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A note on an extended clarifier-thickener model with singular
source and sink terms

R. BürgerA, A. GarćıaA, K.H. KarlsenB, and J.D. TowersC

Abstract. A one-dimensional clarifier-thickener (CT) model, which includes a
singular feed source, can be expressed as a conservation law with a flux that is
discontinuous with respect to the spatial variable. The CT model is extended
herein by a singular sink through which material is extracted. The sink gives
rise to a new non-conservative transport term. The paper summarizes a recent
well-posedness analysis and presents a numerical method for the extended model.
A numerical example is presented.

1. Introduction

In recent years there has been an increased interest in conservation laws with a
discontinuous flux of the type ut + f(γ(x), u)x = 0 where x ∈ R, t > 0, and γ(x)
is a vector of parameters that are discontinuous functions of the spatial position x.
Applications of this equation include two-phase flow in heterogeneous porous media,
traffic flow, and CT models [3]. Its well-posedness and numerical analysis is not a
straightforward limit case of the standard theory for conservation laws with a flux
that depends smoothly on x. In fact, several extensions of the Kružkov [13] entropy
solution concept to a flux that depends discontinuously on x have been proposed
[1, 2, 10, 12, 14, 15, 16]. For CT models, the entropy solution emerges from the
limit ε → 0 of a viscous regularization εuxx with a diffusion constant ε > 0 [6, 7].

CT units are widely used in engineering for the solid-liquid separation of sus-
pensions. Important contributions to their analysis were made by Diehl, see [8] and
references. On the other hand, in [4, 5, 6] the authors with collaborators provided
a rigorous well-posedness and numerical analysis for CT models. Their basic non-
standard ingredient is a singular feed source that produces diverging bulk flows in the
unit, and generates the discontinuous x-dependence of the flux. We herein present a
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new extended clarifier-thickener (ECT) model that also includes a singular sink term,
through which material may be extracted, and show that the new model is well posed
and can be simulated by a convergent numerical scheme.

The basic CT model can be derived from the scalar conservation law ut+b(u)x = 0,
x ∈ [0, L], t > 0 of the kinematic sedimentation model, which describes the settling of
a suspension in a column of height L. Here, u ∈ [0, umax] is the sought concentration as
a function of depth x and time t, and b(u) is the material-dependent hindered settling
or batch flux density function. A typical example is

b(u) = v∞χ[0,umax](u)u(1− u)n, n > 1, v∞ > 0,(1.1)

where v∞ is the settling velocity of a single particle in an unbounded medium.
Suppose now that we pump the suspension into a vertical tube that is filled with

water at a feed level x = 0 at volume rate QF, and that part of the mixture flows
upwards (i.e., in the direction of negative x) at velocity qL < 0, while the remainder
flows downwards at velocity qR > 0. Consequently, if S is the cross-sectional area,
then QF = (qR − qL)S. Now if we inject feed suspension of concentration uF at a
volume rate QF, then the governing conservation law can be written as

ut + g(u, x)x = 0, g(u, x) :=

{
qL(u− uF) + b(u) for x < 0,
qR(u− uF) + b(u) for x > 0.

(1.2)

Note that the injection of material leads to a homogeneous conservation law with
discontinuous flux, which has made the CT problem tractable.

We herein study the case that we also extract material at a fixed location. To
elucidate the problem, consider a column with an upwards directed bulk flow of QR <
0. At depth x = 0, we divide the flow into a discharge flow QD < 0 and the remaining
upwards directed bulk flow QL with QR < QL < 0. Considering that the concentration
u(0, t) of the suspension extracted is unknown beforehand and defining qR := QR/S
and qL := QL/S, we obtain instead of (1.2) the equation

ut + h(u, x)x = δ(x)(qR − qL)u(x, t), h(u, x) =

{
qLu + b(u) for x < 0,
qRu + b(u) for x > 0.

(1.3)

The singular sink term on the right-hand side of (1.3) includes the unknown solution
value u(x, t), while the analogous term for the singular injection source involves the
given constant uF. This difference makes the sink term problem interesting.

