SCIENTIA

Series A: Mathematical Sciences, Vol. 20 (2010), 131-142
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
(C) Universidad Técnica Federico Santa María 2010

On the Open Geodetic Number of a Graph

A.P. Santhakumaran ${ }^{a}$ and T. Kumari Latha ${ }^{b}$

Abstract

For a connected graph G of order n, a set $S \subseteq V(G)$ is a geodetic set of G if each vertex $v \in V(G)$ lies on a $x-y$ geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set of G. A set S of vertices of a connected graph G is an open geodetic set of G if for each vertex v in G, either 1) v is an extreme vertex of G and $v \in S$ or 2) v is an internal vertex of a $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number, $o g(G)$. The open geodetic numbers of certain standard graphs are determined. Connected graphs with open geodetic number 2 are characterized. For positive integers r, d and $l \geqslant 2$ with $r<d \leqslant 2 r$, there exists a connected graph of radius r, diameter d and open geodetic number l. It is proved that for a tree T of order n and diameter $d, o g(T)=n-d+1$ if and only if T is a caterpillar. Also for integers n, d and k with $2 \leqslant d<n, 2 \leqslant k<n$ and $n-d-k+1 \geqslant 0$, there exists a graph G of order n, diameter d and open geodetic number k. It is also proved that $o g(G)-2 \leqslant o g\left(G^{\prime}\right) \leqslant o g(G)+1$, where G^{\prime} is the graph obtained from G by adding a pendant edge to G.

1. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoreotic terminology we refer to Harary [6]. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that this distance is a metric on the vertex set $V(G)$. For any vertex v of G, the eccentricity e (v) of v is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} G$ and the maximum eccentricity is its diameter, diam G of G. The neighborhood of a vertex v is the set $N(v)$ consisting of all vertices which are adjacent with v. A vertex v is an extreme vertex of G if the subgraph induced by its neighbors is complete.For a cut vertex v in a connected graph

[^0]G and a component H of $G-v$, the subgraph H and the vertex v together with all edges joining v and $V(H)$ is called a branch of G at v. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G is contained in a geodesic joining some pair of vertices in S. The geodetic number $g(G)$ of G is the cardinality of a minimum geodetic set. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P and x is called an internal vertex of P if $x \neq u, v$. If x is an internal vertex of an $u-v$ geodesic, we also use the notation $x \in I(u, v)$. A set S of vertices of a connected graph G is an open geodetic set if for each vertex v in G, either (1) v is an extreme vertex of G and $v \in S$ or (2) v is an internal vertex of a $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number, og (G). Certainly, every open geodetic set is a geodetic set and so $g(G) \leqslant o g(G)$. The geodetic number of a graph was introduced in $[\mathbf{1 , 4 , 7}]$ and further studied in $[\mathbf{2}, \mathbf{3}]$. The open geodetic number of a graph was introduced and studied in $[\mathbf{5}, 8]$ in the name open geodomination in graphs. Throughout the following, G denotes a connected graph with at least two vertices.

The following theorems are used in the sequel.
Theorem 1.1. [6] A vertex v of a connected graph G is a cut vertex of G if and only if there exist vertices u and w distinct from v such that v lies on every u - w path of G.

Theorem 1.2. [5] If a nontrivial connected graph G contains no extreme vertices, then $o g(G) \geqslant 4$.

2. Open geodetic number of a graph

Definition 2.1. [5] A set S of vertices in a connected graph G is an open geodetic set if for each vertex v in G, either (1) v is an extreme vertex of G and $v \in S$ or (2) v is an internal vertex of an $x-y$ geodesic for some $x, y \in S$. An open geodetic set of minimum cardinality is a minimum open geodetic set and this cardinality is the open geodetic number og (G) of G.

Example 2.1. For the graph G in Figure 2.1, it is easily checked that neither a 2element subset nor a 3 -element subset is an open geodetic set. Since $S=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ is a minimum open geodetic set of G, og $(G)=4$. Also, $S=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}, S^{\prime}=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $S^{\prime \prime}=\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$ are minimum open geodetic sets. Thus, there can be more than one minimum open geodetic set for a connected graph.

