 1)2N̄(r,
1
ψ

) + N̄∗∗(r,
1
ψ

)

+
1
2
γ(3γ − γ2 + 1)N2(r,

1
w

) + γ[(α+ 1)γ2 + (α+ 3)γ + 1]N̄(r, w)

+[(σΩ + 1)γ2 + (σΩ + 3)γ]Nx(r, w) +N2(r,
1
w′

) + S(r, w).

(4.36)

Noting γ − 1
2γ

2 + 3
2 = − 1

2 (γ − 1)2 + 2 6 2, by (4.36) and (4.27), we get

T (r, w) 6 γ(γ + 1)(γ + 2)N̄(r,
1
ψ

) + 2N2(r,
1
w

)

+N̄∗∗(r,
1
ψ

) +N2(r,
1
w′

) + [(α+ 1)γ2 + 2(α+ 2)γ + 2]γN̄(r, w)

+[(σΩ + 1)γ2 + 2(σΩ + 2)γ + 2)]Nx(r, w) + S(r, w).+ N̄∗∗(r,
1
ψ

)

(4.37)

By (4.37) and (4.10), we have

T (r, w) 6 γ(γ2 + 3γ + 4)N̄(r,
1
ψ

)

+γ[(α+ 1)γ2 + 2(α+ 2)γ + 2(α+ 2)]N̄(r, w)

+[(σΩ + 1)γ2 + 2(σΩ + 2)γ + 2(σΩ + 1)]Nx(r, w) + S(r, w).

(4.38)

The proof is completed. �
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