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Valparáıso, Chile
ISSN 0716-8446
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On Semi h-Pure Submodules of QTAG-Modules

Gargi Varshney∗ M.Z. Khan∗∗

Abstract. The study of QTAG-modules was initiated by Singh [9]. The struc-
ture theory of such modules has been developed on similar lines as that of torsion

abelian groups. Different concepts and decomposition theorems have been done

for QTAG-modules by a number of authors. The purpose of this paper is to study
the semi h-pure submodules of QTAG-modules and their characterizations. The

concept of semi h-pure submodules is introduced by A. Mehdi [7]. A submodule

N of a QTAG-module M is semi h-pure in M if it is not h-pure but it is contained
in a h-pure submodule of M . It is well known that all submodules of M are semi

h-pure if and only if M is a direct sum of a h-divisible and a bounded submodule.
In [6], Khan introduced an invariant for every submodule N of M and for every

non-negative integer n, denoted by Qn(M, N). Here we obtain a necessary con-

dition on a submodule N to be a semi h-pure submodule of M . This condition
turns out to be also sufficient if N is an almost h-dense submodule of M . But,

in general, this condition is not sufficient. For example, if N is a subsocle of M ,

then Qn(M, N) = 0 for all n > 0. However, it is known that N is not necessarily
a semi h-pure submodule.

In section 2, we introduce a new invariant for every submodule N of M and every
non-negative integer n, denoted by Pn(M, N). This invariant gives a sufficient

condition on a submodule to be a semi h-pure submodule of M . But, in general,

this condition is not necessary. Here we also give some interesting properties of
Pn(M, N) and the relation between Qn(M, N) and Pn(M, N).

In section 3, we give a new characterization of kernels of h-purity in terms of

Pn(M, N). In view of this characterization, it is clear that N satisfies the neces-
sary condition that Qn(M, N) = 0 for all n > 0.

In section 4, we establish a sufficient condition for a submodule to be a semi h-pure

submodule i.e. If Pn(M, N) = 0 for all n > k, then N is semi h-pure submodule.
Furthermore, we have N is h-pure in M if k = 0 and N is kernel of h-purity in M

if k = 1.
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1. Introduction and Priliminaries

Following [9], a unital module MR is called QTAG-module if it satisfies the fol-
lowing condition:
(1) Every finitely generated submodule of every homomorphic image of M is a direct
sum of uniserial modules.
All rings considered in this paper contain unity and modules are unital QTAG-module.
The structure theory of such modules has been developed by various authors. A
module in which the lattice of its submodule is totally ordered with finite compo-
sition length is called a uniserial module. An element x ∈ M is called a uniform
element if xR is a nonzero uniform (hence uniserial) submodule of M . For any mod-
ule MR with a composition series, d(M) denotes its length. If x ∈ M is uniform, then
e(x) = d(xR) and HM (x) = sup

{
d(yR/xR)/y ∈ M and y is uniform with x ∈ yR

}
are called exponent of x and height of x, respectively. For any non-negative integer
n > 0,Hn(M) = {x ∈ M/HM (x) > n}. A submodule N of M is called h-pure in M
if Hn(N) = N ∩Hn(M) for all n > 0, and N is called h-neat if H1(N) = N ∩H1(M).
The module M is called h-divisible if H1(M) = M . A submodule N of M is called
h-dense if M/N is h-divisible, and N is called almost h-dense in M if for every h-pure
submodule K of M containing N, M/K is h-divisible. For any module M , Soc(M)
denotes the socle of M . A subsocle S of a QTAG-module M is said to be h-dense
in Soc(M) if S + Soc(Hn(M)) = Soc(M) for all n > 0. If N is a submodule of M ,
then h-neat hull of N is defined as the minimal h-neat submodule K of M , such that
N ⊆ K and a submodule K of M is complement of N if it is maximal with the prop-
erty K ∩N = 0. For other basic concepts of QTAG-modules one may see [3,4,5,8,9].

We start with the following definitions.