Figure 2.1

Remark 2.1. For the graph G given in Figure 2.1, $S=\left\{v_{1}, v_{3}\right\}$ is a minimum geodetic set so that $g(G)=2$. Thus the geodetic number and the open geodetic number of a graph are different.

Theorem 2.1. For any connected graph G of order $n, 2 \leqslant o g(G) \leqslant n$.
Proof. An open geodetic set needs at least two vertices and so $o g(G) \geqslant 2$. Also the set of all vertices of G is an open geodetic set of G so that $o g(G) \leqslant n$. Thus $2 \leqslant o g(G) \leqslant n$.

Remark 2.2. The bounds in Theorem 2.1 are sharp. For the complete graph $K_{n}(n \geqslant 2)$, og $\left(K_{n}\right)=n$. The set of two end vertices of a path $P_{n}(n \geqslant 2)$ is its unique minimum open geodetic set so that $o g\left(P_{n}\right)=2$. Thus the complete graph K_{n} has the largest possible open geodetic number n and that the nontrivial paths have the smallest open geodetic number 2 .

The following theorem is obvious from the definition of open geodetic set.
Theorem 2.2. Every open geodetic set of a graph G contains its extreme vertices. Also, if the set S of all extreme vertices of G is an open geodetic set, then S is the unique minimum open geodetic set of G.

Corollary 2.1. For the complete graph $K_{n}(n \geqslant 2)$, $o g\left(K_{n}\right)=n$.
REmark 2.3. If $o g(G)=n$ for a connected graph G of order n, then it is not true that G is complete. It is clear that for the cycle $C_{4}, o g\left(C_{4}\right)=4$. Also for the house graph G given in Figure 2.2 and for the graph G given in Figure 2.3, og $(G)=5$ and $\operatorname{og}(G)=6$ respectively. It is to be noted that for a graph G of order n, we have $g(G)=n$ if and only if $G=K_{n}$.

G
Figure 2.2

G
Figure 2.3

Theorem 2.3. For the complete bipartite graph $K_{m, n}(2 \leqslant m \leqslant n)$, $o g\left(K_{m, n}\right)=4$.

Proof. Let $G=K_{m, n}$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the partite sets of G. Since G contains no extreme vertices, by Theorem 1.2, og $(G) \geqslant 4$. Let S be any set of four vertices formed by taking two vertices from each of U and W. Then it is clear that S is an open geodetic set of G and so $o g(G)=4$.

Theorem 2.4. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geqslant 5), o g\left(W_{n}\right)=n-1$.
Proof. Let $W_{n}=K_{1}+C_{n-1}(n \geqslant 5)$ with x the vertex of K_{1} and $V\left(C_{n-1}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. It is clear that x does not belong to any minimum open geodetic set of W_{n}. If S is a subset of $V\left(C_{n-1}\right)$ of cardinality at most $n-2$, let $v_{i}(1 \leqslant i \leqslant n-1)$ be such that $v_{i} \notin S$ and $v_{i+1} \in S$. Then v_{i+1} is not an internal vertex of any geodesic joining a pair of vertices in S. Hence S is not an open geodetic set of W_{n}. Since $W=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is an open geodetic set of W_{n}, it follows that W is the unique minimum open geodetic set of W_{n} and so $o g\left(W_{n}\right)=n-1$.

Theorem 2.5. For the cycle $C_{n}(n \geqslant 4)$,

$$
o g\left(C_{n}\right)= \begin{cases}4 & \text { if } n \text { is even } \\ 5 & \text { if } n \text { is odd }\end{cases}
$$

