SCIENTIA
Series A: Mathematical Sciences, Vol. 20 (2010), 151–160
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2010

On Semi h-Pure Submodules of QTAG-Modules

Gargi Varshney^{*} M.Z. Khan^{**}

ABSTRACT. The study of QTAG-modules was initiated by Singh [9]. The structure theory of such modules has been developed on similar lines as that of torsion abelian groups. Different concepts and decomposition theorems have been done for QTAG-modules by a number of authors. The purpose of this paper is to study the semi h-pure submodules of QTAG-modules and their characterizations. The concept of semi h-pure submodules is introduced by A. Mehdi [7]. A submodule N of a QTAG-module M is semi h-pure in M if it is not h-pure but it is contained in a h-pure submodule of M. It is well known that all submodules of M are semi h-pure if and only if M is a direct sum of a h-divisible and a bounded submodule. In [6], Khan introduced an invariant for every submodule N of M and for every non-negative integer n, denoted by $Q_n(M, N)$. Here we obtain a necessary condition on a submodule N to be a semi h-pure submodule of M. This condition turns out to be also sufficient if N is an almost h-dense submodule of M. But, in general, this condition is not sufficient. For example, if N is a subsocle of M, then $Q_n(M, N) = 0$ for all $n \ge 0$. However, it is known that N is not necessarily a semi *h*-pure submodule.

In section 2, we introduce a new invariant for every submodule N of M and every non-negative integer n, denoted by $P_n(M, N)$. This invariant gives a sufficient condition on a submodule to be a semi h-pure submodule of M. But, in general, this condition is not necessary. Here we also give some interesting properties of $P_n(M, N)$ and the relation between $Q_n(M, N)$ and $P_n(M, N)$.

In section 3, we give a new characterization of kernels of *h*-purity in terms of $P_n(M, N)$. In view of this characterization, it is clear that N satisfies the necessary condition that $Q_n(M, N) = 0$ for all $n \ge 0$.

In section 4, we establish a sufficient condition for a submodule to be a semi *h*-pure submodule i.e. If $P_n(M, N) = 0$ for all $n \ge k$, then N is semi *h*-pure submodule. Furthermore, we have N is *h*-pure in M if k = 0 and N is kernel of *h*-purity in M if k = 1.

151

²⁰⁰⁰ Mathematics Subject Classification. Primary 16D70 Secondary 20K10. Key words and phrases. QTAG-module, Semi *h*-pure Submodule, Kernel of *h*-purity, *h*-pure hull and *h*-dense Submodule.

1. Introduction and Priliminaries

Following [9], a unital module M_R is called QTAG-module if it satisfies the following condition:

(1) Every finitely generated submodule of every homomorphic image of M is a direct sum of uniserial modules.

All rings considered in this paper contain unity and modules are unital QTAG-module. The structure theory of such modules has been developed by various authors. A module in which the lattice of its submodule is totally ordered with finite composition length is called a uniserial module. An element $x \in M$ is called a uniform element if xR is a nonzero uniform (hence uniserial) submodule of M. For any module M_R with a composition series, d(M) denotes its length. If $x \in M$ is uniform, then e(x) = d(xR) and $H_M(x) = \sup\{d(yR/xR)/y \in M \text{ and } y \text{ is uniform with } x \in yR\}$ are called exponent of x and height of x, respectively. For any non-negative integer $n \ge 0, H_n(M) = \{x \in M/H_M(x) \ge n\}$. A submodule N of M is called h-pure in M if $H_n(N) = N \cap H_n(M)$ for all $n \ge 0$, and N is called h-neat if $H_1(N) = N \cap H_1(M)$. The module M is called h-divisible if $H_1(M) = M$. A submodule N of M is called h-dense if M/N is h-divisible, and N is called almost h-dense in M if for every h-pure submodule K of M containing N, M/K is h-divisible. For any module M, Soc(M)denotes the socle of M. A subsocle S of a QTAG-module M is said to be h-dense in Soc(M) if $S + Soc(H_n(M)) = Soc(M)$ for all $n \ge 0$. If N is a submodule of M, then h-neat hull of N is defined as the minimal h-neat submodule K of M, such that $N \subseteq K$ and a submodule K of M is complement of N if it is maximal with the property $K \cap N = 0$. For other basic concepts of QTAG-modules one may see [3,4,5,8,9].