Definition 1.1: A submodule N of a QTAG-module M is said to be semi h-pure
submodule of M if it is not h-pure but it is contained in a h-pure submodule of M .
The minimal h-pure submodule of M , containing N is said to be the h-pure hull of N
in M . [7]

Definition 1.2: For every non-negative integer n, we denote by Nn(M) the submod-
ule: N+Hn+1(M) ∩ Soc(Hn(M)) and by Nn(M) the submodule: N ∩ Soc((Hn(M)) +
Soc(Hn+1(M)) and by Qn(M,N) = Nn(M)/Nn(M). [6]

2. Some Properties of Pn(M,N)

In this section we introduce a new invariant Pn(M,N), for every submodule N of
M and every non-negative integer n. We present here some interesting properties of
Pn(M,N) and the relation between Qn(M,N) and Pn(M,N).
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Notation 2.1: For every non-negative integer n, we denote by PM
N (n) the submodule:

Soc(Hn(M/N)) = Soc
(
(Hn(M)+N)/N

)
and PN

M (n) the submodule: (Soc(Hn(M))+
N)/N .

Remark 2.2: Evidently if Soc(N) is h-dense in Soc(M) then

PN
M (n) = PN

M (n + 1)

for all n > 0.

Definition 2.3: For every non-negative integer n, we define

Pn(M,N) =
PM

N (n)
PN

M (n)
.

Next, we recall the definition of submodule Hk(N) of M which is established in [4].

Definition 2.4: For any submodule N of M and for any k > 0,Hk(N) defined by
the submodule generated by those uniform elements x ∈ M for which
d
(
xR/(xR ∩N)

)
6 k.

Remark 2.5: It is evident from the above definition that,

Pn(M,N) '
(
H1(N) ∩ (Hn(M) + N)

)/(
Soc(Hn(M) + N

)
.

Lemma 2.6: Let T be a proper h-pure submodule of M containing N . Then
PM

N (n) = PT
N (n) + PN

M (n) and PT
N (n) ∩ PN

M (n) = PN
T (n), for all n > 0.

Proof: Let x̄ ∈ PM
N (n), where x ∈ Hn(M). Therefore there exists y ∈ N such that

d(xR/yR) = 1, then y ∈ N ∩ T ∩Hn+1(M). Since T is h-pure in M, y ∈ Hn+1(T ).
Therefore there exists z ∈ Hn(T ) such that d(zR/yR) = 1. Appealing to Lemma
2.3 in [9], we get e(x − z) 6 1 and (x − z) ∈ Soc(Hn(M)). Next, x̄ = z̄ + ū, where
u ∈ Soc(Hn(M)) and x̄ ∈ PT

N (n)+PN
M (n). Hence, PM

N (n) = PT
N (n)+PN

M (n). Now let
x̄ ∈ PT

N (n) ∩ PN
M (n), then we have x̄ = ȳ = z̄, where ȳ ∈ PT

N (n) and z̄ ∈ PN
M (n). As

y−z ∈ N , where y ∈ Hn(T ) and z ∈ Soc(Hn(M)) we have y−z ∈ T ∩Hn(M) and so,
y−z = u ∈ Hn(T ). Next, z = y−u ∈ Soc(Hn(T )). Hence, x̄ = z̄ = y−u+N ∈ PN

T (n)
and PT

N (n) ∩ PN
M (n) = PN

T (n).
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Theorem 2.7: Let K be a h-pure submodule of M containing N . Then Pn(M,N) '
Pn(K, N), for all n > 0.

Proof: Let T = PM
N (n), U = PN

M (n) and V = K/N . We find that

T ∩ V = Soc
(
(Hn(M) + N)/N

)
∩K/N

= Soc
(
((Hn(M) + N) ∩K)/N

)
= Soc

(
((Hn(M) ∩K) + N)/N

)
= Soc

(
(Hn(K) + N)/N

)
= PK

N (n)

and

U ∩ V =
(
(Soc(Hn(M)) + N)/N

)
∩K/N

=
(
(Soc(Hn(M)) + N) ∩K

)
/N

=
(
(Soc(Hn(M)) ∩K) + N

)
/N

=
(
Soc(Hn(K)) + N

)
/N

= PN
K (n)

Therefore Pn(M,N) = T/U and Pn(K, N) = (T ∩ V )/(U ∩ V ). By Dedekind short
exact sequence and Theorem 3.5 in [6], we have Pn(M,N) ' Pn(K, N), for all n > 0.