Proof. By Theorem 1.2, og $\left(C_{n}\right) \geqslant 4$. First, let $n=2 k$ and the cycle be $C_{2 k}$: $v_{1}, v_{2}, \ldots, v_{k}, \ldots, v_{2 k}, v_{1}$. It is clear that the set $S=\left\{v_{1}, v_{k}, v_{k+1}, v_{2 k}\right\}$ is a minimum open geodetic set of $C_{2 k}$ so that $o g\left(C_{2 k}\right)=4$. Now, let $n=2 k+1$ and the cycle be $C_{2 k+1}: v_{1}, v_{2}, \ldots, v_{k}, \ldots, v_{2 k}, v_{2 k+1}, v_{1}$. Let $S^{\prime}=\{x, y, u, v\}$ be a set of four vertices of $C_{2 k+1}$. We consider two cases.
Case 1. S contains two antipodal vertices, say u, v. Then $u \notin I(t, v)$ and $v \notin I(t, u)$ for $t=x, y$. Also, it is clear that either $u \notin I(x, y)$ or $v \notin I(x, y)$. Hence S^{\prime} is not an open geodetic set of $C_{2 k+1}$.
Case 2. No two vertices of S are antipodal.
Let $x^{\prime}, x^{\prime \prime}$ be the antipodal vertices of x. Then $x^{\prime}, x^{\prime \prime} \notin S^{\prime}$. Let P be the $x-x^{\prime}$ geodesic and Q the $x-x^{\prime \prime}$ geodesic in $C_{2 k+1}$. If $y, u, v \in V(P)$ or $y, u, v \in V(Q)$, then S^{\prime} is not an open geodetic set of $C_{2 k+1}$. Let $y \in V(P)$ and $u, v \in V(Q)$. Then $y \notin I(s, t)$ for $s, t \in S^{\prime}$ and so S^{\prime} is not an open geodetic set of $C_{2 k+1}$. Thus og $\left(C_{2 k+1}\right) \geqslant 5$. It is clear that $S=\left\{v_{1}, v_{2}, v_{k+1}, v_{k+2}, v_{k+3}\right\}$ is a minimum open geodetic set of $C_{2 k+1}$ and so $o g\left(C_{2 k+1}\right)=5$.

Theorem 2.6. Let G be a connected graph with cut vertices. Then every open geodetic set of G contains at least one vertex from each component of G.

Proof. Let v be a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{k}(k \geqslant 2)$ be the components of $G-v$. Let S be an open geodetic set of G. Suppose that S contains no vertex from a component say $G_{i}(1 \leqslant i \leqslant k)$. Let u be a vertex of G_{i}. Then by Theorem $2.2, u$ is not an extreme vertex of G. Since S is an open geodetic set of G, there exist vertices $x, y \in S$ such that u lies on a $x-y$ geodesic $P: x=u_{0}, u_{1}, u_{2}, \ldots, u, \ldots, u_{l}=y$ such that $u \neq x, y$. By Theorem 1.1, the $x-u$ subpath of P and the $u-y$ subpath of P both contain v. Hence it follows that P is not a path, contrary to assumption.

Corollary 2.2. Let G be a connected graph with cut vertices and let S be an open geodetic set of G. Then every branch of G contains an element of S.

Theorem 2.7. Let G be a connected graph with cut vertices and S a minimum open geodetic set of G. Then no cut vertex of G belongs to S.

Proof. Let S be any minimum open geodetic set of G. Let $v \in S$. We prove that v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let $G_{1}, G_{2}, \ldots, G_{k}$ $(k \geqslant 2)$ be the components of $G-v$. Then v is adjacent to at least one vertex of each G_{i} for $1 \leqslant i \leqslant k$. Let $S^{\prime}=S-\{v\}$. We show that S^{\prime} is an open geodetic set of G. Let x be a vertex of G. If x is an extreme vertex of G, then $x \neq v$ and so by Theorem $2.2, x \in S^{\prime}$. If x is not an extreme vertex, then, since S is an open geodetic set of $G, x \in I(u, w)$ for some $u, w \in S$. If $v \neq u, w$, then $u, w \in S^{\prime}$. If $v=u$, then $v \neq w$. Assume without loss of generality that $w \in G_{1}$. By Theorem 2.6, S contains a vertex w^{\prime} from $G_{i}(2 \leqslant i \leqslant k)$. Then $w^{\prime} \neq v$. Since v is a cut vertex of G, we have $I(w, u) \subseteq I\left(w, w^{\prime}\right)$. Hence $x \in I\left(w, w^{\prime}\right)$, where $w, w^{\prime} \in S^{\prime}$. Thus S^{\prime} is an open geodetic set of G. This contradicts that S is a minimum open geodetic set of G.