We start with the following definitions.

Definition 1.1: A submodule N of a QTAG-module M is said to be semi h-pure submodule of M if it is not h-pure but it is contained in a h-pure submodule of M. The minimal h-pure submodule of M, containing N is said to be the h-pure hull of N in M. [7]

Definition 1.2: For every non-negative integer n, we denote by $N^n(M)$ the submodule: $N+H_{n+1}(M) \cap Soc(H_n(M))$ and by $N_n(M)$ the submodule: $N \cap Soc((H_n(M)) + Soc(H_{n+1}(M)))$ and by $Q_n(M, N) = N^n(M)/N_n(M)$. [6]

2. Some Properties of $P_n(M, N)$

In this section we introduce a new invariant $P_n(M, N)$, for every submodule N of M and every non-negative integer n. We present here some interesting properties of $P_n(M, N)$ and the relation between $Q_n(M, N)$ and $P_n(M, N)$.

Notation 2.1: For every non-negative integer n, we denote by $P_N^M(n)$ the submodule: $Soc(H_n(M/N)) = Soc((H_n(M)+N)/N)$ and $P_M^N(n)$ the submodule: $(Soc(H_n(M))+N)/N$.

Remark 2.2: Evidently if Soc(N) is *h*-dense in Soc(M) then

$$P_M^N(n) = P_M^N(n+1)$$

for all $n \ge 0$.

Definition 2.3: For every non-negative integer n, we define

$$P_n(M,N) = \frac{P_N^M(n)}{P_M^N(n)}.$$

Next, we recall the definition of submodule $H^k(N)$ of M which is established in [4].

Definition 2.4: For any submodule N of M and for any $k \ge 0, H^k(N)$ defined by the submodule generated by those uniform elements $x \in M$ for which $d(xR/(xR \cap N)) \le k$.

Remark 2.5: It is evident from the above definition that,

$$P_n(M,N) \simeq \Big(H^1(N) \cap (H_n(M)+N)\Big) \Big/ \Big(Soc(H_n(M)+N\Big).$$

Lemma 2.6: Let T be a proper h-pure submodule of M containing N. Then $P_N^M(n) = P_N^T(n) + P_M^N(n)$ and $P_N^T(n) \cap P_M^N(n) = P_T^N(n)$, for all $n \ge 0$.

Proof: Let $\bar{x} \in P_N^M(n)$, where $x \in H_n(M)$. Therefore there exists $y \in N$ such that d(xR/yR) = 1, then $y \in N \cap T \cap H_{n+1}(M)$. Since T is h-pure in M, $y \in H_{n+1}(T)$. Therefore there exists $z \in H_n(T)$ such that d(zR/yR) = 1. Appealing to Lemma 2.3 in [9], we get $e(x - z) \leq 1$ and $(x - z) \in Soc(H_n(M))$. Next, $\bar{x} = \bar{z} + \bar{u}$, where $u \in Soc(H_n(M))$ and $\bar{x} \in P_N^T(n) + P_M^N(n)$. Hence, $P_N^M(n) = P_N^T(n) + P_M^N(n)$. Now let $\bar{x} \in P_N^T(n) \cap P_M^N(n)$, then we have $\bar{x} = \bar{y} = \bar{z}$, where $\bar{y} \in P_N^T(n)$ and $\bar{z} \in P_M^N(n)$. As $y - z \in N$, where $y \in H_n(T)$ and $z \in Soc(H_n(M))$ we have $y - z \in T \cap H_n(M)$ and so, $y - z = u \in H_n(T)$. Next, $z = y - u \in Soc(H_n(T))$. Hence, $\bar{x} = \bar{z} = y - u + N \in P_T^N(n)$ and $P_N^T(n) \cap P_M^N(n) = P_T^N(n)$.