An immediate consequence of the above theorem is stated below.

Corollary 2.8: N is h-pure in M if and only if Pn(M,N) = 0, for all n > 0.

Remark 2.9: PN
M (n) ∩ PM

N (n + 1) =
((

(N + Hn+1(M)) ∩ Soc(Hn(M))
)

+ N
)/

N .

Now we establish the relation between Qn(M,N) and Pn(M,N).

Proposition 2.10: For some non-negative integer n, Qn(M,N) = 0 if and only if
PN

M (n) ∩ PM
N (n + 1) = PN

M (n + 1).

Proof: Necessity is an immediate consequence of Remark 2.9. Since(
(N + Hn+1(M)) ∩ Soc(Hn(M))

)
⊂

(
Soc(Hn+1(M)) + N

)
,

then by Remark 2.9, the converse is also trivial.
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Next, we give a necessary condition on a submodule N to be a semi h-pure sub-
module of M .

Proposition 2.11: Let N be a semi h-pure submodule of M , then there exists a
non-negative integer k such that Qn(M,N) = 0 for all n > k.

Proof: Since N is semi h-pure in M , then from Theorem 3 in [2], there exists a h-pure
submodule K of M and a non-negative integer k such that Soc(Hk(K)) ⊂ N ⊂ K.
Then

Nn(K) = (N + Hn+1(K)) ∩ Soc(Hn(K)) = Soc(Hn(K)) = Nn(K)

for n > k. Therefore Qn(K, N) = 0 for all n > m, and from Theorem 4.2 in [6],
Qn(M,N) = 0 for all n > k.

Using Pn(M,N) we can characterize h-neat submodules of M as follows:

Proposition 2.12: A submodule N of M is h-neat if and only if P0(M,N) = 0.

Proof: Let us suppose that N is h-neat in M . Let ȳ ∈ PM
N (0), where y ∈ M .

Then ȳR = (yR + N)/N ' yR/(yR ∩ N). Hence d
(
yR/(yR ∩ N)

)
= 1. Put

yR∩N = zR. Since N is h-neat, therefore there exists a uniform element w ∈ N such
that y ∈ wR and d(wR/zR) = 1. Appealing to Lemma 2.3 in [9], we get e(y−z) 6 1, so
y − z ∈ Soc(M) and we get ȳ ∈ PN

M (0). Thus PM
N (0) = PN

M (0). Hence P0(M,N) = 0.
Conversely, let x be a uniform element in N ∩ H1(M), then we can find a uniform
element y ∈ M such that d(yR/xR) = 1. Hence e(ȳ) = 1 and so ȳ ∈ Soc(M/N).
Therefore, ȳ = z̄, where z ∈ Soc(M). Now xR = H1(yR) = H1((y − z)R) ⊆ H1(N).
Hence N is h-neat submodule of M .

Proposition 2.13: If Soc(N) is h-dense in Soc(M), then every h-neat submodule
containing Soc(N) is h-pure in M . In particular N has a h-pure hull whose socle is
Soc(N).

Proof: Since Soc(N) is h-dense in Soc(M), so Soc(M) ⊂ Soc(N) + Hn(M). Let K
be a h-neat submodule of M containing Soc(N). Then,

Kn(M) = (K ∩Hn+1(M)) ∩ Soc(Hn(M)) = Soc(Hn(M)) = Kn(M).

Therefore, Qn(M,K) = 0 for all n > 0. Now appealing to Theorem 4.3 in [6], K is
h-pure submodule of M . Thus every h-neat hull of N is a h-pure hull of N .
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3. Kernel of h-purity

Firstly we recall the definition of kernel of h-purity.