REmARK 2.4. If $o g(G)=n$ for a connected graph of order n, it follows from Theorem 2.7 that G is a block.

We leave the following problem as an open question.
Problem 2.8. Characterize the class of graphs of order n for which $\operatorname{og}(G)=n$.
Theorem 2.9. For any tree T, the open geodetic number $o g(T)$ equals the number of end vertices of T. In fact, the set of all end vertices of T is the unique minimum open geodetic set of T.

Proof. This follows from Theorems 2.2 and 2.7.
Theorem 2.10. For every pair, k, n of integers with $2 \leqslant k \leqslant n$, there exists a connected graph G of order n such that $o g(G)=k$.

Proof. For $k=n$, let $G=K_{n}$. Then the result follows from Corollary 2.1. For $2 \leqslant k<n$, let G be a tree of order n with k end vertices. Then the result follows from the Theorem 2.9.

Theorem 2.11. For a connected graph $G, o g(G)=2$ if and only if there exist extreme peripheral vertices u and v such that every vertex of G is on a diametral path joining u and v.

Proof. Let u and v be extreme peripheral vertices of G such that each vertex of G is on a diametral path P joining u and v. Then $S=\{u, v\}$ is an open geodetic set of G and so $o g(G)=2$. Conversely, let $o g(G)=2$ and let $S=\{u, v\}$ be a minimum open geodetic set of G. Necessarily, both u and v are extreme vertices of G. We claim that $d(u, v)=d(G)$, where $d(G)$ dentoes the diameter of G. If $d(u, v)<d(G)$, then let x and y be two vertices of G such that $d(x, y)=d(G)$. Now, it follows that x and y lie on distinct geodesics joining u and v. Hence

$$
\begin{align*}
d(u, v) & =d(u, x)+d(x, v) \tag{2.1}\\
\text { and } d(u, v) & =d(u, y)+d(y, v) . \tag{2.2}
\end{align*}
$$

By the triangle inequality,

$$
\begin{equation*}
d(x, y) \leqslant d(x, u)+d(u, y) \tag{2.3}
\end{equation*}
$$

Since $d(u, v)<d(x, y)$, (3) becomes

$$
\begin{equation*}
d(u, v)<d(x, u)+d(u, y) \tag{2.4}
\end{equation*}
$$

Using (4) in (1), we get $d(x, v)<d(x, u)+d(u, y)-d(u, x)=d(u, y)$. Thus,

$$
\begin{equation*}
d(x, v)<d(u, y) \tag{2.5}
\end{equation*}
$$

Also by triangle inequality, we have

$$
\begin{equation*}
d(x, y) \leqslant d(x, v)+d(v, y) \tag{2.6}
\end{equation*}
$$

Now, using (2) and (5),(6) becomes $d(x, y)<d(u, y)+d(v, y)=d(u, v)$. Thus, $d(G)<$ $d(u, v)$, which is a contradiction. Hence $d(u, v)=d(G)$ and since $S=\{u, v\}$ is a minimum open geodetic set of G, it follows that each vertex of G is on a diameteral path joining u and v.

Theorem 2.12. Let G be a non complete connected graph of order n. If G contains a vertex of degree $n-1$, then $o g(G) \leqslant n-1$.

Proof. Let x be a vertex of degree $n-1$. Since G is not complete, x is not an extreme vertex. Let $S=V(G)-\{x\}$. We show that S is an open geodetic set of G. Since x is not extreme, there exist nonadjacent neighbors y and z of x. Hence it follows that $x \in I(y, z)$, where $y, z \in S$. Now, let $u \in S$. Suppose that u is not an extreme vertex of G. If $\langle N(u)\rangle$ is complete in $\langle S\rangle$, then $\langle N(u) \cup\{x\}\rangle$ is complete in G and so u is an extreme vertex of G, which is not so. Hence $\langle N(u)\rangle$ is not complete in $\langle S\rangle$. This means that there exist nonadjacent neighbors v, w of u such that $v, w \in S$. This, in turn, shows that $u \in I(v, w)$ and hence S is an open geodetic set of G. Thus $o g(G) \leqslant|S|=n-1$.