Theorem 2.7: Let K be a h-pure submodule of M containing N. Then $P_n(M, N) \simeq P_n(K, N)$, for all $n \ge 0$.

Proof: Let $T = P_N^M(n)$, $U = P_M^N(n)$ and V = K/N. We find that

$$T \cap V = Soc((H_n(M) + N)/N) \cap K/N$$

= $Soc(((H_n(M) + N) \cap K)/N)$
= $Soc(((H_n(M) \cap K) + N)/N)$
= $Soc((H_n(K) + N)/N)$
= $P_N^K(n)$

and

$$U \cap V = \left((Soc(H_n(M)) + N)/N \right) \cap K/N$$

= $\left((Soc(H_n(M)) + N) \cap K \right)/N$
= $\left((Soc(H_n(M)) \cap K) + N \right)/N$
= $\left(Soc(H_n(K)) + N \right)/N$
= $P_K^N(n)$

Therefore $P_n(M, N) = T/U$ and $P_n(K, N) = (T \cap V)/(U \cap V)$. By Dedekind short exact sequence and Theorem 3.5 in [6], we have $P_n(M, N) \simeq P_n(K, N)$, for all $n \ge 0$.

An immediate consequence of the above theorem is stated below.

Corollary 2.8: N is h-pure in M if and only if $P_n(M, N) = 0$, for all $n \ge 0$.

Remark 2.9: $P_M^N(n) \cap P_N^M(n+1) = \left(\left((N + H_{n+1}(M)) \cap Soc(H_n(M)) \right) + N \right) / N.$

Now we establish the relation between $Q_n(M, N)$ and $P_n(M, N)$.

Proposition 2.10: For some non-negative integer n, $Q_n(M, N) = 0$ if and only if $P_M^N(n) \cap P_N^M(n+1) = P_M^N(n+1)$.

Proof: Necessity is an immediate consequence of Remark 2.9. Since

$$\left((N + H_{n+1}(M)) \cap Soc(H_n(M)) \right) \subset \left(Soc(H_{n+1}(M)) + N \right),$$

then by Remark 2.9, the converse is also trivial.

154

Next, we give a necessary condition on a submodule N to be a semi h-pure submodule of M.

Proposition 2.11: Let N be a semi h-pure submodule of M, then there exists a non-negative integer k such that $Q_n(M, N) = 0$ for all $n \ge k$.

Proof: Since N is semi h-pure in M, then from Theorem 3 in [2], there exists a h-pure submodule K of M and a non-negative integer k such that $Soc(H_k(K)) \subset N \subset K$. Then

$$N^{n}(K) = (N + H_{n+1}(K)) \cap Soc(H_{n}(K)) = Soc(H_{n}(K)) = N_{n}(K)$$

for $n \ge k$. Therefore $Q_n(K, N) = 0$ for all $n \ge m$, and from Theorem 4.2 in [6], $Q_n(M, N) = 0$ for all $n \ge k$.

Using $P_n(M, N)$ we can characterize *h*-neat submodules of *M* as follows:

Proposition 2.12: A submodule N of M is h-neat if and only if $P_0(M, N) = 0$.

Proof: Let us suppose that N is h-neat in M. Let $\bar{y} \in P_N^M(0)$, where $y \in M$. Then $\bar{y}R = (yR + N)/N \simeq yR/(yR \cap N)$. Hence $d(yR/(yR \cap N)) = 1$. Put $yR \cap N = zR$. Since N is h-neat, therefore there exists a uniform element $w \in N$ such that $y \in wR$ and d(wR/zR) = 1. Appealing to Lemma 2.3 in [9], we get $e(y-z) \leq 1$, so $y - z \in Soc(M)$ and we get $\bar{y} \in P_M^N(0)$. Thus $P_N^M(0) = P_M^N(0)$. Hence $P_0(M, N) = 0$. Conversely, let x be a uniform element in $N \cap H_1(M)$, then we can find a uniform element $y \in M$ such that d(yR/xR) = 1. Hence $e(\bar{y}) = 1$ and so $\bar{y} \in Soc(M/N)$. Therefore, $\bar{y} = \bar{z}$, where $z \in Soc(M)$. Now $xR = H_1(yR) = H_1((y-z)R) \subseteq H_1(N)$. Hence N is h-neat submodule of M.