Equation (1.3), which includes a new sink term, after slight notational simplifi-
cation, forms the so-called reduced problem studied in our paper. This is opposed to
the full ECT model which also includes singular source terms and flux discontinuities;
however, from [5] we already know how to deal with the latter ingredients.

The remainder of this note is organized as follows. The ECT model is outlined
in Section 2. The result is a conservation law with a flux that is discontinuous at the
source and transition points (not at the sink point), and which has a non-conservative
linear flux term. Furthermore, we derive the reduced problem that includes the sin-
gularities caused by the new sink term only. This problem is analyzed further on in
Section 3. We first define entropy solutions for the reduced problem. We then prove
by an adaptation of the “doubling of variables” argument [13] an L1 stability prop-
erty, and therefore uniqueness, of an entropy solution. In Section 4, we introduce a
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Figure 1. ECT setup with bulk flows and control variables.

finite difference scheme for the complete model. We prove that the numerical solution
remains bounded, that the scheme is monotone, and that it satisfies a time continu-
ity property. In Section 5 we focus on the reduced problem, prove a discrete spatial
variation bound, and show that the scheme converges to an entropy solution. Com-
bining the new results with those of [5] yields that the full ECT model is well-posed.
Section 6 presents a numerical example.

2. The extended clarifier-thickener model

2.1. Bulk flow variables. Consider the ECT drawn in Figure 1. At x = 0,
suspension is fed into the unit at a volume rate QF(t) > 0. The feed suspension is
loaded with solids of the volume fraction uF(t) ∈ [0, umax], and umax is a maximum
solids concentration. At x = 0, the feed flow divides into an upwards-directed and a
downwards-directed bulk flow. We assume that the underflow volume rate QR(t) > 0 is
also prescribed, and that QR(t) 6 QF(t). Thus, the signed volume rate of the upwards-
directed bulk flow immediately above the feed source is QM(t) = QR(t)−QF(t) 6 0.
At depth x = xD, xL < xD < 0, a discharge sink is located. Suspension is extracted
at a signed volume rate QD(t) 6 0, where QD(t) > QM(t). Above the discharge
sink, for xL 6 x 6 xD, there is an upwards directed bulk flow with the volume rate
QL(t) = QM(t) − QD(t) = QR(t) − QF(t) − QD(t) 6 0. We assume that all control
variables are constant, and introduce the velocities qc := Qc/S, c ∈ {D,F, L,M, R},
q̃R := qR − qD and the discontinuous parameters

γ1(x) :=

{
0 for x 6∈ [xL, xR],
1 for x ∈ [xL, xR],

γ2(x) :=

{
q̃R − qF for x < 0,
q̃R for x > 0,

γ3(x) :=

{
0 for x < xD,
−qD > 0 for x > xD,

γ(x) := (γ1(x), γ2(x)).

(2.1)

Then the final governing balance law is (see [3] for details)

ut + f(γ(x), u)x = γ3(x)ux,(2.2)

f(γ(x), u) := g(u, x) = γ1(x)b(u) + γ2(x)(u− uF).(2.3)

If we set the right side of (2.2) to zero, we have essentially the PDE analyzed in [5].
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2.2. Reduced problem. The flux discontinuities at xL, 0 and xR are the same
as in [5]. They can be incorporated once the discontinuity near x = xD can be handled.
Our analysis is therefore focused on the following reduced problem:

ut + ϕ(u)x − γ(x)ux = 0, x ∈ R, t > 0,(2.4)

u(x, 0) = u0(x), x ∈ R, u0 ∈ [0, umax],(2.5)

ϕ(u) = qu + b(u), γ(x) =

{
0 =: γ− for x < 0,
γ+ for x > 0,

(2.6)

where the sink has been moved to x = 0 and the velocities have been normalized such
that qD (in the original problem description) equals −γ+, and that q 6 0.