Remark 2.5. The bound in Theorem 2.12 can be strict. For the graph G in Figure 2.4, $S=\left\{v_{2}, v_{4}, v_{5}\right\}$ is a minimum open geodetic set of G so that $o g(G)=3<4$. Also, the bound in Theorem 2.12 is sharp. For the wheel $W_{n}=K_{1}+C_{n-1}(n \geqslant 5)$, $o g\left(W_{n}\right)=n-1$.

Figure 2.4
Theorem 2.13. For any tree T of order $n \geqslant 3, o g(T)=n-1$ if and only if T is the star $K_{1, n-1}$.

Proof. This follows from Theorem 2.9.
In the following theorem, we construct a class of graphs G of order n for which $o g(G)=n-1$.

Theorem 2.14. Let $G_{i}(1 \leqslant i \leqslant k)$ be vertex disjoint connected graphs of order n_{i}, where $k \geqslant 2$. If $o g\left(G_{i}\right)=n_{i}$, then $o g\left(K_{1}+\cup G_{i}\right)=\sum n_{i}-1$.

Proof. Let $G=K_{1}+\cup G_{i}$. Let $K_{1}=\{v\}$. By Theorem 2.12, og $(G) \leqslant \sum n_{i}-1$. Suppose that $o g(G)<\sum n_{i}-1$. Let S be a minimum open geodetic set of G. Then $|S| \leqslant \sum n_{i}-2$. Since v is a cut vertex of $G, v \notin S$. Also, there exists a $v_{i} \in V\left(G_{i}\right)$ such that $v_{i} \notin S$. Let $S_{i}=S \cap V\left(G_{i}\right)(1 \leqslant i \leqslant k)$. Then $\left|S_{i}\right| \leqslant n_{i}-1$ for each i. We show that S_{i} is an open geodetic set of G_{i}. Let $x \in V\left(G_{i}\right)$. Then $x \in V(G)$. It is clear that a vertex is extreme in G_{i} if and only if it is extreme in G. Hence, if x is extreme in G_{i}, then $x \in S$ and so $x \in S_{i}$. If x is non-extreme in G_{i}, then, since S is an open geodetic set of G, we have $x \in I_{G}(y, z)$ for some $y, z \in S$. Since $d(y, z)=2$, it follows that $y, z \in V\left(G_{i}\right)$. Since $x, y, z \in V\left(G_{i}\right), x \in I_{G_{i}}(y, z)$ with $y, z \in S_{i}$. Hence S_{i} is an open geodetic set of G_{i}, which is a contradiction to $\operatorname{og}\left(G_{i}\right)=n_{i}$.

Now, we leave the following problem as an open question.
Problem 2.15. Characterize the class of graphs G of order n for which $\operatorname{og}(G)=$ $n-1$.

For every connected graph, $\operatorname{rad} G \leqslant \operatorname{diam} G \leqslant 2 \operatorname{rad} G$. Ostrand [9] showed that every two positive integers a and b with $a \leqslant b \leqslant 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand's theorem can be extended so that the open geodetic number can also be prescribed, when $a<b \leqslant 2 a$.

Theorem 2.16. For positive integers r, d and $l \geqslant 2$ with $r<d \leqslant 2 r$, there exists a connected graph G with $\operatorname{rad} G=r$, $\operatorname{diam} G=d$ and $o g(G)=l$.

Proof. When $r=1$, let $G=K_{1, l}$. Then $d=2$ and by Theorem 2.9, og $(G)=l$. For $r \geqslant 2$, we construct a graph G with the desired properties as follows:

Let $C_{2 r}: v_{1}, v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}$, \ldots, u_{d-r} be a path of order $d-r+1$. Let H be a graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. Let G be the graph obtained from H by adding $l-2$ new vertices $w_{1}, w_{2}, \ldots, w_{l-2}$ to H and joining each vertex w_{i} $(1 \leqslant i \leqslant l-2)$ to the vertex u_{d-r-1} and also joining the edge $v_{r} v_{r+2}$. The graph G is shown in Figure 2.5. Then $\operatorname{rad} G=r$ and $\operatorname{diam} G=d$. The graph G has $l-1$ end vertices. Let $S=\left\{w_{1}, w_{2}, \ldots, w_{l-2}, u_{d-r}, v_{r+1}\right\}$. Then S is the set of all extreme vertices of G and it is clear that S is an open geodetic set of G and so by Theorem $2.2, o g(G)=l$.