Proposition 2.13: If Soc(N) is *h*-dense in Soc(M), then every *h*-neat submodule containing Soc(N) is *h*-pure in *M*. In particular *N* has a *h*-pure hull whose socle is Soc(N).

Proof: Since Soc(N) is *h*-dense in Soc(M), so $Soc(M) \subset Soc(N) + H_n(M)$. Let *K* be a *h*-neat submodule of *M* containing Soc(N). Then,

$$K^{n}(M) = (K \cap H_{n+1}(M)) \cap Soc(H_{n}(M)) = Soc(H_{n}(M)) = K_{n}(M).$$

Therefore, $Q_n(M, K) = 0$ for all $n \ge 0$. Now appealing to Theorem 4.3 in [6], K is *h*-pure submodule of M. Thus every *h*-neat hull of N is a *h*-pure hull of N.

3. Kernel of *h*-purity

Firstly we recall the definition of kernel of *h*-purity.

Definition 3.1: If N is a submodule of a QTAG-module M, then N is called kernel of h-purity if all h-neat hulls of N are h-pure submodules of M. [3]

In [3], Khan has characterized kernel of *h*-purity. But, since kernel of *h*-purity are semi *h*-pure submodules, so here arise a case to give another characterization, which is given by using the concept of $P_n(M, N)$.

In view of the above discussion, it is trivial that if N is a kernel of h-purity, then N satisfies $Q_n(M, N) = 0$ for almost all n.

First, we need the following useful Lemmas.

Lemma 3.2: If $P_M^N(0) = P_M^N(k) \neq P_M^N(k+1)$ and $P_{k+1}(M,N) \neq 0$ for some non-negative integer k, then there exists a h-neat hull of N in M which is not h-pure in M.

Proof: Since $P_M^N(0) = P_M^N(k) \neq P_M^N(k+1)$, then there exists $x \in Soc(M)$ such that $x \notin Soc(H_{k+1}(M)) + Soc(N)$. Since $P_{k+1}(M, N) \neq 0$, then we get an element $\bar{y} \in P_N^M(k+1)$ such that $\bar{y} \notin P_M^N(k+1)$, where $y \in H_{k+1}(M)$ and there exists an element $z \in M$ such that d(zR/yR) = k+1. Let us define K = (x+y)R + N. Now we have to show that Soc(K) = Soc(N). Suppose on contrary $Soc(K) \neq Soc(N)$. For any $(x+y)r + a \in Soc(K)$, where $r \in R$ and $a \in N$, either xrR = xR or xr = 0. If xr = 0, then $yr + a \in Soc(M)$. Now by hypothesis, $\bar{y} \in P_M^N(0) = P_M^N(k)$. Appealing to Theorem 4.3 in [6], we know that all *h*-neat hulls of *N* are not *h*-pure in *M* if $Q_k(M,N) \neq 0$. Therefore, we assume that $Q_k(M,N) = 0$. Using Proposition 2.10, we get $\bar{y} \in P_M^N(k+1)$, which shows a contradiction. Hence, Soc(K) = Soc(N). Now, let *T* be a *h*-neat hull of *N* in *M* such that $K \subseteq T$, and so $\bar{y} \in P_T^M(k+1)$. If we suppose that $\bar{y} \in P_M^T(k+1)$, then y = u + v, for some $u \in Soc(H_{k+1}(M))$ and $v \in T$. Therefore, x = y + x - (u + v) and $y + x - v \in Soc(T) = Soc(N)$. Hence, $x \in Soc(H_{k+1}(M)) + Soc(N)$, which shows a contradiction. Hence, $\bar{y} \notin P_M^T(k+1)$ and $P_{k+1}(M,T) \neq 0$. Appealing to Corollary 2.8, *T* is not *h*-pure in *M*.