Definition 3.1: If N is a submodule of a QTAG-module M , then N is called kernel
of h-purity if all h-neat hulls of N are h-pure submodules of M . [3]

In [3], Khan has characterized kernel of h-purity. But, since kernel of h-purity are
semi h-pure submodules, so here arise a case to give another characterization, which
is given by using the concept of Pn(M,N).

In view of the above discussion, it is trivial that if N is a kernel of h-purity, then
N satisfies Qn(M,N) = 0 for almost all n.

First, we need the following useful Lemmas.

Lemma 3.2: If PN
M (0) = PN

M (k) 6= PN
M (k + 1) and Pk+1(M,N) 6= 0 for some non-

negative integer k, then there exists a h-neat hull of N in M which is not h-pure in M .

Proof: Since PN
M (0) = PN

M (k) 6= PN
M (k + 1), then there exists x ∈ Soc(M) such

that x /∈ Soc(Hk+1(M)) + Soc(N). Since Pk+1(M,N) 6= 0, then we get an element
ȳ ∈ PM

N (k + 1) such that ȳ /∈ PN
M (k + 1), where y ∈ Hk+1(M) and there exists an

element z ∈ M such that d(zR/yR) = k + 1. Let us define K = (x + y)R + N . Now
we have to show that Soc(K) = Soc(N). Suppose on contrary Soc(K) 6= Soc(N). For
any (x + y)r + a ∈ Soc(K), where r ∈ R and a ∈ N , either xrR = xR or xr = 0. If
xr = 0, then yr + a ∈ Soc(M). Now by hypothesis, ȳ ∈ PN

M (0) = PN
M (k). Appealing

to Theorem 4.3 in [6], we know that all h-neat hulls of N are not h-pure in M if
Qk(M,N) 6= 0. Therefore, we assume that Qk(M,N) = 0. Using Proposition 2.10,
we get ȳ ∈ PN

M (k + 1), which shows a contradiction. Hence, Soc(K) = Soc(N).
Now, let T be a h-neat hull of N in M such that K ⊆ T , and so ȳ ∈ PM

T (k + 1). If
we suppose that ȳ ∈ PT

M (k + 1), then y = u + v, for some u ∈ Soc(Hk+1(M)) and
v ∈ T . Therefore, x = y + x − (u + v) and y + x − v ∈ Soc(T ) = Soc(N). Hence,
x ∈ Soc(Hk+1(M)) + Soc(N), which shows a contradiction. Hence, ȳ /∈ PT

M (k + 1)
and Pk+1(M,T ) 6= 0. Appealing to Corollary 2.8, T is not h-pure in M .

Lemma 3.3: For non-negative integer k and t, we have

Pk+t(M,N) ' Pt

(
Hk(M),Hk(M) ∩N

)
.
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Proof: We know that

Pk+t(M,N) '

(
IM (N) ∩ (Hk+t(M) + N)

)
(
Soc(Hk+t(M)) + N

)
and

Pt

(
Hk(M), Hk(M) ∩ N

)
'

(
IM (N) ∩ (Hk+t(M) + N) ∩Hk(M)

)
(
(Soc(Hk+t(M)) + N) ∩Hk(M)

)
Put T = IM (N) ∩ (Hk+t(M) + N), U = Soc(Hk+t(M)) + N and V = Hk(M).
Then

(T ∩ V ) + U =
((

IM (N) ∩ (Hk+t(M) + N)
)
∩Hk(M)

)
+

(
Soc(Hk+t(M)) + N

)
= IM (N) ∩

(
Hk+t(M) + (Hk(M) ∩N) + Soc(Hk+t(M)) + N

)
= IM (N) ∩

(
Hk+t(M) + Hk(N)) + Soc(Hk+t(M)) + N

)
= IM (N) ∩ (Hk+t(M) + N)
= T

By Dedekind short exact sequence, we get Pk+t(M,N) ' Pt

(
Hk(M),Hk(M) ∩N

)
.