The function b(u) is assumed to be Lipschitz continuous, positive for u ∈ (0, 1),
and to vanish for u /∈ (0, 1). We assume that b(u) is twice differentiable in (0, 1), that
b′(u) vanishes at exactly one maximum u = u∗b ∈ (0, 1), and that b′′(u) vanishes at no
more than one inflection point in uinfl ∈ (0, 1); if such a point is present, we assume
that uinfl ∈ (umax, 1). These assumptions are valid for (1.1) with umax = 1. With these
assumptions on b(u) and the sign of q, the flux ϕ(u) = b(u) + qu will have a single
maximum located at the point u∗ ∈ [0, 1], and ϕ will be non-decreasing on [0, u∗] and
non-increasing on [u∗, 1]. Note that we refer to (2.4)–(2.6) as reduced problem, while
(2.1)–(2.2) and (2.5) form the full ECT model.

3. Entropy solution and uniqueness analysis of the reduced problem

Definition 3.1 (Entropy solution). A function u : ΠT 7→ R is an entropy solution
of the initial value problem (2.4)–(2.6) if it satisfies the following conditions:

(D.1) u ∈ L1(ΠT ) ∩BV (ΠT ) and u(x, t) ∈ [0, 1] for a.e. (x, t) ∈ ΠT .
(D.2) If 0 6 ψ ∈ D(ΠT ) vanishes for x > 0, then

(3.1)
∫∫

ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u)− ϕ(c)

)
ψx

)
dt dx > 0 ∀c ∈ R,

and if 0 6 ψ ∈ D(ΠT ) vanishes for x < 0, then

(3.2)
∫∫

ΠT

(
|u− c|ψt + sgn(u− c)

(
ϕ(u)− ϕ(c)− γ+(u− c)

)
ψx

)
dt dx > 0 ∀c ∈ R.

(D.3) With the abbreviation u± = u(0±, t), the following jump conditions hold at
x = 0 for a.e. t ∈ (0, T ): if u− 6 c 6 u+, then (D3.a) ϕ(u+) − ϕ(c) 6
γ+(u+ − c) and (D3.b) ϕ(u−) − ϕ(c) 6 0, and if u− > c > u+, then (D.3c)
ϕ(u+)− ϕ(c) > γ+(u+ − c) and (D.3d) ϕ(u−)− ϕ(c) > 0.

(D.4) (2.5) holds in the strong L1 sense: limt↓0
∫
R |u(x, t)− u0(x)| dx = 0.

Remark 3.1. For the full ECT model (2.2), we would have to replace u ∈ BV (ΠT )
by the weaker condition u ∈ BVt(ΠT ). Here BVt(ΠT ) is the class of functions W (x, t)
with ∂tW being a finite measure. The discontinuities in γ make it difficult (for (2.2))
to get global control of the spatial variation of u. Furthermore, it is clear from (3.1),
(3.2) that if u is an entropy solution in the sense of Definition 3.1, then u is an
entropy solution in the usual Kružkov sense of ut + ϕ(u)x = 0 for x < 0 and of
ut + (ϕ(u)− γ+u)x = 0 for x > 0. Finally, (2.4) involves a so-called non-conservative
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product: a δ-like function, ux, is multiplied by a discontinuous function γ(x). It is
natural to presume that a jump condition of the following type holds across x = 0:

(3.3) ϕ(u+)− ϕ(u−) = γ̄(u+ − u−), 0 = γ− 6 γ̄ 6 γ+.

In fact, when u− 6 u+, we can take c = u− in (D.3a) and then c = u+ in (D.3b) to get
0 6 ϕ(u+) − ϕ(u−) 6 γ+(u+ − u−), which implies (3.3). Similarly, when u− > u+,
we can take c = u− in (D.3c) and then c = u+ in (D.3d) to get γ+(u+ − u−) 6
ϕ(u+)− ϕ(u−) 6 0, which again implies (3.3).

We are now ready to prove that entropy solutions are L1 stable and hence unique.