Lemma 3.3: For non-negative integer k and t, we have

$$P_{k+t}(M,N) \simeq P_t\Big(H_k(M), H_k(M) \cap N\Big).$$

156

Proof: We know that

$$P_{k+t}(M,N) \simeq \frac{\left(I_M(N) \cap (H_{k+t}(M) + N)\right)}{\left(Soc(H_{k+t}(M)) + N\right)}$$

and

$$P_t\Big(H_k(M), \ H_k(M) \ \cap \ N\Big) \simeq \frac{\Big(I_M(N) \cap (H_{k+t}(M) + N) \cap H_k(M)\Big)}{\Big((Soc(H_{k+t}(M)) + N) \cap H_k(M)\Big)}$$

Put $T = I_M(N) \cap (H_{k+t}(M) + N)$, $U = Soc(H_{k+t}(M)) + N$ and $V = H_k(M)$. Then

$$(T \cap V) + U = \left(\left(I_M(N) \cap \left(H_{k+t}(M) + N \right) \right) \cap H_k(M) \right) + \left(Soc(H_{k+t}(M)) + N \right)$$
$$= I_M(N) \cap \left(H_{k+t}(M) + \left(H_k(M) \cap N \right) + Soc(H_{k+t}(M)) + N \right)$$
$$= I_M(N) \cap \left(H_{k+t}(M) + H_k(N) \right) + Soc(H_{k+t}(M)) + N \right)$$
$$= I_M(N) \cap \left(H_{k+t}(M) + N \right)$$
$$= T$$

By Dedekind short exact sequence, we get $P_{k+t}(M, N) \simeq P_t\Big(H_k(M), H_k(M) \cap N\Big).$

Using Corollary 2.8 and Lemma 3.3, we establish a theorem which gives the relation between $P_n(M, N)$ and $P_n(M, T)$, where T is h-neat hull of N in M.

Lemma 3.4: Let T be a h-neat hull of N in M. If $P_{k+n}(M, N) = 0$ for all $n \ge 1$, then $P_{k+n}(M, T) = 0$ for all $n \ge 1$.

Proof: By Corollary 2.8 and Lemma 3.3, $H_k(M) \cap N$ is *h*-pure in $H_k(M)$. Since $Soc(H_k(M) \cap N) = Soc(H_k(M) \cap T)$, therefore $H_k(M) \cap N = H_k(M) \cap T$. Hence $P_{k+n}(M,T) = 0$ for all $n \ge 1$.

Now we give a new characterization for kernel of h-purity.

Theorem 3.5: N is a kernel of h-purity in M if and only if Soc(N) is h-dense in M or there exists a non-negative integer k such that $P_M^N(0) = P_M^N(k) \neq P_M^N(k+1)$ and $P_n(M,N) = 0$ for all n > k.

Proof: Let us suppose that N be a kernel of h-purity in M. If Soc(N) is not h-dense in Soc(M), then there exists a smallest non-negative integer k such that $Soc(M) = Soc(N) + Soc(H_k(M))$ and $Soc(M) \neq Soc(N) + Soc(H_t(M))$ for $t \ge k$. Therefore, $P_M^N(0) = P_M^N(k) \neq P_M^N(k+1)$. By Lemma 3.2, we get $P_{k+1}(M, N) = 0$. Furthermore, by Theorem 4.3 in [6], $Q_n(M, N) = 0$ for all $n \ge 0$, and by Proposition 2.10, $P_n(M, N) = 0$ for all n > k.

Conversely, let T be a h-neat hull of N in M. Then by Lemma 3.4, $P_n(M,T) = 0$ for all n > k. Hence, by Proposition 2.10, $Q_n(M,T) = 0$ for all $n \ge k$. Since Soc(N) = Soc(T), $P_M^T(0) = P_M^T(k) \ne P_M^T(k+1)$. By Remark 2.2, $Q_n(M,T) = 0$ for all $n \ge 0$. Hence by Theorem 4.3 in [6], T is h-pure in M. If Soc(N) is h-dense, then N is a kernel of h-purity.