Using Corollary 2.8 and Lemma 3.3, we establish a theorem which gives the rela-
tion between Pn(M,N) and Pn(M,T ), where T is h-neat hull of N in M .

Lemma 3.4: Let T be a h-neat hull of N in M . If Pk+n(M,N) = 0 for all n > 1,
then Pk+n(M,T ) = 0 for all n > 1.

Proof: By Corollary 2.8 and Lemma 3.3, Hk(M) ∩ N is h-pure in Hk(M). Since
Soc(Hk(M) ∩ N) = Soc(Hk(M) ∩ T ), therefore Hk(M) ∩ N = Hk(M) ∩ T . Hence
Pk+n(M,T ) = 0 for all n > 1.

Now we give a new characterization for kernel of h-purity.

Theorem 3.5: N is a kernel of h-purity in M if and only if Soc(N) is h-dense in M
or there exists a non-negative integer k such that PN

M (0) = PN
M (k) 6= PN

M (k + 1) and
Pn(M,N) = 0 for all n > k.
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Proof: Let us suppose that N be a kernel of h-purity in M . If Soc(N) is not
h-dense in Soc(M), then there exists a smallest non-negative integer k such that
Soc(M) = Soc(N) + Soc(Hk(M)) and Soc(M) 6= Soc(N) + Soc(Ht(M)) for t > k.
Therefore, PN

M (0) = PN
M (k) 6= PN

M (k + 1). By Lemma 3.2, we get Pk+1(M,N) = 0.
Furthermore, by Theorem 4.3 in [6], Qn(M,N) = 0 for all n > 0, and by Proposition
2.10, Pn(M,N) = 0 for all n > k.
Conversely, let T be a h-neat hull of N in M . Then by Lemma 3.4, Pn(M,T ) = 0
for all n > k. Hence, by Proposition 2.10, Qn(M,T ) = 0 for all n > k. Since
Soc(N) = Soc(T ), PT

M (0) = PT
M (k) 6= PT

M (k + 1). By Remark 2.2, Qn(M,T ) = 0 for
all n > 0. Hence by Theorem 4.3 in [6], T is h-pure in M . If Soc(N) is h-dense, then
N is a kernel of h-purity.

4. Some Sufficiency Conditions for semi h-pure Submodules

In this section we proved a necessary condition that a submodule N of M is semi h-
pure submodule of M if there exists a non-negative integer k such that QN (M,N) = 0
for all n > k. Furthermore, we show that this condition becomes sufficient if N is al-
most h-dense in M .

Theorem 4.1: Let N be almost h-dense in M . Then N is semi h-pure in M if and
only if there exists a non-negative integer k such that Qn(M,N) = 0 for all n > k.

Proof: Suppose that Qn(M,N) = 0 for all n > k. Since N is almost h-dense in M ,
then from Theorem 5 in [1], Soc(Hn(M)) ⊂ N + Hn+1(M). Hence, we have

Soc(Hn(M)) = Nn(M) = Nn(M) = Soc(N ∩Hn(M)) + Soc(Hn+1(M))

for all n > k. Therefore, Soc(N ∩Hk(M)) is a h-dense in Hk(M). Let K be a h-neat
submodule of Hk(M) containing Soc(N ∩Hk(M). Now from Proposition 2.12, K is
h-pure in Hk(M) such that Soc(K) ⊂ N ∩ Hk(M) ⊂ K. Furthermore, Hk(M)/K
is h-divisible. We can easily see that (N + K)/K is disjoint from Hk(M)/K. Thus
(N +K)/K can be extended to T/K such that (T/K)⊕(Hk(M)/K) = (M/K). Since
K is h-pure in Hk(M), then appealing to Proposition 2.5 in [5], T is h-pure in M .
Now clearly Hk(T ) = K. Therefore, Soc(Hk(T )) ⊂ Soc(K) ⊂ N . Hence, N is semi
h-pure.

Now using the proof of above theorem and our notation, we obtain the following
result. This is a sufficient condition for semi h-pure submodules.