Theorem 3.1 (L1 stability and uniqueness). Let u and v be two entropy solutions
in the sense of Definition 3.1 of (2.4)–(2.6) with initial data u0 and v0, respectively.
Then, for all t ∈ (0, T ),

∫
R|u(x, t) − v(x, t)| dx 6

∫
R|u0(x) − v0(x)| dx. In particular,

there exists at most one entropy solution of (2.4)–(2.6).

Proof. Using the doubling of variables technique [13], one can derive from (3.1)
and (3.2) the inequality

∫
R|u(·, t2) − v(·, t2)| dx − ∫

R|u(·, t1) − v(·, t1)| dx 6 E, where
E :=

∫ t2
t1
{sgn(v+−u+)(ϕ(v+)−ϕ(u+)−γ+(v+−u+))−sgn(v−−u−)(ϕ(v−)−ϕ(u−))}dt.

To prove the L1 contraction property, we must verify that E 6 0 by using the jump
conditions. One actually shows that S := sgn(v+−u+)(ϕ(v+)−γ+v+−ϕ(u+)+γ+u+)−
sgn(v−−u−)(ϕ(v−)−ϕ(u−)) 6 0 by examining all orderings of u−, u+, v−, v+, see [3]
for details. ¤

4. Numerical scheme and some properties

We define the spatial cells Ij := [xj−1/2, xj+1/2), j ∈ Z, where xk = k∆x for 2k ∈
Z. Similarly, the time interval (0, T ) is discretized via tn = n∆t for n = 0, . . . , N =
bT/∆tc + 1, which results in the time strips In := [tn, tn+1), n = 0, . . . , N − 1.
Here ∆x > 0 and ∆t > 0 denote the discretization parameters. The CFL condition
λ maxu∈[0,1],x∈R

∣∣fu

(
γ(x), u

)∣∣+λ maxx∈R γ3(x) 6 1/2, where λ := ∆t/∆x, is assumed
to hold. When sending ∆ ↓ 0 we will keep λ constant.

Let Un
j denote the approximation to u(xj , t

n). Then our scheme is given by

(4.1) Un+1
j = Un

j − λ∆−h
(
γj+1/2, U

n
j+1, U

n
j

)
+ λγ3

j ∆+Un
j .

Here γj+1/2 = γ(xj+1/2−), and γ3
j := γ3(xj−). The main difference between (4.1)

and the scheme defined [5] is the ‘sink’ term λγ3
j ∆+Un

j . The use of the forward
difference ∆+ is deliberate here; we bias this difference to preserve the upwind nature
of the scheme. Here we explicitly use the assumption that γ3(x) > 0.

The numerical flux h(γ, v, u) appearing in (4.1) is the Engquist-Osher (EO hence-
forth) numerical flux h(γ, v, u) := 1

2 (f(γ, u) + f(γ, v))− 1
2

∫ v

u
|fu(γ, w)| dw. We intro-

duce u∆(x, t) :=
∑N

n=0

∑
j∈Zχ

n
j (x, t)Un

j , where χn
j is the indicator for the rectangle

Ij × In, to define an approximate solution on all of ΠT .
Although the scheme is not conservative, several important properties of mono-

tonicity are preserved. The following lemma is adapted from Lemma 3.1 of [5].

Lemma 4.1. The computed solution Un
j belongs to the interval [0, 1]. Moreover,

the difference scheme (4.1) is monotone.

Next we establish a fundamental time-continuity estimate.
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Lemma 4.2. The inequality ∆x
∑

j∈Z|Un+1
j − Un

j | 6 ∆x
∑

j∈Z|U1
j − U0

j | 6 C∆t
holds with a constant C that is independent of ∆ and n.

The proof is similar to that of Lemma 3.2 of [5] and is omitted, see [3].
Lemmas 4.1 and 4.2 provide important stability properties of our difference scheme.

We now focus on the reduced problem.