Figure 2.5^{G}

3. The open geodetic number and diameter of a graph

For a graph G of order n and diameter d, it is proved in [3] that $g(G) \leqslant n-d+1$. However, in the case of $o g(G)$, it happens that $o g(G)<n-d+1, o g(G)=n-d+1$ and $o g(G)>n-d+1$. For the graph G given in Figure 3.1, it is clear that $\left\{v_{3}, v_{6}\right\}$ is a minimum open geodetic set of G and so $o g(G)=2$. Since $n=6$ and $d=4$, we have $n-d+1=3$ and so $o g(G)<n-d+1$. For the graph G given in Figure 3.2, it is clear that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a minimum open geodetic set of G and $\operatorname{so} \operatorname{og}(G)=4$. Since $n=5$ and $d=2$, we have $n-d+1=4$ and so $o g(G)=n-d+1$. Also, for the graph G given in Figure 3.3, it is clear that $\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}\right\}$ is a minimum open geodetic set of G and so $o g(G)=5$. Since $n=7$ and $d=4$, we have $n-d+1=4$ and so $o g(G)>n-d+1$.

Figure 3.2

Figure 3.3

Theorem 3.1. For every nontrivial tree T of order $n, o g(T)=n-d+1$ if and only if T is a caterpillar.

Proof. Let T be a nontrivial tree. Let $d(u, v)=d$ and $P: u=v_{0}, v_{1}, v_{2}, \ldots$, $v_{d-1}, v_{d}=v$ be a diametral path. Let k be the number of end vertices of T and l the number of internal vertices of T other than $v_{1}, v_{2}, \ldots, v_{d-1}$. Then $n=d-1+k+l$. By Theorem 2.2, og $(T)=k$ and so $o g(T)=n-d-l+1$. Hence $o g(T)=n-d+1$ if and only if $l=0$, if and only if all the internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

Now, we prove the following realization result.
Theorem 3.2. If n, d and k are integers such that $2 \leqslant d<n, 2 \leqslant k<n$ and $n-d-k+1 \geqslant 0$, then there exists a graph G of order n, diameter d and $o g(G)=k$.

Proof. Let $P_{d}: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$ be a path of length d. First, let $n-d-k+1 \geqslant 1$. Let $K_{n-d-k+1}$ be the complete graph with vertex set $\left\{w_{1}, w_{2}, \ldots, w_{n-d-k+1}\right\}$. Let H be the graph obtained from P_{d} and $K_{n-d-k+1}$ by joining each vertex of $K_{n-d-k+1}$ to u_{i} for $i=0,1,2$. Then we add $k-2$ new vertices $v_{1}, v_{2}, \ldots, v_{k-2}$ to H by joining each vertex $v_{i}(1 \leqslant i \leqslant k-2)$ to the vertex u_{1} of P_{d} and obtain the graph G of Figure 3.4. Then G has order n and diameter d. Let $S=\left\{u_{0}, u_{d}, v_{1}, v_{2}, \ldots, v_{k-2}\right\}$ be the set of extreme vertices of G. Then it is clear that S is an open geodetic set of G and so by Theorem 2.2, og $(G)=k$.

Figure 3.4

For $n-d-k+1=0$, let G be the tree given in Figure 3.5. Then it is clear that G has diameter d, order $d+k-1=n$ and $o g(G)=k$.

Figure 3.5

4. Open geodetic number and addition of a pendant edge

A fundamental question in graph theory concerns how the value of a parameter is affected by making a small change in the graph. In this section, we study how the open geodetic number of a graph is affected by the addition of a pendant edge.

Theorem 4.1. If G^{\prime} is a graph obtained by adding a pendant edge to a connected graph G, then $o g(G)-2 \leqslant o g\left(G^{\prime}\right) \leqslant o g(G)+1$.