Theorem 4.2: Let k be a non-negative integer. If PN
M (n) = PN

M (n + 1) for all n > k,
then N is a semi h-pure submodule of M .
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Proof: By Remark 2.9 and Proposition 2.10, Qn(M,N) = 0 and (Hn+1(M) + N) ∩
Soc(Hn(M)) = Soc(Hn(M)) for all n > k. From the above Theorem, N is a semi
h-pure submodule of M .

Let k be a non-negative integer. Suppose that Pn(M,N) = 0 for all n > k. Then
by Proposition 2.10, N satisfies the necessary condition for semi h-pure submodule,
namely Qn(M,N) = 0 for all n > k− 1. Furthermore, if k = 0, then by Corollary 2.8,
N is h-pure in M , and if k = 1, then by Theorem 3.5, N is a kernel of h-purity in M .

With these statements, we assume that, if k is an integer and Pn(M,N) = 0 for all
n > k, then N is a semi h-pure submodule. Now we prove a theorem which shows that
this assumption is true. This is also a sufficient condition for semi h-pure submodules.

Theorem 4.3: Let k be a non-negative integer. If Pn(M,N) = 0 for all n > k, then
N is a semi h-pure submodule of M .

Proof: Let us consider the family F =
{

K
/

K ⊇ N and K ∩Hk(M) = N ∩Hk(M)
}

of submodules of M . By Zorn’s Lemma, F will contain a maximal element, say T ,
then T/(N ∩Hk(M)) is a complement of (Hk(M))

/
(N ∩Hk(M)) in M/(N ∩Hk(M)).

Therefore,

Soc
(
T/(N ∩Hk(M))

)
⊕ Soc

(
(Hk(M))/(N ∩Hk(M))

)
= Soc

(
M/(N ∩Hk(M))

)
.

Since N ∩Hk(M) is h-pure in Hk(M), by Corollary 2.8 and Lemma 3.3, we get

Soc
(
(Hk(M))/(N ∩Hk(M))

)
=

(
Soc(Hk(M)) + (N ∩Hk(M))

)/(
N ∩Hk(M)

)
.

Now we prove that T is h-neat in M . Let x be a uniform element in T ∩H1(M),
then there exists a uniform element y ∈ M such that d(yR/xR) = 1. Due to h-neatness
of T/(N∩Hk(M)) in M/(N∩Hk(M)) there exists an element z̄ ∈ T/(N∩Hk(M)) such
that z̄ ∈ ȳR and d(ȳR/z̄R) = 1. Appealing to Lemma 2.3 in [9], we get e(ȳ− z̄) 6 1, so
ȳ−z̄ ∈ Soc

(
M/(N∩Hk(M))

)
. Hence, y−z = u+v+a, where u ∈ T, v ∈ Soc(Hk(M))

and a ∈ (N∩Hk(M)). This implies that xR = H1(yR) = H1((z+u+v+a)R) ⊆ H1(T ).
Therefore, T is h-neat in M . Now for x′ ∈ Soc(M) r (N ∩Hk(M)), x′ = u′ + v′ + a′

where u′ ∈ T, v′ ∈ Soc(Hk(M)) and a′ ∈ N ∩Hk(M). Since T ⊃ N and Soc(M) =
Soc(T ) + Soc(Hk(M)). Hence, PT

M (0) = PT
M (k). Now by Lemma 3.3, we have

Pk+n(M,T ) ' Pn

(
Hk(M),Hk(M)∩T

)
= Pn

(
Hk(M),Hk(M)∩N

)
= Pk+n(M,N) = 0,

for all n > 0. By Theorem 3.5, T is a kernel of h-purity in M . Since T is h-neat in
M, T is h-pure in M . Also Soc(Hk(T )) = T ∩Hk(M) = N ∩Hk(M) ⊂ N, N is semi
h-pure in M .
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Corollary 4.4: Let k be a non-negative integer. Suppose that Pn(M,N) = 0 for all
n > k. Then N is a semi h-pure submodule of M .
Moreover,
(1) If k = 0, then N is h-pure in M , and
(2) If k = 1, then N is a kernel of h-purity in M .
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