5. Convergence to an entropy solution for the reduced problem

We can write the scheme for this reduced problem as

(5.1) Un+1
j = Un

j − λ∆−h(Un
j+1, U

n
j ) + λγj∆+Un

j ,

where h(v, u) = 1
2 (ϕ(v)+ϕ(u))− 1

2

∫ v

u
|ϕ′(w)| dw. The appropriate CFL condition for

our reduced problem is

λ max
u∈[0,1]

|ϕ′(u)|+ λ max
x∈R

γ(x) 6 1/2.(5.2)

In what follows, we utilize the incremental form of the scheme (5.1):

Un+1
j = Un

j + Cn
j+1/2∆+Un

j −Dn
j−1/2∆−Un

j ,(5.3)

Cn
j+1/2 = λ

(
ϕ(Un

j )− h(Un
j+1, U

n
j )

∆+Un
j

+ γj

)
, Dn

j−1/2 = λ
ϕ(Un

j )− h(Un
j , Un

j−1)
∆−Un

j

.

The monotonicity of h, γj > 0, and (5.2) imply that

(5.4) Cn
j+1/2 > 0, Dn

j+1/2 > 0, Cn
j+1/2 + Dn

j+1/2 6 1.

Lemmas 4.1 and 4.2 remain valid. Let V b
a (z) denote the total variation of x 7→ z(x)

over [a, b]. To establish compactness, we also need a spatial variation bound:

Lemma 5.1. For any interval [a, b], and any t ∈ [0, T ] we have a spatial variation
bound of the form V b

a (u∆(·, t)) 6 C, where C is independent of ∆ and t for t ∈ [0, T ].

Proof. Due to Lemma 4.2, there is a constant K such that ∆x
∑

j∈Z
∑N

n=0|Un+1
j −

Un
j | 6 K. Fix r > 0 with r > ∆x for all mesh sizes ∆x of interest. Let A0 := A0(∆) :=
{j|xj ∈ [a− r−∆x, a]} and A1 := A1(∆) := {j|xj ∈ [b, b+ r +∆x]}, and observe that
|Ak|∆x > r, k = 0, 1. It is then clear that

(5.5) ∆x
∑

j∈Ak

N∑
n=0

∣∣Un+1
j − Un

j

∣∣ 6 K, k = 0, 1.

We can choose jk with jk + k ∈ Ak, k = 0, 1 such that
∑N

n=0|Un+1
jk+k − Un

jk+k| =
minj∈Ak

∑N
n=0|Un+1

j − Un
j | for k = 0, 1. It follows from (5.5) that

(5.6)
N∑

n=0

∣∣∣Un+1
jk+k − Un

jk+k

∣∣∣ 6 K

|Ak|∆x
6 K

r
, k = 0, 1.

Using the incremental form (5.3) and (5.4), we may proceed as in the proof of
Harten’s lemma (Lemma 2.2 of [9]) to obtain

∑j1
j=j0

|∆+Un+1
j | 6

∑j1
j=j0

|∆+Un
j | +

|Un+1
j0

−Un
j0
|+ |Un+1

j1+1 −Un
j1+1|, see [3] for details. Proceeding by induction, and then

using (5.6), we eventually find that for 1 6 n 6 N ,
∑j1

j=j0
|∆+Un

j | 6
∑jb

j=ja
|∆+U0

j |+
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2K/r. The proof is completed with the observation that [a, b] ⊆ [xj0 , xj0+1], along
with the assumption that u0 has bounded variation. ¤

Remark 5.1. It is clear from (5.3) that we could have simply used Harten’s lemma
[9] in its unmodified form to conclude that the scheme is Total Variation Diminishing
(TVD), thus giving a direct proof of a global spatial variation bound. We chose this
more involved proof because for the complete model (2.2), the discontinuities in the
spatially varying coefficient γ preclude elementary TVD type arguments like Harten’s
lemma. We would only have the time continuity estimate (Lemma 4.2) from which
to derive a spatial variation bound, and this more local variation bound would have
to suffice. Finally, note that our local BV approach could be applied to simplify the
compactness proof for models similar to that of [5], see [7].