Proof. Let G^{\prime} be the graph obtained from G by adding a pendant edge $u v$, where u is not a vertex of G and v is a vertex of G. Let S^{\prime} be a minimum open geodetic set of G^{\prime}. Then $o g\left(G^{\prime}\right)=\left|S^{\prime}\right|$. By Theorem $2.2 u \in S^{\prime}$ and by Theorem $2.7 v \notin S^{\prime}$. We consider two cases.
Case 1. v is an extreme vertex of G.
Let $S=\left(S^{\prime}-\{u\}\right) \cup\{v\}$. Then $|S|=\left|S^{\prime}\right|=o g\left(G^{\prime}\right)$. We show that S is an open geodetic set of G. Let x be a vertex of G. Suppose that x is an extreme vertex of G. If $x=v$, then $x \in S$. if $x \neq v$, then x is also an extreme vertex of G^{\prime} and so $x \in S^{\prime}$. Since $x \neq u, v$, we have $x \in S$. So, assume that x is not an extreme vertex of G. Then $x \neq v$. Since S^{\prime} is an open geodetic set of $G^{\prime}, x \in I(y, z)$, where $y, z \in S^{\prime}$. If $u \neq y, z$, then $x \in I(y, z)$ with $y, z \in S$. If $u=y$ or $u=z$, say $y=u$, then, since $x \neq v$ it follows that $x \in I(v, z)$, where $v, z \in S$. Thus S is an open geodetic set of G and so $o g(G) \leqslant|S|=\left|S^{\prime}\right|=o g\left(G^{\prime}\right)$.
Case 2. $\quad v$ is not an extreme vertex of G.
Then there exist nonadjacent neighbors $v^{\prime}, v^{\prime \prime}$ of v in G and it follows that $v \in$ $I\left(v^{\prime}, v^{\prime \prime}\right)$. Let $S=\left(S^{\prime}-\{u\}\right) \cup\left\{v, v^{\prime}, v^{\prime \prime}\right\}$. Then $|S| \leqslant\left|S^{\prime}\right|+2$. We show that S is an open geodetic set of G. Let x be a vertex of G such that $x \neq v$. Suppose that x is an extreme vertex of G. Then x is also an extreme vertex of G^{\prime} and so $x \in S^{\prime}$. Since $x \neq u$, we have $x \in S$. So, assume that x is not an extreme vertex of G. Since $x \neq u$, it is clear that x is also not an extreme vertex of G^{\prime} and so $x \in I(y, z)$ with $y, z \in S^{\prime}$. Then, as in Case 1, S is an open geodetic set of G so that $o g(G) \leqslant|S| \leqslant\left|S^{\prime}\right|+2=o g\left(G^{\prime}\right)+2$. Thus in both cases, $o g(G)-2 \leqslant o g\left(G^{\prime}\right)$.

For the upper bound, let S be a minimum open geodetic set of G. Since u is an extreme vertex of $G^{\prime}, S \cup\{u\}$ is an open geodetic set of G^{\prime}. Hence $o g\left(G^{\prime}\right) \leqslant|S \cup\{u\}|=$ $o g(G)+1$.

Remark 4.1. The bounds in Theorem 4.1 are sharp. For the graph G given in Figure 4.1, it is easily seen that $S=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ is a minimum open geodetic set of G so that $o g(G)=4$. Let G^{\prime} be the graph in Figure 4.2 obtained from G by adding the pendant edge $v_{5} v_{6}$. Then $S^{\prime}=\left\{v_{3}, v_{6}\right\}$ is a minimum open geodetic set of G^{\prime} so that $o g\left(G^{\prime}\right)=3$. Thus $o g(G)-2=o g\left(G^{\prime}\right)$. For any path G of length atleast 2 , we have $o g(G)=2$. Let G^{\prime} be the tree obtained from G by adding the pendant edge at a cut vertex of G. Then $o g\left(G^{\prime}\right)=3$. Thus $o g\left(G^{\prime}\right)=o g(G)+1$.

G
Figure 4.1

G^{\prime}
Figure 4.2

Theorem 4.2. If G^{\prime} is a graph obtained from a connected graph G by adding a pendant edge $u v$, where u is not a vertex of G and v is a vertex of G and if $\operatorname{og}\left(G^{\prime}\right)=$ $o g(G)+1$, then v does not belong to any minimum open geodetic set of G.