4. Some Sufficiency Conditions for semi h-pure Submodules

In this section we proved a necessary condition that a submodule N of M is semi hpure submodule of M if there exists a non-negative integer k such that $Q_N(M, N) = 0$ for all $n \ge k$. Furthermore, we show that this condition becomes sufficient if N is almost h-dense in M.

Theorem 4.1: Let N be almost h-dense in M. Then N is semi h-pure in M if and only if there exists a non-negative integer k such that $Q_n(M, N) = 0$ for all $n \ge k$.

Proof: Suppose that $Q_n(M, N) = 0$ for all $n \ge k$. Since N is almost h-dense in M, then from Theorem 5 in [1], $Soc(H_n(M)) \subset N + H_{n+1}(M)$. Hence, we have

$$Soc(H_n(M)) = N^n(M) = N_n(M) = Soc(N \cap H_n(M)) + Soc(H_{n+1}(M))$$

for all $n \ge k$. Therefore, $Soc(N \cap H_k(M))$ is a *h*-dense in $H_k(M)$. Let *K* be a *h*-neat submodule of $H_k(M)$ containing $Soc(N \cap H_k(M))$. Now from Proposition 2.12, *K* is *h*-pure in $H_k(M)$ such that $Soc(K) \subset N \cap H_k(M) \subset K$. Furthermore, $H_k(M)/K$ is *h*-divisible. We can easily see that (N + K)/K is disjoint from $H_k(M)/K$. Thus (N+K)/K can be extended to T/K such that $(T/K) \oplus (H_k(M)/K) = (M/K)$. Since *K* is *h*-pure in $H_k(M)$, then appealing to Proposition 2.5 in [5], *T* is *h*-pure in *M*. Now clearly $H_k(T) = K$. Therefore, $Soc(H_k(T)) \subset Soc(K) \subset N$. Hence, *N* is semi *h*-pure.

Now using the proof of above theorem and our notation, we obtain the following result. This is a sufficient condition for semi h-pure submodules.

Theorem 4.2: Let k be a non-negative integer. If $P_M^N(n) = P_M^N(n+1)$ for all $n \ge k$, then N is a semi h-pure submodule of M.

Proof: By Remark 2.9 and Proposition 2.10, $Q_n(M, N) = 0$ and $(H_{n+1}(M) + N) \cap$ $Soc(H_n(M)) = Soc(H_n(M))$ for all $n \ge k$. From the above Theorem, N is a semi *h*-pure submodule of M.

Let k be a non-negative integer. Suppose that $P_n(M, N) = 0$ for all $n \ge k$. Then by Proposition 2.10, N satisfies the necessary condition for semi h-pure submodule, namely $Q_n(M, N) = 0$ for all $n \ge k - 1$. Furthermore, if k = 0, then by Corollary 2.8, N is h-pure in M, and if k = 1, then by Theorem 3.5, N is a kernel of h-purity in M.

With these statements, we assume that, if k is an integer and $P_n(M, N) = 0$ for all $n \ge k$, then N is a semi h-pure submodule. Now we prove a theorem which shows that this assumption is true. This is also a sufficient condition for semi h-pure submodules.

Theorem 4.3: Let k be a non-negative integer. If $P_n(M, N) = 0$ for all $n \ge k$, then N is a semi h-pure submodule of M.

Proof: Let us consider the family $F = \left\{ K / K \supseteq N \text{ and } K \cap H_k(M) = N \cap H_k(M) \right\}$ of submodules of M. By Zorn's Lemma, F will contain a maximal element, say T, then $T/(N \cap H_k(M))$ is a complement of $(H_k(M))/(N \cap H_k(M))$ in $M/(N \cap H_k(M))$. Therefore,

$$Soc(T/(N \cap H_k(M))) \oplus Soc((H_k(M))/(N \cap H_k(M))) = Soc(M/(N \cap H_k(M))).$$

Since $N \cap H_k(M)$ is h-pure in $H_k(M)$, by Corollary 2.8 and Lemma 3.3, we get

$$Soc\Big((H_k(M))/(N\cap H_k(M))\Big) = \Big(Soc(H_k(M)) + (N\cap H_k(M))\Big)\Big/\Big(N\cap H_k(M)\Big).$$