Our spatial BV bounds carry over to the limit solution u, so that we have limits
from both the left and right, denoted u−(t), u+(t) or simply u−, u+, for a.e t ∈ [0, T ].

We recall the notation a ∨ b := max{a, b}, a ∧ b := min{a, b}.
Lemma 5.2. Any (subsequential) limit u of the scheme (5.1) satisfies the entropy

conditions (3.1)–(D.3d).

Proof. The proof of (3.1), (3.2) is standard, and is omitted. To prove (D.3a), we
use a discrete entropy inequality that follows from the monotonicity property of the
scheme. By means of a particular regularization of γ(x) and using a Lax-Wendroff-
type argument, we eventually obtain the inequality

∫∫
ΠT

((u ∨ c)ψt + (ϕ(u ∨ c) −
γ(x)v)ψx) dx dt−γ+c

∫ T

0
ψ(0, t) dt > 0. By applying a standard test function argument

to this inequality, we find that for a.e. t ∈ (0, T ), ϕ(u−(t) ∨ c) − γ−c − (ϕ(u+(t) ∨
c) − γ+(u+(t) ∨ c)) − γ+c > 0. Recalling that γ− = 0, u− 6 c 6 u+, dropping the
dependence on t, and rearranging, this inequality becomes ϕ(u+)−ϕ(c) 6 γ+(u+−c),
and the proof of (D.3a) is complete. The proofs of (D.3b)–(D.3d) are analogous. See
[3] for details. ¤

Theorem 5.1 (Main Theorem). As ∆ ↓ 0, the approximations u∆ generated by
(5.1) converge in L1(ΠT ) and a.e. in ΠT to the unique entropy solution u of (2.4)–
(2.6).

Proof. Recalling the proof of Lemma 5.1, we see that the constant C is inde-
pendent of the interval [a, b]. Letting a → −∞, b → ∞, we obtain a uniform spatial
variation bound over all of R. Thus, we have an L∞ bound (Lemma 4.1), a time
continuity bound (Lemma 4.2), and a spatial variation bound (Lemma 5.1). In ad-
dition, it is a straightforward exercise, using Lemma 4.2, to derive an L1(ΠT ) bound
for u∆. Moreover, these bounds are independent of ∆, for (x, t) ∈ ΠT . It follows
from standard compactness arguments that there is a subsequential limit, converging
in L1(ΠT ), and a.e. in ΠT , which we will denote u. A proof of (D.4) is standard and
is thus omitted. The proof is completed with an application of our Lemma 5.2, which
guarantees that the subsequential limit u is an entropy solution. By our uniqueness
result (Theorem 3.1), the entire sequence converges to u. ¤

Theorem 5.1 shows that there exists a unique entropy solution to the initial value
problem (2.4)–(2.6), i.e., that this problem is well-posed.
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Figure 2. Simulation of the ECT model with piecewise constant
control functions.

Remark 5.2. We have focused on the reduced model to highlight the aspects of
the problem that are unique to the sink feature. By combining the definition of entropy
solution and the results of this note with those of [5], one can derive a version of
Theorem 5.1 that applies to the full problem. Specifically, the scheme (4.1) converges
to the unique entropy solution of the full problem.

6. Numerical example

We consider the full ECT model (2.1)–(2.2), (2.5) and the flux function (1.1)
with v∞ = 6.75, n = 5 and umax = 1. The vessel is as shown in Figure 1 with
xL = −2, xD = −1 and xD = 1. We use ∆x = 1/80, ∆t = 1/1504, u0 ≡ 0, qR = 0.6,
and the piecewise constant parameters (qL, qD, uF) = (0,−1, 0.7) for 0 6 t < 10,
(−0.7,−0.3, 0.7) for 10 6 t < 15 and (−0.7,−0.3, 0.2) for t > 15. Figure 2 shows the
numerical solution, which includes transitions between three steady states.
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