Proof. Assume that v belongs to some minimum open geodetic set S of G. Let $S^{\prime}=(S-\{v\}) \cup\{u\}$. Then $|S|=\left|S^{\prime}\right|$. We show that S^{\prime} is an open geodetic set of G^{\prime}. Let $x \in V\left(G^{\prime}\right)$. Suppose that x is an extreme vertex of G^{\prime}. Then $x \neq v$. If $x=u$, then by the definition of S^{\prime}, we have $x \in S^{\prime}$. If $x \neq u$, then x is an extreme vertex of G and so $x \in S$. Hence it follows that $x \in S^{\prime}$. If x is not an extreme vertex of G^{\prime}, then $x \neq u$. Hence $x \in V(G)$. If $x=v$, then $x \in I(y, u)$ for any $y \in S$ with $y \neq x$. If $x \neq v$, then, since S is an open geodetic set of $G, x \in I(y, z)$, where $y, z \in S$. If $v \neq y, z$, then $y, z \in S^{\prime}$. If $v=y$ or $v=z$, say $y=v$, then $x \in I(v, z)$, where $v, z \in S$. Since v is a cut vertex of G^{\prime}, it follows that $x \in I(u, z)$ with $u, z \in S^{\prime}$. Thus S^{\prime} is an open geodetic set of G^{\prime}. Hence $o g\left(G^{\prime}\right) \leqslant\left|S^{\prime}\right|=|S|=o g(G)$, which is a contradiction.

Remark 4.2. The converse of Theorem 4.2 is false. For the graph G given in Figure 4.3, it is easily seen that $S=\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$ is the unique minimum open geodetic set so that $o g(G)=4$. Let G^{\prime} be the graph given in Figure 4.4, obtained from G by adding the pendent edge $v_{7} v_{9}$. Then $S^{\prime}=\left\{v_{2}, v_{4}, v_{9}\right\}$ is the unique minimum open geodetic set of G^{\prime} so that $o g\left(G^{\prime}\right)=3$. Thus $o g\left(G^{\prime}\right) \neq o g(G)+1$ and v_{7} does not belong to S.

G

Figure 4.3

G^{\prime}
Figure 4.4

We leave the following problem as an open question.
Problem 4.3. Characterize the class of graphs G for which $o g\left(G^{\prime}\right)=o g(G)+1$, where G^{\prime} is the graph obtained from G by adding a pendant edge to G.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood city, CA, 1990.
[2] F. Buckely, F. Harary and L.V. Quintas, External results on the geodetic number of a graph, Scientia, A2(1988), 17-26.
[3] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.
[4] G. Chartrand, E. M. Palmer and P. Zhang, The geodetic number of a graph: A survey, Congr. Numer., 156 (2002), 37-58.
[5] G.Chartrand, F. Harary, H. C. Swart and P. Zhang, Geodomination in Graphs, Bulletin of the $I C A, 31(2001), 51-59$.
[6] F. Harary, Graph Theory, Addison-Wesley, 1969.
[7] F. Harary, E. Loukakis, T. Tsouros, The geodetic number of a graph, Math. Comput. Modeling, 17(11)(1993), 89-95.
[8] R. Muntean and P. Zhang, On Geodomonation in Graphs, Congr. Numer., 143(2000), 161-174.
[9] P.A. Ostrand, Graphs with specified radius and diameter, Discrete Math., 4(1973), 71-75.
Received 2611 2009, revised 15042010

```
a Research Department of Mathematics,
St. Xaviers College (Autonomous),
Palayamkottai-627 002,
InDIA
    E-mail address: apskumar1953@yahoo.co.in
b Department of Mathematics
Sri K.G.S. Arts College,
SRIVAIKUNTAM-628 619,
InDIA
    E-mail address: rajapaul1962@gmail.com
```


[^0]: 2000 Mathematics Subject Classification. 05C12,05C70.
 Key words and phrases. Distance, geodesic, geodetic number, open geodetic set, open geodetic number.