Now we prove that T is *h*-neat in M. Let x be a uniform element in $T \cap H_1(M)$, then there exists a uniform element $y \in M$ such that d(yR/xR) = 1. Due to *h*-neatness of $T/(N \cap H_k(M))$ in $M/(N \cap H_k(M))$ there exists an element $\overline{z} \in T/(N \cap H_k(M))$ such that $\overline{z} \in \overline{y}R$ and $d(\overline{y}R/\overline{z}R) = 1$. Appealing to Lemma 2.3 in [9], we get $e(\overline{y}-\overline{z}) \leq 1$, so $\overline{y}-\overline{z} \in Soc(M/(N \cap H_k(M)))$. Hence, y-z = u+v+a, where $u \in T$, $v \in Soc(H_k(M))$ and $a \in (N \cap H_k(M))$. This implies that $xR = H_1(yR) = H_1((z+u+v+a)R) \subseteq H_1(T)$. Therefore, T is *h*-neat in M. Now for $x' \in Soc(M) \smallsetminus (N \cap H_k(M))$, x' = u' + v' + a' where $u' \in T, v' \in Soc(H_k(M))$ and $a' \in N \cap H_k(M)$. Since $T \supset N$ and $Soc(M) = Soc(T) + Soc(H_k(M))$. Hence, $P_M^T(0) = P_M^T(k)$. Now by Lemma 3.3, we have

$$P_{k+n}(M,T) \simeq P_n\Big(H_k(M), H_k(M) \cap T\Big) = P_n\Big(H_k(M), H_k(M) \cap N\Big) = P_{k+n}(M,N) = 0,$$

for all $n \ge 0$. By Theorem 3.5, T is a kernel of h-purity in M. Since T is h-neat in M, T is h-pure in M. Also $Soc(H_k(T)) = T \cap H_k(M) = N \cap H_k(M) \subset N$, N is semi h-pure in M.

Corollary 4.4: Let k be a non-negative integer. Suppose that $P_n(M, N) = 0$ for all $n \ge k$. Then N is a semi h-pure submodule of M. Moreover,

(1) If k = 0, then N is h-pure in M, and

(2) If k = 1, then N is a kernel of h-purity in M.

References

- [1] Ahmad Mofeed, Ansari, A. Halim and Khan, M.Z., Some decomposition theorems on S_2 modules, Tamkang Journal of Mathematics, 11(2) (1980), 203-208.
- [2] Khan, M.Z., Modules behaving like torsion abelian groups, Math. Japonica, 22(5) (1978), 513-518.
- [3] Khan, M.Z., On h-purity in QTAG-modules, Communications in Algebra, 16 (1988), 2649-2660.
- [4] Khan, M.Z., Some generalizations in abelian groups, Tamkang Journal of Mathematics, 19(2) (1988), 7-11.
- [5] Khan, M.Z. and Bano, R., Some decomposition theorems in abelian groups like modules, Soochow Journal of mathematics, 18(1) (1992), 1-7.
- [6] Khan, M.Z. and Zubair, A., On Quasi h-pure submodules of QTAG-modules, International J. Math. and Math. Sci., 24(7) (2000), 493-499.
- [7] Mehdi, Alveera and Sikander, Fahad, Some Characterizations of submodules of QTAG-modules, Scientia, Series A, 18 (2009), 39-46.
- [8] Singh, S., Some decomposition theorems in abelian groups and their generalizations, Proc. Ohio. Univ. Conf. Marcel Dekker N. Y., (1976), 183-189.
- [9] Sing, S., Abelian groups like modules, Act. Math. Hung., 50 (1987), 85-95.

Received 02 11 2009, revised 03 09 2010

*Current address: Department of Mathematics Aligarh Muslim University, Aligarh-202 002 India *E-mail address*: gargi2110@gmail.com

**Current address: Department of Mathematics, Aligarh Muslim University, Aligarh-202 002 India

E-mail address: mz_alig@yahoo.com